uie-base / decode_utils.py
xusenlin's picture
Update decode_utils.py
7524f55 verified
raw
history blame
21.8 kB
import math
import re
from typing import (
List,
Union,
Any,
Optional,
)
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from transformers import PreTrainedTokenizer
def get_id_and_prob(spans, offset_map):
prompt_length = 0
for i in range(1, len(offset_map)):
if offset_map[i] != [0, 0]:
prompt_length += 1
else:
break
for i in range(1, prompt_length + 1):
offset_map[i][0] -= (prompt_length + 1)
offset_map[i][1] -= (prompt_length + 1)
sentence_id = []
prob = []
for start, end in spans:
prob.append(start[1] * end[1])
sentence_id.append(
(offset_map[start[0]][0], offset_map[end[0]][1]))
return sentence_id, prob
def get_span(start_ids, end_ids, with_prob=False):
"""
Get span set from position start and end list.
Args:
start_ids (List[int]/List[tuple]): The start index list.
end_ids (List[int]/List[tuple]): The end index list.
with_prob (bool): If True, each element for start_ids and end_ids is a tuple aslike: (index, probability).
Returns:
set: The span set without overlapping, every id can only be used once.
"""
if with_prob:
start_ids = sorted(start_ids, key=lambda x: x[0])
end_ids = sorted(end_ids, key=lambda x: x[0])
else:
start_ids = sorted(start_ids)
end_ids = sorted(end_ids)
start_pointer = 0
end_pointer = 0
len_start = len(start_ids)
len_end = len(end_ids)
couple_dict = {}
# 将每一个span的首/尾token的id进行配对(就近匹配,默认没有overlap的情况)
while start_pointer < len_start and end_pointer < len_end:
if with_prob:
start_id = start_ids[start_pointer][0]
end_id = end_ids[end_pointer][0]
else:
start_id = start_ids[start_pointer]
end_id = end_ids[end_pointer]
if start_id == end_id:
couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
start_pointer += 1
end_pointer += 1
continue
if start_id < end_id:
couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
start_pointer += 1
continue
if start_id > end_id:
end_pointer += 1
continue
result = [(couple_dict[end], end) for end in couple_dict]
result = set(result)
return result
def get_bool_ids_greater_than(probs, limit=0.5, return_prob=False):
"""
Get idx of the last dimension in probability arrays, which is greater than a limitation.
Args:
probs (List[List[float]]): The input probability arrays.
limit (float): The limitation for probability.
return_prob (bool): Whether to return the probability
Returns:
List[List[int]]: The index of the last dimension meet the conditions.
"""
probs = np.array(probs)
dim_len = len(probs.shape)
if dim_len > 1:
result = []
for p in probs:
result.append(get_bool_ids_greater_than(p, limit, return_prob))
return result
else:
result = []
for i, p in enumerate(probs):
if p > limit:
if return_prob:
result.append((i, p))
else:
result.append(i)
return result
def dbc2sbc(s):
rs = ""
for char in s:
code = ord(char)
if code == 0x3000:
code = 0x0020
else:
code -= 0xfee0
if not (0x0021 <= code <= 0x7e):
rs += char
continue
rs += chr(code)
return rs
def cut_chinese_sent(para):
"""
Cut the Chinese sentences more precisely, reference to
"https://blog.csdn.net/blmoistawinde/article/details/82379256".
"""
para = re.sub(r'([。!?\?])([^”’])', r'\1\n\2', para)
para = re.sub(r'(\.{6})([^”’])', r'\1\n\2', para)
para = re.sub(r'(\…{2})([^”’])', r'\1\n\2', para)
para = re.sub(r'([。!?\?][”’])([^,。!?\?])', r'\1\n\2', para)
para = para.rstrip()
return para.split("\n")
def auto_splitter(input_texts, max_text_len, split_sentence=False):
"""
Split the raw texts automatically for model inference.
Args:
input_texts (List[str]): input raw texts.
max_text_len (int): cutting length.
split_sentence (bool): If True, sentence-level split will be performed.
return:
short_input_texts (List[str]): the short input texts for model inference.
input_mapping (dict): mapping between raw text and short input texts.
