Upload PPO LunarLander-v2 trained agent with help from optuna
Browse files- README.md +37 -0
- config.json +1 -0
- optuned-ppo-LunarLander-v2-2.zip +3 -0
- optuned-ppo-LunarLander-v2-2/_stable_baselines3_version +1 -0
- optuned-ppo-LunarLander-v2-2/data +102 -0
- optuned-ppo-LunarLander-v2-2/policy.optimizer.pth +3 -0
- optuned-ppo-LunarLander-v2-2/policy.pth +3 -0
- optuned-ppo-LunarLander-v2-2/pytorch_variables.pth +3 -0
- optuned-ppo-LunarLander-v2-2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 288.36 +/- 19.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d09aa096560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d09aa0965f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d09aa096680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d09aa096710>", "_build": "<function ActorCriticPolicy._build at 0x7d09aa0967a0>", "forward": "<function ActorCriticPolicy.forward at 0x7d09aa096830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d09aa0968c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d09aa096950>", "_predict": "<function ActorCriticPolicy._predict at 0x7d09aa0969e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d09aa096a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d09aa096b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d09aa096b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d09aa232680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694084697325969767, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwePGlweXRob24taW5wdXQtNS01MjU0NzVjYmJiNGE+lIwEZnVuY5RLD0MCCAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoKXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaUKj4UvZK8Eb6iuj8lKTkbhAK+XHYROgAAgD8AAIA/Xc6Jvphrkj5VMYk+6zchv5KMrb4u2X0+AAAAAAAAAAC6jCY+gRuTvLMGAr87ifG970lzvYKeC78AAIA/AACAP01PfT3SHZQ/KfQQPgzBKr/56aI9GDD8PQAAAAAAAAAAzWAJvO8atD+hUSe+rZOyvQR7xTv72uY6AAAAAAAAAADNdLo7FG6ruGNf7D0lvtM0BRCfuyLK+zMAAIA/AACAP2bFzrxcoqA/0O/xvSO6GL/ycbI6bQftuwAAAAAAAAAAgGlRvUgPpbpu7wy94AmfNlOuA7ru0A62AACAPwAAgD8AtUC9FBqEug0+pD3rbB85SvMOO40OEjgAAIA/AACAP5rV2Dt7HOS64AvqO5qIMbxXBQG8RVkVvQAAgD8AAIA/GvxRPfY5dbzItle+OwVjPbCIqD0mHKS6AACAPwAAgD9gSGY+U7lmP/Imuz7zyBi/6ze/Puh+JT4AAAAAAAAAAGb1DD1PKHO8Y36rvvE6Cj3rqSQ8EuInvQAAgD8AAIA/TdUiPr+ERz69qdS+yXStvuHYaLo5iIi+AAAAAAAAAABmAau8ADGoP+7IQb5kXAa/2FeMOx5wgjsAAAAAAAAAAJpZWTqkOAs8fAUIvGS2n75SZG292FmfuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHPkChSLqD+MAWyUS+qMAXSUR0CphoNapxWDdX2UKGgGR0BvzL7XQMQVaAdLw2gIR0CphpFzdUKidX2UKGgGR0By8IYEW69TaAdLqmgIR0CphqaF23a0dX2UKGgGR0Bx43hjvuw5aAdLrGgIR0CphsyqMm4RdX2UKGgGR0BxP/O8kD6naAdL12gIR0Cphswg9vCNdX2UKGgGR0BvasWj4593aAdL32gIR0CphxVrqMWHdX2UKGgGR0Bziv7HhjvvaAdNCwJoCEdAqYdtI/Z/TnV9lChoBkdAQqhoEjgQ6WgHS2JoCEdAqYd4g7o0RHV9lChoBkdAcxHYukDZDmgHS/xoCEdAqYf+l41P33V9lChoBkdAcA9fDUExI2gHS7loCEdAqYg75wfhdnV9lChoBkdAc61LJSzgM2gHS/ZoCEdAqYg+Gyon8nV9lChoBkdAc7XFxGUfP2gHS9poCEdAqYhFU4rBkHV9lChoBkdAcTMnB+F10WgHS6xoCEdAqYhT5mAbynV9lChoBkdAcegCVKPGQ2gHS+9oCEdAqYhe0E5hjXV9lChoBkdAbnXuxbB42WgHS65oCEdAqYh60KJEY3V9lChoBkdAca44sEq2B2gHS+doCEdAqYh5t78ejnV9lChoBkdAciUG+9Jz1mgHS7loCEdAqYidGd7OV3V9lChoBkdAcGqT/Q0GeWgHS7VoCEdAqYienn+yaHV9lChoBkdAcFY/4ZdfLWgHS6xoCEdAqYio2MsH0XV9lChoBkdAcrc0w8GLUGgHS6RoCEdAqYkvGZNO/XV9lChoBkdActtMQ2/BWWgHS+ZoCEdAqYk6gf2bonV9lChoBkdAchTfukUKzGgHS9JoCEdAqYlKz3RG+nV9lChoBkdAcdi3DvVmSWgHS6toCEdAqZGycCo0h3V9lChoBkdAdDlCzC1qnGgHS+FoCEdAqZG/CQ9zO3V9lChoBkdAcEsqJ/G2kWgHS79oCEdAqZIje40/GHV9lChoBkdAcrwbypaRp2gHS65oCEdAqZI1Dpkf93V9lChoBkdAcfenTy8SPGgHS8doCEdAqZJAd0aIe3V9lChoBkdAcpToX9BKMGgHS6poCEdAqZJUGC7K73V9lChoBkdAdJeWtU4rBmgHS8FoCEdAqZJmSdOIqXV9lChoBkdAcNBfRNRFZ2gHS7ZoCEdAqZJwT9KmK3V9lChoBkdAciaQ8fV7QmgHS89oCEdAqZJuLYPGyXV9lChoBkdAcjJ+xGDtgWgHS+doCEdAqZKKAlOXV3V9lChoBkdAcbApc5bQkWgHS/loCEdAqZLKq0dBB3V9lChoBkdAciyYwqRU3mgHS6RoCEdAqZLhyMkyDnV9lChoBkdAc84eEZiuuGgHS+VoCEdAqZLym2sq8XV9lChoBkdAcCD7eVLSNWgHS7NoCEdAqZL892X9i3V9lChoBkdAcwLw8nuy/2gHS9loCEdAqZO70nPVu3V9lChoBkdAce817pmmL2gHS8JoCEdAqZQF8/lhgHV9lChoBkdAc6eWS2Yv4GgHS8doCEdAqZQuldkauXV9lChoBkdAb96+K0lZ5mgHS8RoCEdAqZTClenhsXV9lChoBkdAcdOSP2f03GgHS9JoCEdAqZVOgte2NXV9lChoBkdARA8fq5byH2gHS2JoCEdAqZVqO3lS0nV9lChoBkdAcjqpyZKFqWgHS85oCEdAqZVytozvZ3V9lChoBkdAdAZsTnJT2mgHS9FoCEdAqZVxa3ZwoHV9lChoBkdAcbEmG/N7jWgHS+JoCEdAqZV7mjj7ynV9lChoBkdAcKDCZF5OamgHS61oCEdAqZWD9bX6InV9lChoBkdAcyEraM72c2gHS85oCEdAqZWeb9ZRsXV9lChoBkdAckrldC3PRmgHS/FoCEdAqZX6hnJ1aHV9lChoBkdAcyoSXt0FKWgHS7poCEdAqZYDLt/nXHV9lChoBkdAczugRsdkrmgHS8hoCEdAqZYQjUutfXV9lChoBkdAchD6kqMFU2gHS9ZoCEdAqZZaMtK7I3V9lChoBkdAckHYIjW07mgHS7hoCEdAqZb5JAdGRXV9lChoBkdASrs+NcW0q2gHS4BoCEdAqZdNZmqYJHV9lChoBkdAcZLKxLTQV2gHS91oCEdAqZfJRoAXEnV9lChoBkdAcsKp++dsi2gHS69oCEdAqZhHC0ngHnV9lChoBkdAcVfV2icoY2gHS69oCEdAqZhQJiRW93V9lChoBkdAc44pItlI3GgHS9hoCEdAqZhVnXd0rHV9lChoBkdAcViE2pAD72gHS5VoCEdAqZhwYk3S8nV9lChoBkdAZatpBX0Xg2gHTegDaAhHQKmYq8uBczJ1fZQoaAZHQHHOnwob4rVoB0u+aAhHQKmYuouPFNt1fZQoaAZHQHL86NQ0oBtoB0vNaAhHQKmYyWxhUip1fZQoaAZHQHHYMkpqh11oB0uvaAhHQKmY6tz0Yj11fZQoaAZHQHIHTafzz3BoB0vYaAhHQKmY8uMdcSp1fZQoaAZHQHOic50bLlpoB0viaAhHQKmZMUJOWSl1fZQoaAZHQHMFa4pc5bRoB0vQaAhHQKmZ1t0FKTV1fZQoaAZHQHHFSkKu0TloB0u0aAhHQKmaD7m+0w91fZQoaAZHQHFXHzpX6qNoB0u8aAhHQKmbGliSaE11fZQoaAZHQHRCXnU2DQJoB00pAWgIR0Cpmx8IJJGwdX2UKGgGR0BvdXIn0CiiaAdLqmgIR0Cpm0MasIVudX2UKGgGR0BxO2fWcz68aAdLtWgIR0Cpm4OVHFxXdX2UKGgGR0BvlNpItlI3aAdLtWgIR0Cpm6B8IAwPdX2UKGgGR0BwHQxdpqREaAdLv2gIR0Cpm6yrgflqdX2UKGgGR0Bx6ro/zJ6qaAdLl2gIR0Cpm+dfTkQxdX2UKGgGR0BxVWw2VE/jaAdLuWgIR0CpnDR4IKMOdX2UKGgGR0Bw0pvBJqZdaAdLy2gIR0CpnFe6iCardX2UKGgGR0By8X9uP3i8aAdLx2gIR0CpnFcRUWEcdX2UKGgGR0A/sJ40Mw10aAdLhWgIR0CpnFVv2oNvdX2UKGgGR0BxfJghKUV0aAdL1mgIR0CpnHjc2zfKdX2UKGgGR0By3qrR0EHMaAdLx2gIR0CpnII91U2ldX2UKGgGR0BzHQdbPhQ4aAdLuWgIR0CpnXDhcZ+AdX2UKGgGR0BGukovzvqkaAdLcGgIR0CpnfK20AtGdX2UKGgGR0BvtARZlnRLaAdLwWgIR0CpnqQumJm/dX2UKGgGR0BxHMuqWC2+aAdLsmgIR0CpnrozFdcCdX2UKGgGR0Bzh+j0th/iaAdLxWgIR0CpnsuIZZSvdX2UKGgGR0BwxEupS75EaAdLuWgIR0CpnuMERraedX2UKGgGR0BzQCVzIV/MaAdL2mgIR0CpnvRp+MIedX2UKGgGR0BvieY2Kl54aAdLqWgIR0CpnxP1L8JldX2UKGgGR0ByOc7V8Ti9aAdLy2gIR0CpnyIUSIxhdX2UKGgGR0Bwiwv/R3NcaAdLsmgIR0Cpn0Pgeii7dX2UKGgGR0B0cJLlFMIvaAdLt2gIR0Cpn2xri2lVdX2UKGgGR0Bx9rDZUT+OaAdLymgIR0Cpn4flhgE2dX2UKGgGR0BzlDXVbzK+aAdL3mgIR0Cpn8N4JNTMdX2UKGgGR0Bz+4KLKmsOaAdL22gIR0Cpn9ZccENfdX2UKGgGR8AUUZDRc/t6aAdLWWgIR0Cpn+8uSOindX2UKGgGR0Bui5NKyv9taAdLuGgIR0CpoBVsk6cRdX2UKGgGR0BzHRD+irT6aAdNPQJoCEdAqaCccU/OdHV9lChoBkdAcizqJ/G2kWgHS9RoCEdAqaC7riVB2XV9lChoBkdAcbU99c8klmgHS7loCEdAqaDYUi6g/XV9lChoBkdAcIih7mdRSGgHS7toCEdAqaDw5tFa0XV9lChoBkdAcPPcqvvBrWgHS71oCEdAqaEGvStvGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwePGlweXRob24taW5wdXQtNS01MjU0NzVjYmJiNGE+lIwEZnVuY5RLD0MCCAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoKXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
optuned-ppo-LunarLander-v2-2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07d4658b57505fa5be20ba40cf58066ec95a049d5b6c3ec03dcda1f23ce94f0a
|
3 |
+
size 147738
|
optuned-ppo-LunarLander-v2-2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
