xuancoblab2023's picture
Training in progress, epoch 1
837b7b7 verified
raw
history blame
5.01 kB
{
"best_metric": 0.5009784735812133,
"best_model_checkpoint": "tiny-bert-sst2-distilled/run-3/checkpoint-384",
"epoch": 9.0,
"eval_steps": 500,
"global_step": 864,
"is_hyper_param_search": true,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 1.0,
"grad_norm": 2.101290702819824,
"learning_rate": 1.1962059637335337e-06,
"loss": 0.5173,
"step": 96
},
{
"epoch": 1.0,
"eval_accuracy": 0.5,
"eval_f1": 0.6666666666666666,
"eval_loss": 0.5046124458312988,
"eval_precision": 0.5,
"eval_recall": 1.0,
"eval_runtime": 28.251,
"eval_samples_per_second": 36.176,
"eval_steps_per_second": 1.133,
"step": 96
},
{
"epoch": 2.0,
"grad_norm": 0.6350829005241394,
"learning_rate": 1.0466802182668422e-06,
"loss": 0.4989,
"step": 192
},
{
"epoch": 2.0,
"eval_accuracy": 0.4843444227005871,
"eval_f1": 0.6216798277099785,
"eval_loss": 0.48798972368240356,
"eval_precision": 0.4909297052154195,
"eval_recall": 0.8473581213307241,
"eval_runtime": 28.492,
"eval_samples_per_second": 35.87,
"eval_steps_per_second": 1.123,
"step": 192
},
{
"epoch": 3.0,
"grad_norm": 1.8015046119689941,
"learning_rate": 8.971544728001503e-07,
"loss": 0.4869,
"step": 288
},
{
"epoch": 3.0,
"eval_accuracy": 0.48238747553816047,
"eval_f1": 0.09572649572649572,
"eval_loss": 0.4779175817966461,
"eval_precision": 0.3783783783783784,
"eval_recall": 0.0547945205479452,
"eval_runtime": 28.2537,
"eval_samples_per_second": 36.172,
"eval_steps_per_second": 1.133,
"step": 288
},
{
"epoch": 4.0,
"grad_norm": 2.0801610946655273,
"learning_rate": 7.476287273334586e-07,
"loss": 0.4795,
"step": 384
},
{
"epoch": 4.0,
"eval_accuracy": 0.5009784735812133,
"eval_f1": 0.00390625,
"eval_loss": 0.47173693776130676,
"eval_precision": 1.0,
"eval_recall": 0.0019569471624266144,
"eval_runtime": 28.2359,
"eval_samples_per_second": 36.195,
"eval_steps_per_second": 1.133,
"step": 384
},
{
"epoch": 5.0,
"grad_norm": 1.289751410484314,
"learning_rate": 5.981029818667669e-07,
"loss": 0.4737,
"step": 480
},
{
"epoch": 5.0,
"eval_accuracy": 0.5009784735812133,
"eval_f1": 0.00390625,
"eval_loss": 0.468070924282074,
"eval_precision": 1.0,
"eval_recall": 0.0019569471624266144,
"eval_runtime": 28.7218,
"eval_samples_per_second": 35.583,
"eval_steps_per_second": 1.114,
"step": 480
},
{
"epoch": 6.0,
"grad_norm": 0.6734181642532349,
"learning_rate": 4.4857723640007514e-07,
"loss": 0.4709,
"step": 576
},
{
"epoch": 6.0,
"eval_accuracy": 0.5,
"eval_f1": 0.0,
"eval_loss": 0.4659123420715332,
"eval_precision": 0.0,
"eval_recall": 0.0,
"eval_runtime": 28.369,
"eval_samples_per_second": 36.025,
"eval_steps_per_second": 1.128,
"step": 576
},
{
"epoch": 7.0,
"grad_norm": 0.6338440179824829,
"learning_rate": 2.9905149093338343e-07,
"loss": 0.4686,
"step": 672
},
{
"epoch": 7.0,
"eval_accuracy": 0.5,
"eval_f1": 0.0,
"eval_loss": 0.46463751792907715,
"eval_precision": 0.0,
"eval_recall": 0.0,
"eval_runtime": 28.015,
"eval_samples_per_second": 36.48,
"eval_steps_per_second": 1.142,
"step": 672
},
{
"epoch": 8.0,
"grad_norm": 0.5559163093566895,
"learning_rate": 1.4952574546669171e-07,
"loss": 0.4678,
"step": 768
},
{
"epoch": 8.0,
"eval_accuracy": 0.5,
"eval_f1": 0.0,
"eval_loss": 0.4639304578304291,
"eval_precision": 0.0,
"eval_recall": 0.0,
"eval_runtime": 28.4868,
"eval_samples_per_second": 35.876,
"eval_steps_per_second": 1.123,
"step": 768
},
{
"epoch": 9.0,
"grad_norm": 0.9788464307785034,
"learning_rate": 0.0,
"loss": 0.467,
"step": 864
},
{
"epoch": 9.0,
"eval_accuracy": 0.5,
"eval_f1": 0.0,
"eval_loss": 0.4637199938297272,
"eval_precision": 0.0,
"eval_recall": 0.0,
"eval_runtime": 31.2173,
"eval_samples_per_second": 32.738,
"eval_steps_per_second": 1.025,
"step": 864
}
],
"logging_steps": 500,
"max_steps": 864,
"num_input_tokens_seen": 0,
"num_train_epochs": 9,
"save_steps": 500,
"total_flos": 2121256775520.0,
"train_batch_size": 32,
"trial_name": null,
"trial_params": {
"alpha": 0.586704262013931,
"learning_rate": 1.3457317092002255e-06,
"num_train_epochs": 9,
"temperature": 21
}
}