xshubhamx commited on
Commit
0dec001
1 Parent(s): c4aab7d

Upload folder using huggingface_hub

Browse files
training_checkpoints/checkpoint-2400/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: nlpaueb/legal-bert-base-uncased
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.10.0
training_checkpoints/checkpoint-2400/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "nlpaueb/legal-bert-base-uncased",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query",
24
+ "value",
25
+ "dense",
26
+ "key"
27
+ ],
28
+ "task_type": "SEQ_CLS",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
training_checkpoints/checkpoint-2400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f0051babe471bc408d3ec4f6a2caa3406f3f6a7f55179fcebe45a25a13d6bcb
3
+ size 104549068
training_checkpoints/checkpoint-2400/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<pad>": 30522
3
+ }
training_checkpoints/checkpoint-2400/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61636c3d0c5a89ecb317c2019fcf3bf8f419871a251b3a859efa9b585fcf1764
3
+ size 21646778
training_checkpoints/checkpoint-2400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ef0506012dcb5a11818b2f315b0aed7e4e1fe703422f5033754a0ed2e854b64
3
+ size 14244
training_checkpoints/checkpoint-2400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1e148d8aa9ee6fba677da24cd9589db9b2fa7bbfa9dbd694102b5142f294d6b
3
+ size 1064
training_checkpoints/checkpoint-2400/special_tokens_map.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "sep_token": "[SEP]",
12
+ "unk_token": "[UNK]"
13
+ }
training_checkpoints/checkpoint-2400/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
training_checkpoints/checkpoint-2400/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30522": {
44
+ "content": "<pad>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "clean_up_tokenization_spaces": true,
53
+ "cls_token": "[CLS]",
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "[SEP]",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "BertTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
training_checkpoints/checkpoint-2400/trainer_state.json ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6233079593854421,
3
+ "best_model_checkpoint": "legal-bert-lora/checkpoint-2400",
4
+ "epoch": 14.930015552099533,
5
+ "eval_steps": 500,
6
+ "global_step": 2400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.6421378776142526,
14
+ "eval_f1_macro": 0.31136748304755507,
15
+ "eval_f1_micro": 0.6421378776142526,
16
+ "eval_f1_weighted": 0.5878444491981866,
17
+ "eval_loss": 1.2986136674880981,
18
+ "eval_macro_fpr": 0.038355184603561555,
19
+ "eval_macro_sensitivity": 0.3626666520341733,
20
+ "eval_macro_specificity": 0.973015566130753,
21
+ "eval_precision": 0.5562686061065911,
22
+ "eval_precision_macro": 0.28263839276699676,
23
+ "eval_recall": 0.6421378776142526,
24
+ "eval_recall_macro": 0.3626666520341733,
25
+ "eval_runtime": 30.9334,
26
+ "eval_samples_per_second": 41.735,
27
+ "eval_steps_per_second": 5.237,
28
+ "eval_weighted_fpr": 0.0382830626450116,
29
+ "eval_weighted_sensitivity": 0.6421378776142526,