optuned-ppo-LunarLander-v2-2/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d09aa096560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d09aa0965f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d09aa096680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d09aa096710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d09aa0967a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d09aa096830>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d09aa0968c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d09aa096950>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d09aa0969e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d09aa096a70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d09aa096b00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d09aa096b90>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d09aa232680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1694084697325969767,
|
30 |
+
"learning_rate": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwePGlweXRob24taW5wdXQtNS01MjU0NzVjYmJiNGE+lIwEZnVuY5RLD0MCCAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoKXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"tensorboard_log": null,
|
35 |
+
"_last_obs": {
|
36 |
+
":type:": "<class 'numpy.ndarray'>",
|
37 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaUKj4UvZK8Eb6iuj8lKTkbhAK+XHYROgAAgD8AAIA/Xc6Jvphrkj5VMYk+6zchv5KMrb4u2X0+AAAAAAAAAAC6jCY+gRuTvLMGAr87ifG970lzvYKeC78AAIA/AACAP01PfT3SHZQ/KfQQPgzBKr/56aI9GDD8PQAAAAAAAAAAzWAJvO8atD+hUSe+rZOyvQR7xTv72uY6AAAAAAAAAADNdLo7FG6ruGNf7D0lvtM0BRCfuyLK+zMAAIA/AACAP2bFzrxcoqA/0O/xvSO6GL/ycbI6bQftuwAAAAAAAAAAgGlRvUgPpbpu7wy94AmfNlOuA7ru0A62AACAPwAAgD8AtUC9FBqEug0+pD3rbB85SvMOO40OEjgAAIA/AACAP5rV2Dt7HOS64AvqO5qIMbxXBQG8RVkVvQAAgD8AAIA/GvxRPfY5dbzItle+OwVjPbCIqD0mHKS6AACAPwAAgD9gSGY+U7lmP/Imuz7zyBi/6ze/Puh+JT4AAAAAAAAAAGb1DD1PKHO8Y36rvvE6Cj3rqSQ8EuInvQAAgD8AAIA/TdUiPr+ERz69qdS+yXStvuHYaLo5iIi+AAAAAAAAAABmAau8ADGoP+7IQb5kXAa/2FeMOx5wgjsAAAAAAAAAAJpZWTqkOAs8fAUIvGS2n75SZG292FmfuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
38 |
+
},
|
39 |
+
"_last_episode_starts": {
|
40 |
+
":type:": "<class 'numpy.ndarray'>",
|
41 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
42 |
+
},
|
43 |
+
"_last_original_obs": null,
|
44 |
+
"_episode_num": 0,
|