"""
input_mapping = {}
short_input_texts = []
cnt_short = 0
for cnt_org, text in enumerate(input_texts):
sens = cut_chinese_sent(text) if split_sentence else [text]
for sen in sens:
lens = len(sen)
if lens <= max_text_len:
short_input_texts.append(sen)
if cnt_org in input_mapping:
input_mapping[cnt_org].append(cnt_short)
else:
input_mapping[cnt_org] = [cnt_short]
cnt_short += 1
else:
temp_text_list = [sen[i: i + max_text_len] for i in range(0, lens, max_text_len)]
short_input_texts.extend(temp_text_list)
short_idx = cnt_short
cnt_short += math.ceil(lens / max_text_len)
temp_text_id = [short_idx + i for i in range(cnt_short - short_idx)]
if cnt_org in input_mapping:
input_mapping[cnt_org].extend(temp_text_id)
else:
input_mapping[cnt_org] = temp_text_id
return short_input_texts, input_mapping
class UIEDecoder(nn.Module):
keys_to_ignore_on_gpu = ["offset_mapping", "texts"]
@torch.inference_mode()
def predict(
self,
tokenizer: PreTrainedTokenizer,
texts: Union[List[str], str],
schema: Optional[Any] = None,
batch_size: int = 64,
max_length: int = 512,
split_sentence: bool = False,
position_prob: float = 0.5,
is_english: bool = False,
disable_tqdm: bool = True,
) -> List[Any]:
self.eval()
self.tokenizer = tokenizer
self.is_english = is_english
if schema is not None:
self.set_schema(schema)
texts = texts
if isinstance(texts, str):
texts = [texts]
return self._multi_stage_predict(
texts, batch_size, max_length, split_sentence, position_prob, disable_tqdm
)
def set_schema(self, schema):
if isinstance(schema, (dict, str)):
schema = [schema]
self._schema_tree = self._build_tree(schema)
def _multi_stage_predict(
self,
texts: List[str],
batch_size: int = 64,
max_length: int = 512,
split_sentence: bool = False,
position_prob: float = 0.5,
disable_tqdm: bool = True,
) -> List[Any]:
""" Traversal the schema tree and do multi-stage prediction. """
results = [{} for _ in range(len(texts))]
if len(texts) < 1 or self._schema_tree is None:
return results
schema_list = self._schema_tree.children[:]
while len(schema_list) > 0:
node = schema_list.pop(0)
examples = []
input_map = {}
cnt = 0
idx = 0
if not node.prefix:
for data in texts:
examples.append({"text": data, "prompt": dbc2sbc(node.name)})
input_map[cnt] = [idx]
idx += 1
cnt += 1
else:
for pre, data in zip(node.prefix, texts):
if len(pre) == 0:
input_map[cnt] = []
else:
for p in pre:
if self.is_english:
if re.search(r'\[.*?\]$', node.name):
prompt_prefix = node.name[:node.name.find("[", 1)].strip()
cls_options = re.search(r'\[.*?\]$', node.name).group()
# Sentiment classification of xxx [positive, negative]
prompt = prompt_prefix + p + " " + cls_options
else:
prompt = node.name + p
else:
prompt = p + node.name
examples.append(
{
"text": data,
"prompt": dbc2sbc(prompt)
}
)
input_map[cnt] = [i + idx for i in range(len(pre))]
idx += len(pre)
cnt += 1
result_list = self._single_stage_predict(
examples, batch_size, max_length, split_sentence, position_prob, disable_tqdm
) if examples else []
if not node.parent_relations:
relations = [[] for _ in range(len(texts))]
for k, v in input_map.items():
for idx in v:
if len(result_list[idx]) == 0:
continue
if node.name not in results[k].keys():
results[k][node.name] = result_list[idx]
else:
results[k][node.name].extend(result_list[idx])
if node.name in results[k].keys():
relations[k].extend(results[k][node.name])
else:
relations = node.parent_relations
for k, v in input_map.items():
for i in range(len(v)):
if len(result_list[v[i]]) == 0:
continue
if "relations" not in relations[k][i].keys():
relations[k][i]["relations"] = {node.name: result_list[v[i]]}
elif node.name not in relations[k][i]["relations"].keys():
relations[k][i]["relations"][node.name] = result_list[v[i]]
else:
relations[k][i]["relations"][node.name].extend(result_list[v[i]])
new_relations = [[] for _ in range(len(texts))]
for i in range(len(relations)):
