LZHgrla commited on
Commit
453579e
1 Parent(s): ace96a5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Lin-Chen/ShareGPT4V
4
+ pipeline_tag: image-text-to-text
5
+ library_name: xtuner
6
+ ---
7
+
8
+ <div align="center">
9
+ <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
10
+
11
+
12
+ [![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
13
+
14
+
15
+ </div>
16
+
17
+ ## Model
18
+
19
+ llava-llama-3-8b-v1_1-hf is a LLaVA model fine-tuned from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).
20
+
21
+ **Note: This model is in official LLaVA format.**
22
+
23
+ Resources:
24
+
25
+ - GitHub: [xtuner](https://github.com/InternLM/xtuner)
26
+ - Official LLaVA format model: [xtuner/llava-llama-3-8b-v1_1-hf](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-hf)
27
+ - XTuner LLaVA format model: [xtuner/llava-llama-3-8b-v1_1](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1)
28
+
29
+
30
+ ## Details
31
+
32
+ | Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset |
33
+ | :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: |
34
+ | LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
35
+ | LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
36
+ | LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
37
+
38
+ ## Results
39
+
40
+ <div align="center">
41
+ <img src="https://github.com/InternLM/xtuner/assets/36994684/a157638c-3500-44ed-bfab-d8d8249f91bb" alt="Image" width=500" />
42
+ </div>
43
+
44
+ | Model | MMBench Test (EN) | MMBench Test (CN) | CCBench Dev | MMMU Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA | TextVQA | MME | MMStar |
45
+ | :-------------------- | :---------------: | :---------------: | :---------: | :-------: | :------: | :-------: | :------------: | :-----------------: | :--: | :--: | :-----: | :------: | :----: |
46
+ | LLaVA-v1.5-7B | 66.5 | 59.0 | 27.5 | 35.3 | 60.5 | 54.8 | 70.4 | 44.9 | 85.9 | 62.0 | 58.2 | 1511/348 | 30.3 |
47
+ | LLaVA-Llama-3-8B | 68.9 | 61.6 | 30.4 | 36.8 | 69.8 | 60.9 | 73.3 | 47.3 | 87.2 | 63.5 | 58.0 | 1506/295 | 38.2 |
48
+ | LLaVA-Llama-3-8B-v1.1 | 72.3 | 66.4 | 31.6 | 36.8 | 70.1 | 70.0 | 72.9 | 47.7 | 86.4 | 62.6 | 59.0 | 1469/349 | 45.1 |
49
+
50
+
51
+ ## QuickStart
52
+
53
+
54
+ ### Chat by `pipeline`
55
+
56
+
57
+ ```python
58
+ from transformers import pipeline
59
+ from PIL import Image
60
+ import requests
61
+
62
+ model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
63
+ pipe = pipeline("image-to-text", model=model_id, device=0)
64
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
65
+
66
+ image = Image.open(requests.get(url, stream=True).raw)
67
+ prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>"
68
+ "<|start_header_id|>assistant<|end_header_id|>\n\n")
69
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
70
+ print(outputs)
71
+ >>> [{'generated_text': 'user\n\n\nWhat are these?assistant\n\nThese are two cats, one brown and one gray, lying on a pink blanket. sleep. brown and gray cat sleeping on a pink blanket.'}]
72
+ ```
73
+
74
+ ### Chat by pure `transformers`
75
+
76
+ ```python
77
+ import requests
78
+ from PIL import Image
79
+
80
+ import torch
81
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
82
+
83
+ model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
84
+
85
+ prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>"
86
+ "<|start_header_id|>assistant<|end_header_id|>\n\n")
87
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
88
+
89
+ model = LlavaForConditionalGeneration.from_pretrained(
90
+ model_id,
91
+ torch_dtype=torch.float16,
92
+ low_cpu_mem_usage=True,
93
+ ).to(0)
94
+
95
+ processor = AutoProcessor.from_pretrained(model_id)
96
+
97
+
98
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
99
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
100
+
101
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
102
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
103
+ >>> These are two cats, one brown and one gray, lying on a pink blanket. sleep. brown and gray cat sleeping on a pink blanket.
104
+ ```
105
+
106
+
107
+ ### Reproduce
108
+
109
+ Please refer to [docs](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llava/phi3_mini_4k_instruct_clip_vit_large_p14_336#readme).
110
+
111
+
112
+ ## Citation
113
+
114
+ ```bibtex
115
+ @misc{2023xtuner,
116
+ title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
117
+ author={XTuner Contributors},
118
+ howpublished = {\url{https://github.com/InternLM/xtuner}},
119
+ year={2023}
120
+ }
121
+ ```