45 |
+
"use_sde": false,
|
46 |
+
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": -0.007616000000000067,
|
48 |
+
"_stats_window_size": 100,
|
49 |
+
"ep_info_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHPkChSLqD+MAWyUS+qMAXSUR0CphoNapxWDdX2UKGgGR0BvzL7XQMQVaAdLw2gIR0CphpFzdUKidX2UKGgGR0By8IYEW69TaAdLqmgIR0CphqaF23a0dX2UKGgGR0Bx43hjvuw5aAdLrGgIR0CphsyqMm4RdX2UKGgGR0BxP/O8kD6naAdL12gIR0Cphswg9vCNdX2UKGgGR0BvasWj4593aAdL32gIR0CphxVrqMWHdX2UKGgGR0Bziv7HhjvvaAdNCwJoCEdAqYdtI/Z/TnV9lChoBkdAQqhoEjgQ6WgHS2JoCEdAqYd4g7o0RHV9lChoBkdAcxHYukDZDmgHS/xoCEdAqYf+l41P33V9lChoBkdAcA9fDUExI2gHS7loCEdAqYg75wfhdnV9lChoBkdAc61LJSzgM2gHS/ZoCEdAqYg+Gyon8nV9lChoBkdAc7XFxGUfP2gHS9poCEdAqYhFU4rBkHV9lChoBkdAcTMnB+F10WgHS6xoCEdAqYhT5mAbynV9lChoBkdAcegCVKPGQ2gHS+9oCEdAqYhe0E5hjXV9lChoBkdAbnXuxbB42WgHS65oCEdAqYh60KJEY3V9lChoBkdAca44sEq2B2gHS+doCEdAqYh5t78ejnV9lChoBkdAciUG+9Jz1mgHS7loCEdAqYidGd7OV3V9lChoBkdAcGqT/Q0GeWgHS7VoCEdAqYienn+yaHV9lChoBkdAcFY/4ZdfLWgHS6xoCEdAqYio2MsH0XV9lChoBkdAcrc0w8GLUGgHS6RoCEdAqYkvGZNO/XV9lChoBkdActtMQ2/BWWgHS+ZoCEdAqYk6gf2bonV9lChoBkdAchTfukUKzGgHS9JoCEdAqYlKz3RG+nV9lChoBkdAcdi3DvVmSWgHS6toCEdAqZGycCo0h3V9lChoBkdAdDlCzC1qnGgHS+FoCEdAqZG/CQ9zO3V9lChoBkdAcEsqJ/G2kWgHS79oCEdAqZIje40/GHV9lChoBkdAcrwbypaRp2gHS65oCEdAqZI1Dpkf93V9lChoBkdAcfenTy8SPGgHS8doCEdAqZJAd0aIe3V9lChoBkdAcpToX9BKMGgHS6poCEdAqZJUGC7K73V9lChoBkdAdJeWtU4rBmgHS8FoCEdAqZJmSdOIqXV9lChoBkdAcNBfRNRFZ2gHS7ZoCEdAqZJwT9KmK3V9lChoBkdAciaQ8fV7QmgHS89oCEdAqZJuLYPGyXV9lChoBkdAcjJ+xGDtgWgHS+doCEdAqZKKAlOXV3V9lChoBkdAcbApc5bQkWgHS/loCEdAqZLKq0dBB3V9lChoBkdAciyYwqRU3mgHS6RoCEdAqZLhyMkyDnV9lChoBkdAc84eEZiuuGgHS+VoCEdAqZLym2sq8XV9lChoBkdAcCD7eVLSNWgHS7NoCEdAqZL892X9i3V9lChoBkdAcwLw8nuy/2gHS9loCEdAqZO70nPVu3V9lChoBkdAce817pmmL2gHS8JoCEdAqZQF8/lhgHV9lChoBkdAc6eWS2Yv4GgHS8doCEdAqZQuldkauXV9lChoBkdAb96+K0lZ5mgHS8RoCEdAqZTClenhsXV9lChoBkdAcdOSP2f03GgHS9JoCEdAqZVOgte2NXV9lChoBkdARA8fq5byH2gHS2JoCEdAqZVqO3lS0nV9lChoBkdAcjqpyZKFqWgHS85oCEdAqZVytozvZ3V9lChoBkdAdAZsTnJT2mgHS9FoCEdAqZVxa3ZwoHV9lChoBkdAcbEmG/N7jWgHS+JoCEdAqZV7mjj7ynV9lChoBkdAcKDCZF5OamgHS61oCEdAqZWD9bX6InV9lChoBkdAcyEraM72c2gHS85oCEdAqZWeb9ZRsXV9lChoBkdAckrldC3PRmgHS/FoCEdAqZX6hnJ1aHV9lChoBkdAcyoSXt0FKWgHS7poCEdAqZYDLt/nXHV9lChoBkdAczugRsdkrmgHS8hoCEdAqZYQjUutfXV9lChoBkdAchD6kqMFU2gHS9ZoCEdAqZZaMtK7I3V9lChoBkdAckHYIjW07mgHS7hoCEdAqZb5JAdGRXV9lChoBkdASrs+NcW0q2gHS4BoCEdAqZdNZmqYJHV9lChoBkdAcZLKxLTQV2gHS91oCEdAqZfJRoAXEnV9lChoBkdAcsKp++dsi2gHS69oCEdAqZhHC0ngHnV9lChoBkdAcVfV2icoY2gHS69oCEdAqZhQJiRW93V9lChoBkdAc44pItlI3GgHS9hoCEdAqZhVnXd0rHV9lChoBkdAcViE2pAD72gHS5VoCEdAqZhwYk3S8nV9lChoBkdAZatpBX0Xg2gHTegDaAhHQKmYq8uBczJ1fZQoaAZHQHHOnwob4rVoB0u+aAhHQKmYuouPFNt1fZQoaAZHQHL86NQ0oBtoB0vNaAhHQKmYyWxhUip1fZQoaAZHQHHYMkpqh11oB0uvaAhHQKmY6tz0Yj11fZQoaAZHQHIHTafzz3BoB0vYaAhHQKmY8uMdcSp1fZQoaAZHQHOic50bLlpoB0viaAhHQKmZMUJOWSl1fZQoaAZHQHMFa4pc5bRoB0vQaAhHQKmZ1t0FKTV1fZQoaAZHQHHFSkKu0TloB0u0aAhHQKmaD7m+0w91fZQoaAZHQHFXHzpX6qNoB0u8aAhHQKmbGliSaE11fZQoaAZHQHRCXnU2DQJoB00pAWgIR0Cpmx8IJJGwdX2UKGgGR0BvdXIn0CiiaAdLqmgIR0Cpm0MasIVudX2UKGgGR0BxO2fWcz68aAdLtWgIR0Cpm4OVHFxXdX2UKGgGR0BvlNpItlI3aAdLtWgIR0Cpm6B8IAwPdX2UKGgGR0BwHQxdpqREaAdLv2gIR0Cpm6yrgflqdX2UKGgGR0Bx6ro/zJ6qaAdLl2gIR0Cpm+dfTkQxdX2UKGgGR0BxVWw2VE/jaAdLuWgIR0CpnDR4IKMOdX2UKGgGR0Bw0pvBJqZdaAdLy2gIR0CpnFe6iCardX2UKGgGR0By8X9uP3i8aAdLx2gIR0CpnFcRUWEcdX2UKGgGR0A/sJ40Mw10aAdLhWgIR0CpnFVv2oNvdX2UKGgGR0BxfJghKUV0aAdL1mgIR0CpnHjc2zfKdX2UKGgGR0By3qrR0EHMaAdLx2gIR0CpnII91U2ldX2UKGgGR0BzHQdbPhQ4aAdLuWgIR0CpnXDhcZ+AdX2UKGgGR0BGukovzvqkaAdLcGgIR0CpnfK20AtGdX2UKGgGR0BvtARZlnRLaAdLwWgIR0CpnqQumJm/dX2UKGgGR0BxHMuqWC2+aAdLsmgIR0CpnrozFdcCdX2UKGgGR0Bzh+j0th/iaAdLxWgIR0CpnsuIZZSvdX2UKGgGR0BwxEupS75EaAdLuWgIR0CpnuMERraedX2UKGgGR0BzQCVzIV/MaAdL2mgIR0CpnvRp+MIedX2UKGgGR0BvieY2Kl54aAdLqWgIR0CpnxP1L8JldX2UKGgGR0ByOc7V8Ti9aAdLy2gIR0CpnyIUSIxhdX2UKGgGR0Bwiwv/R3NcaAdLsmgIR0Cpn0Pgeii7dX2UKGgGR0B0cJLlFMIvaAdLt2gIR0Cpn2xri2lVdX2UKGgGR0Bx9rDZUT+OaAdLymgIR0Cpn4flhgE2dX2UKGgGR0BzlDXVbzK+aAdL3mgIR0Cpn8N4JNTMdX2UKGgGR0Bz+4KLKmsOaAdL22gIR0Cpn9ZccENfdX2UKGgGR8AUUZDRc/t6aAdLWWgIR0Cpn+8uSOindX2UKGgGR0Bui5NKyv9taAdLuGgIR0CpoBVsk6cRdX2UKGgGR0BzHRD+irT6aAdNPQJoCEdAqaCccU/OdHV9lChoBkdAcizqJ/G2kWgHS9RoCEdAqaC7riVB2XV9lChoBkdAcbU99c8klmgHS7loCEdAqaDYUi6g/XV9lChoBkdAcIih7mdRSGgHS7toCEdAqaDw5tFa0XV9lChoBkdAcPPcqvvBrWgHS71oCEdAqaEGvStvGnVlLg=="
|
52 |
+
},
|
53 |
+
"ep_success_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
56 |
+
},
|
57 |
+
"_n_updates": 740,
|
58 |
+
"observation_space": {
|
59 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
60 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
61 |
+
"dtype": "float32",
|
62 |
+
"bounded_below": "[ True True True True True True True True]",