30
+ "eval_weighted_specificity": 0.9530956143470434,
31
+ "step": 160
32
+ },
33
+ {
34
+ "epoch": 2.0,
35
+ "eval_accuracy": 0.7273431448489543,
36
+ "eval_f1_macro": 0.3888935561593279,
37
+ "eval_f1_micro": 0.7273431448489543,
38
+ "eval_f1_weighted": 0.692588019918852,
39
+ "eval_loss": 0.8961567282676697,
40
+ "eval_macro_fpr": 0.026458628520528476,
41
+ "eval_macro_sensitivity": 0.4470621473688688,
42
+ "eval_macro_specificity": 0.9797244740763676,
43
+ "eval_precision": 0.6748056644368075,
44
+ "eval_precision_macro": 0.3629498453077369,
45
+ "eval_recall": 0.7273431448489543,
46
+ "eval_recall_macro": 0.4470621473688688,
47
+ "eval_runtime": 32.9563,
48
+ "eval_samples_per_second": 39.173,
49
+ "eval_steps_per_second": 4.916,
50
+ "eval_weighted_fpr": 0.026077937472218107,
51
+ "eval_weighted_sensitivity": 0.7273431448489543,
52
+ "eval_weighted_specificity": 0.96852396629656,
53
+ "step": 321
54
+ },
55
+ {
56
+ "epoch": 3.0,
57
+ "eval_accuracy": 0.7412858249419055,
58
+ "eval_f1_macro": 0.40405445997881334,
59
+ "eval_f1_micro": 0.7412858249419055,
60
+ "eval_f1_weighted": 0.7108608148557795,
61
+ "eval_loss": 0.781432032585144,
62
+ "eval_macro_fpr": 0.024530771232909164,
63
+ "eval_macro_sensitivity": 0.4561075059687207,
64
+ "eval_macro_specificity": 0.980770943968583,
65
+ "eval_precision": 0.710424889718612,
66
+ "eval_precision_macro": 0.3984726833381553,
67
+ "eval_recall": 0.7412858249419055,
68
+ "eval_recall_macro": 0.4561075059687207,
69
+ "eval_runtime": 39.931,
70
+ "eval_samples_per_second": 32.331,
71
+ "eval_steps_per_second": 4.057,
72
+ "eval_weighted_fpr": 0.024322749781532187,
73
+ "eval_weighted_sensitivity": 0.7412858249419055,
74
+ "eval_weighted_specificity": 0.9702783345868383,
75
+ "step": 482
76
+ },
77
+ {
78
+ "epoch": 3.11,
79
+ "learning_rate": 3.958333333333333e-05,
80
+ "loss": 1.2548,
81
+ "step": 500
82
+ },
83
+ {
84
+ "epoch": 4.0,
85
+ "eval_accuracy": 0.7381874515879163,
86
+ "eval_f1_macro": 0.4122148246767375,
87
+ "eval_f1_micro": 0.7381874515879164,
88
+ "eval_f1_weighted": 0.7112039681421287,
89
+ "eval_loss": 0.7648358345031738,
90
+ "eval_macro_fpr": 0.025400921422273737,
91
+ "eval_macro_sensitivity": 0.4496029265691551,
92
+ "eval_macro_specificity": 0.9802926483932133,
93
+ "eval_precision": 0.7157524333095121,
94
+ "eval_precision_macro": 0.42727818666817063,
95
+ "eval_recall": 0.7381874515879163,
96
+ "eval_recall_macro": 0.4496029265691551,
97
+ "eval_runtime": 32.8339,
98
+ "eval_samples_per_second": 39.319,
99
+ "eval_steps_per_second": 4.934,
100
+ "eval_weighted_fpr": 0.024707602339181286,
101
+ "eval_weighted_sensitivity": 0.7381874515879163,
102
+ "eval_weighted_specificity": 0.9662022743102826,
103
+ "step": 643
104
+ },
105
+ {
106
+ "epoch": 5.0,
107
+ "eval_accuracy": 0.7451587916343919,
108
+ "eval_f1_macro": 0.41197057704153306,
109
+ "eval_f1_micro": 0.745158791634392,
110
+ "eval_f1_weighted": 0.7132510342008067,
111
+ "eval_loss": 0.7329303026199341,
112
+ "eval_macro_fpr": 0.02475342533454581,
113
+ "eval_macro_sensitivity": 0.4569200029284667,