for j in range(len(relations[i])):
if "relations" in relations[i][j].keys() and node.name in relations[i][j]["relations"].keys():
for k in range(len(relations[i][j]["relations"][node.name])):
new_relations[i].append(relations[i][j]["relations"][node.name][k])
relations = new_relations
prefix = [[] for _ in range(len(texts))]
for k, v in input_map.items():
for idx in v:
for i in range(len(result_list[idx])):
if self.is_english:
prefix[k].append(" of " + result_list[idx][i]["text"])
else:
prefix[k].append(result_list[idx][i]["text"] + "的")
for child in node.children:
child.prefix = prefix
child.parent_relations = relations
schema_list.append(child)
return results
def _convert_ids_to_results(self, examples, sentence_ids, probs):
""" Convert ids to raw text in a single stage. """
results = []
for example, sentence_id, prob in zip(examples, sentence_ids, probs):
if len(sentence_id) == 0:
results.append([])
continue
result_list = []
text = example["text"]
prompt = example["prompt"]
for i in range(len(sentence_id)):
start, end = sentence_id[i]
if start < 0 and end >= 0:
continue
if end < 0:
start += len(prompt) + 1
end += len(prompt) + 1
result = {"text": prompt[start: end], "probability": prob[i]}
else:
result = {"text": text[start: end], "start": start, "end": end, "probability": prob[i]}
result_list.append(result)
results.append(result_list)
return results
def _auto_splitter(self, input_texts, max_text_len, split_sentence=False):
"""
Split the raw texts automatically for model inference.
Args:
input_texts (List[str]): input raw texts.
max_text_len (int): cutting length.
split_sentence (bool): If True, sentence-level split will be performed.
return:
short_input_texts (List[str]): the short input texts for model inference.
input_mapping (dict): mapping between raw text and short input texts.
"""
input_mapping = {}
short_input_texts = []
cnt_short = 0
for cnt_org, text in enumerate(input_texts):
sens = cut_chinese_sent(text) if split_sentence else [text]
for sen in sens:
lens = len(sen)
if lens <= max_text_len:
short_input_texts.append(sen)
if cnt_org in input_mapping:
input_mapping[cnt_org].append(cnt_short)
else:
input_mapping[cnt_org] = [cnt_short]
cnt_short += 1
else:
temp_text_list = [sen[i: i + max_text_len] for i in range(0, lens, max_text_len)]
short_input_texts.extend(temp_text_list)
short_idx = cnt_short
cnt_short += math.ceil(lens / max_text_len)
temp_text_id = [short_idx + i for i in range(cnt_short - short_idx)]
if cnt_org in input_mapping:
input_mapping[cnt_org].extend(temp_text_id)
else:
input_mapping[cnt_org] = temp_text_id
return short_input_texts, input_mapping
def _single_stage_predict(
self,
inputs: List[dict],
batch_size: int = 64,
max_length: int = 512,
split_sentence: bool = False,
position_prob: float = 0.5,
disable_tqdm: bool = True,
):
input_texts = []
prompts = []
for i in range(len(inputs)):
input_texts.append(inputs[i]["text"])
prompts.append(inputs[i]["prompt"])
# max predict length should exclude the length of prompt and summary tokens
max_predict_len = max_length - len(max(prompts)) - 3
short_input_texts, input_mapping = self._auto_splitter(
input_texts, max_predict_len, split_sentence=split_sentence
)
short_texts_prompts = []
for k, v in input_mapping.items():
short_texts_prompts.extend([prompts[k] for _ in range(len(v))])
short_inputs = [
{
"text": short_input_texts[i],
"prompt": short_texts_prompts[i]
}
for i in range(len(short_input_texts))
]
encoded_inputs = self.tokenizer(
text=short_texts_prompts,
text_pair=short_input_texts,
stride=2,
truncation=True,
max_length=max_length,
padding="longest",
add_special_tokens=True,
return_offsets_mapping=True,
return_tensors="np")
offset_maps = encoded_inputs["offset_mapping"]
start_prob_concat, end_prob_concat = [], []
if disable_tqdm:
batch_iterator = range(0, len(short_input_texts), batch_size)
else:
batch_iterator = tqdm(range(0, len(short_input_texts), batch_size), desc="Predicting", unit="batch")
for batch_start in batch_iterator:
batch = {
key:
np.array(value[batch_start: batch_start + batch_size], dtype="int64")
for key, value in encoded_inputs.items() if key not in self.keys_to_ignore_on_gpu
}
for k, v in batch.items():
batch[k] = torch.tensor(v, device=self.device)
outputs = self(**batch)
start_prob, end_prob = outputs[0], outputs[1]
if self.device != torch.device("cpu"):
start_prob, end_prob = start_prob.cpu(), end_prob.cpu()
start_prob_concat.append(start_prob.detach().numpy())
end_prob_concat.append(end_prob.detach().numpy())
start_prob_concat = np.concatenate(start_prob_concat)
end_prob_concat = np.concatenate(end_prob_concat)
start_ids_list = get_bool_ids_greater_than(start_prob_concat, limit=position_prob, return_prob=True)
end_ids_list = get_bool_ids_greater_than(end_prob_concat, limit=position_prob, return_prob=True)
input_ids = encoded_inputs['input_ids'].tolist()
sentence_ids, probs = [], []
for start_ids, end_ids, ids, offset_map in zip(start_ids_list, end_ids_list, input_ids, offset_maps):
span_list = get_span(start_ids, end_ids, with_prob=True)
sentence_id, prob = get_id_and_prob(span_list, offset_map.tolist())
sentence_ids.append(sentence_id)
probs.append(prob)
results = self._convert_ids_to_results(short_inputs, sentence_ids, probs)
results = self._auto_joiner(results, short_input_texts, input_mapping)
return results
def _auto_joiner(self, short_results, short_inputs, input_mapping):
concat_results = []
is_cls_task = False
for short_result in short_results:
if not short_result:
continue
elif 'start' not in short_result[0].keys() and 'end' not in short_result[0].keys():
is_cls_task = True
break
else:
break
for k, vs in input_mapping.items():
single_results = []
if is_cls_task:
cls_options = {}
for v in vs:
if len(short_results[v]) == 0:
continue
if short_results[v][0]['text'] in cls_options:
cls_options[short_results[v][0]["text"]][0] += 1
cls_options[short_results[v][0]["text"]][1] += short_results[v][0]["probability"]
else:
cls_options[short_results[v][0]["text"]] = [1, short_results[v][0]["probability"]]
if cls_options:
cls_res, cls_info = max(cls_options.items(), key=lambda x: x[1])
concat_results.append(
[
{"text": cls_res, "probability": cls_info[1] / cls_info[0]}
]
)
else:
concat_results.append([])
else:
offset = 0
for v in vs:
if v == 0:
single_results = short_results[v]
offset += len(short_inputs[v])
else:
for i in range(len(short_results[v])):
if 'start' not in short_results[v][i] or 'end' not in short_results[v][i]:
continue
short_results[v][i]["start"] += offset
short_results[v][i]["end"] += offset
offset += len(short_inputs[v])
single_results.extend(short_results[v])
concat_results.append(single_results)
return concat_results
@classmethod
def _build_tree(cls, schema, name='root'):
"""
Build the schema tree.
"""
schema_tree = SchemaTree(name)
for s in schema:
if isinstance(s, str):
schema_tree.add_child(SchemaTree(s))
elif isinstance(s, dict):
for k, v in s.items():
if isinstance(v, str):
child = [v]
elif isinstance(v, list):
child = v
else:
raise TypeError(
f"Invalid schema, value for each key:value pairs should be list or string"
f"but {type(v)} received")
schema_tree.add_child(cls._build_tree(child, name=k))
else:
raise TypeError(f"Invalid schema, element should be string or dict, but {type(s)} received")
return schema_tree
class SchemaTree(object):
"""
Implementation of SchemaTree
"""
def __init__(self, name='root', children=None):
self.name = name
self.children = []
self.prefix = None
self.parent_relations = None
if children is not None:
for child in children:
self.add_child(child)
def __repr__(self):
return self.name
def add_child(self, node):
assert isinstance(
node, SchemaTree
), "The children of a node should be an instance of SchemaTree."
self.children.append(node)