LZHgrla commited on
Commit
59ea3aa
1 Parent(s): c081b68

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Lin-Chen/ShareGPT4V
4
+ pipeline_tag: image-to-text
5
+ library_name: xtuner
6
+ ---
7
+
8
+ <div align="center">
9
+ <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
10
+
11
+
12
+ [![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
13
+
14
+
15
+ </div>
16
+
17
+ ## Model
18
+
19
+ llava-phi-3-mini is a LLaVA model fine-tuned from [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).
20
+
21
+ **Note: This model is in HuggingFace LLaVA format. The models in xtuner LLaVA format and official LLaVA format can be found on [xtuner/llava-phi-3-mini-xtuner](https://huggingface.co/xtuner/llava-phi-3-mini-xtuner) and [xtuner/llava-phi-3-mini](https://huggingface.co/xtuner/llava-phi-3-mini).**
22
+
23
+
24
+ ## Details
25
+
26
+ | Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset |
27
+ | :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: |
28
+ | LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
29
+ | LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
30
+ | LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
31
+ | LLaVA-Phi-3-mini | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Full ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
32
+
33
+ ## Results
34
+
35
+
36
+ ## Quickstart
37
+
38
+ ### Chat with `pipeline`
39
+
40
+
41
+ ```python
42
+ from transformers import pipeline
43
+ from PIL import Image
44
+ import requests
45
+
46
+ model_id = "xtuner/llava-phi-3-mini-hf"
47
+ pipe = pipeline("image-to-text", model=model_id, device=0)
48
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
49
+
50
+ image = Image.open(requests.get(url, stream=True).raw)
51
+ prompt = "<|user|>\n<image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud<|end|>\n<|assistant|>\n"
52
+
53
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
54
+ print(outputs)
55
+ >>> [{'generated_text': '\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud (1) lava'}]
56
+ ```
57
+
58
+ ### Chat with pure `transformers`
59
+
60
+ ```python
61
+ import requests
62
+ from PIL import Image
63
+
64
+ import torch
65
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
66
+
67
+ model_id = "xtuner/llava-phi-3-mini-hf"
68
+
69
+ prompt = "<|user|>\n<image>\nWhat are these?<|end|>\n<|assistant|>\n"
70
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
71
+
72
+ model = LlavaForConditionalGeneration.from_pretrained(
73
+ model_id,
74
+ torch_dtype=torch.float16,
75
+ low_cpu_mem_usage=True,
76
+ ).to(0)
77
+
78
+ processor = AutoProcessor.from_pretrained(model_id)
79
+
80
+
81
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
82
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
83
+
84
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
85
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
86
+ >>> What are these? These are two cats sleeping on a pink couch.
87
+ ```
88
+
89
+
90
+ ### Reproduction
91
+
92
+ Please refer to [docs](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llava/phi3_mini_4k_instruct_clip_vit_large_p14_336#readme).
93
+
94
+ ## Citation
95
+
96
+ ```bibtex
97
+ @misc{2023xtuner,
98
+ title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
99
+ author={XTuner Contributors},
100
+ howpublished = {\url{https://github.com/InternLM/xtuner}},
101
+ year={2023}
102
+ }
103
+ ```