114
+ "eval_macro_specificity": 0.9807956690333189,
115
+ "eval_precision": 0.7105362318393594,
116
+ "eval_precision_macro": 0.4161968802708754,
117
+ "eval_recall": 0.7451587916343919,
118
+ "eval_recall_macro": 0.4569200029284667,
119
+ "eval_runtime": 32.9353,
120
+ "eval_samples_per_second": 39.198,
121
+ "eval_steps_per_second": 4.919,
122
+ "eval_weighted_fpr": 0.023845763571790968,
123
+ "eval_weighted_sensitivity": 0.7451587916343919,
124
+ "eval_weighted_specificity": 0.9667762438653926,
125
+ "step": 803
126
+ },
127
+ {
128
+ "epoch": 6.0,
129
+ "eval_accuracy": 0.7567776917118513,
130
+ "eval_f1_macro": 0.4503557410457486,
131
+ "eval_f1_micro": 0.7567776917118513,
132
+ "eval_f1_weighted": 0.7423563743688452,
133
+ "eval_loss": 0.743047297000885,
134
+ "eval_macro_fpr": 0.022902966086653806,
135
+ "eval_macro_sensitivity": 0.48677177072496847,
136
+ "eval_macro_specificity": 0.9818525702731864,
137
+ "eval_precision": 0.7546602500248394,
138
+ "eval_precision_macro": 0.46270927804131506,
139
+ "eval_recall": 0.7567776917118513,
140
+ "eval_recall_macro": 0.48677177072496847,
141
+ "eval_runtime": 35.5356,
142
+ "eval_samples_per_second": 36.33,
143
+ "eval_steps_per_second": 4.559,
144
+ "eval_weighted_fpr": 0.022441395082904516,
145
+ "eval_weighted_sensitivity": 0.7567776917118513,
146
+ "eval_weighted_specificity": 0.9710108623859445,
147
+ "step": 964
148
+ },
149
+ {
150
+ "epoch": 6.22,
151
+ "learning_rate": 2.916666666666667e-05,
152
+ "loss": 0.6432,
153
+ "step": 1000
154
+ },
155
+ {
156
+ "epoch": 7.0,
157
+ "eval_accuracy": 0.772269558481797,
158
+ "eval_f1_macro": 0.5175006262467735,
159
+ "eval_f1_micro": 0.772269558481797,
160
+ "eval_f1_weighted": 0.7578481216972976,
161
+ "eval_loss": 0.7300274968147278,
162
+ "eval_macro_fpr": 0.02134328767934931,
163
+ "eval_macro_sensitivity": 0.5411462581156664,
164
+ "eval_macro_specificity": 0.98297476620379,
165
+ "eval_precision": 0.7523775635605143,
166
+ "eval_precision_macro": 0.5180467722428242,
167
+ "eval_recall": 0.772269558481797,
168
+ "eval_recall_macro": 0.5411462581156664,
169
+ "eval_runtime": 38.2021,
170
+ "eval_samples_per_second": 33.794,
171
+ "eval_steps_per_second": 4.241,
172
+ "eval_weighted_fpr": 0.0206286836935167,
173
+ "eval_weighted_sensitivity": 0.772269558481797,
174
+ "eval_weighted_specificity": 0.9723519345750513,
175
+ "step": 1125
176
+ },
177
+ {
178
+ "epoch": 8.0,
179
+ "eval_accuracy": 0.7699457784663052,
180
+ "eval_f1_macro": 0.512343990681717,
181
+ "eval_f1_micro": 0.7699457784663051,
182
+ "eval_f1_weighted": 0.7555735603556318,
183
+ "eval_loss": 0.7212091684341431,
184
+ "eval_macro_fpr": 0.021584067239714805,
185
+ "eval_macro_sensitivity": 0.5396538304003057,
186
+ "eval_macro_specificity": 0.9828444142044448,
187
+ "eval_precision": 0.7514419747862876,
188
+ "eval_precision_macro": 0.5096106646255758,
189
+ "eval_recall": 0.7699457784663052,
190
+ "eval_recall_macro": 0.5396538304003057,
191
+ "eval_runtime": 32.2114,
192
+ "eval_samples_per_second": 40.079,
193
+ "eval_steps_per_second": 5.029,
194
