LZHgrla commited on
Commit
107c867
1 Parent(s): 1b75f13

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Lin-Chen/ShareGPT4V
4
+ pipeline_tag: image-text-to-text
5
+ library_name: xtuner
6
+ ---
7
+
8
+ <div align="center">
9
+ <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
10
+
11
+
12
+ [![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
13
+
14
+
15
+ </div>
16
+
17
+ ## Model
18
+
19
+ llava-phi-3-mini-xtuner is a LLaVA model fine-tuned from [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).
20
+
21
+ **Note: This model is in xtuner LLaVA format. The model in official LLaVA format and HuggingFace LLaVA format can be found on [xtuner/llava-phi-3-mini](https://huggingface.co/xtuner/llava-phi-3-mini) and [xtuner/llava-phi-3-mini-hf](https://huggingface.co/xtuner/llava-phi-3-mini-hf).**
22
+
23
+
24
+ ## Details
25
+
26
+ | Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset |
27
+ | :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: |
28
+ | LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
29
+ | LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
30
+ | LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
31
+ | LLaVA-Phi-3-mini | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Full ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
32
+
33
+ ## Results
34
+
35
+
36
+ ## Quickstart
37
+
38
+ ### Installation
39
+
40
+ ```shell
41
+ pip install 'git+https://github.com/InternLM/xtuner.git#egg=xtuner[deepspeed]'
42
+ ```
43
+
44
+ ### Chat
45
+
46
+ ```shell
47
+ xtuner chat xtuner/llava-phi-3-mini-xtuner \
48
+ --llava xtuner/llava-phi-3-mini-xtuner \
49
+ --prompt-template phi3_chat \
50
+ --image $IMAGE_PATH
51
+ ```
52
+
53
+ ### MMBench Evaluation
54
+
55
+ XTuner integrates the MMBench evaluation, and you can perform evaluations with the following command!
56
+
57
+ ```bash
58
+ xtuner mmbench xtuner/llava-phi-3-mini-xtuner \
59
+ --llava xtuner/llava-phi-3-mini-xtuner \
60
+ --prompt-template phi3_chat \
61
+ --data-path $MMBENCH_DATA_PATH \
62
+ --work-dir $RESULT_PATH
63
+ ```
64
+
65
+ After the evaluation is completed, if it's a development set, it will directly print out the results; If it's a test set, you need to submit `mmbench_result.xlsx` to the official MMBench for final evaluation to obtain precision results!
66
+
67
+ ### Training
68
+
69
+ 1. Pretrain
70
+
71
+ ```bash
72
+ NPROC_PER_NODE=8 xtuner train llava_phi3_mini_4k_instruct_clip_vit_large_p14_336_e1_gpu8_sharegpt4v_pretrain --deepspeed deepspeed_zero2 --seed 1024
73
+ ```
74
+
75
+ 2. Fine-tune
76
+
77
+ ```bash
78
+ NPROC_PER_NODE=8 xtuner train llava_phi3_mini_4k_instruct_full_clip_vit_large_p14_336_full_e2_gpu8_internvl_finetune --deepspeed deepspeed_zero2 --seed 1024
79
+ ```
80
+
81
+ ## Citation
82
+
83
+ ```bibtex
84
+ @misc{2023xtuner,
85
+ title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
86
+ author={XTuner Contributors},
87
+ howpublished = {\url{https://github.com/InternLM/xtuner}},
88
+ year={2023}
89
+ }
90
+ ```