|
63 |
+
"bounded_above": "[ True True True True True True True True]",
|
64 |
+
"_shape": [
|
65 |
+
8
|
66 |
+
],
|
67 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
68 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
69 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
70 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
71 |
+
"_np_random": null
|
72 |
+
},
|
73 |
+
"action_space": {
|
74 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
75 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
76 |
+
"n": "4",
|
77 |
+
"start": "0",
|
78 |
+
"_shape": [],
|
79 |
+
"dtype": "int64",
|
80 |
+
"_np_random": null
|
81 |
+
},
|
82 |
+
"n_envs": 16,
|
83 |
+
"n_steps": 1024,
|
84 |
+
"gamma": 0.999,
|
85 |
+
"gae_lambda": 0.98,
|
86 |
+
"ent_coef": 0.01,
|
87 |
+
"vf_coef": 0.5,
|
88 |
+
"max_grad_norm": 0.5,
|
89 |
+
"batch_size": 64,
|
90 |
+
"n_epochs": 4,
|
91 |
+
"clip_range": {
|
92 |
+
":type:": "<class 'function'>",
|
93 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
94 |
+
},
|
95 |
+
"clip_range_vf": null,
|
96 |
+
"normalize_advantage": true,
|
97 |
+
"target_kl": null,
|
98 |
+
"lr_schedule": {
|
99 |
+
":type:": "<class 'function'>",
|
100 |
+
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwePGlweXRob24taW5wdXQtNS01MjU0NzVjYmJiNGE+lIwEZnVuY5RLD0MCCAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHX2UfZQoaBZoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoKXWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flGgJjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
101 |
+
}
|
102 |
+
}
|
optuned-ppo-LunarLander-v2-2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3268a838f669e022667ccdf08d3fb80cc0008d9ed6e773ef72f002be23c8966f
|
3 |
+
size 87929
|
optuned-ppo-LunarLander-v2-2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6fb0b85e7dc12d10f63f23d2b37d0bfffc7a1664ebcb88fcef5ca5a97c3908b
|
3 |
+
size 43329
|
optuned-ppo-LunarLander-v2-2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
optuned-ppo-LunarLander-v2-2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (164 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 288.3595229779047, "std_reward": 19.74761855345708, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-07T11:39:35.744515"}
|