+ "eval_weighted_fpr": 0.0208963624850489,
195
+ "eval_weighted_sensitivity": 0.7699457784663052,
196
+ "eval_weighted_specificity": 0.972720434600368,
197
+ "step": 1286
198
+ },
199
+ {
200
+ "epoch": 9.0,
201
+ "eval_accuracy": 0.7838884585592564,
202
+ "eval_f1_macro": 0.5279543664583783,
203
+ "eval_f1_micro": 0.7838884585592564,
204
+ "eval_f1_weighted": 0.7689732348128614,
205
+ "eval_loss": 0.6910194158554077,
206
+ "eval_macro_fpr": 0.020019128373318984,
207
+ "eval_macro_sensitivity": 0.5565954789834968,
208
+ "eval_macro_specificity": 0.9837782640304022,
209
+ "eval_precision": 0.7634272015982886,
210
+ "eval_precision_macro": 0.5216991000769746,
211
+ "eval_recall": 0.7838884585592564,
212
+ "eval_recall_macro": 0.5565954789834968,
213
+ "eval_runtime": 32.0206,
214
+ "eval_samples_per_second": 40.318,
215
+ "eval_steps_per_second": 5.059,
216
+ "eval_weighted_fpr": 0.019311967882605384,
217
+ "eval_weighted_sensitivity": 0.7838884585592564,
218
+ "eval_weighted_specificity": 0.9727855018967767,
219
+ "step": 1446
220
+ },
221
+ {
222
+ "epoch": 9.33,
223
+ "learning_rate": 1.8750000000000002e-05,
224
+ "loss": 0.4841,
225
+ "step": 1500
226
+ },
227
+ {
228
+ "epoch": 10.0,
229
+ "eval_accuracy": 0.7877614252517429,
230
+ "eval_f1_macro": 0.5495324917554609,
231
+ "eval_f1_micro": 0.7877614252517429,
232
+ "eval_f1_weighted": 0.7776375085558,
233
+ "eval_loss": 0.7121981382369995,
234
+ "eval_macro_fpr": 0.019504320709131964,
235
+ "eval_macro_sensitivity": 0.5776673358851873,
236
+ "eval_macro_specificity": 0.9841714965132778,
237
+ "eval_precision": 0.7732104340520375,
238
+ "eval_precision_macro": 0.5355484846658871,
239
+ "eval_recall": 0.7877614252517429,
240
+ "eval_recall_macro": 0.5776673358851873,
241
+ "eval_runtime": 33.0059,
242
+ "eval_samples_per_second": 39.114,
243
+ "eval_steps_per_second": 4.908,
244
+ "eval_weighted_fpr": 0.01888092613009923,
245
+ "eval_weighted_sensitivity": 0.7877614252517429,
246
+ "eval_weighted_specificity": 0.9748110224474253,
247
+ "step": 1607
248
+ },
249
+ {
250
+ "epoch": 11.0,
251
+ "eval_accuracy": 0.7916343919442292,
252
+ "eval_f1_macro": 0.5562780051556154,
253
+ "eval_f1_micro": 0.7916343919442292,
254
+ "eval_f1_weighted": 0.7804853293305261,
255
+ "eval_loss": 0.6812628507614136,
256
+ "eval_macro_fpr": 0.019142781930172804,
257
+ "eval_macro_sensitivity": 0.5765462767448893,
258
+ "eval_macro_specificity": 0.9844026085499723,
259
+ "eval_precision": 0.7781614931218286,
260
+ "eval_precision_macro": 0.5712026501913576,
261
+ "eval_recall": 0.7916343919442292,
262
+ "eval_recall_macro": 0.5765462767448893,
263
+ "eval_runtime": 32.8409,
264
+ "eval_samples_per_second": 39.311,
265
+ "eval_steps_per_second": 4.933,
266
+ "eval_weighted_fpr": 0.01845372847636688,
267
+ "eval_weighted_sensitivity": 0.7916343919442292,
268
+ "eval_weighted_specificity": 0.9744047363053557,
269
+ "step": 1768
270
+ },
271
+ {
272
+ "epoch": 12.0,
273
+ "eval_accuracy": 0.7978311386522076,
274
+ "eval_f1_macro": 0.6091855900661244,
275
+ "eval_f1_micro": 0.7978311386522076,
276
+ "eval_f1_weighted": 0.792670799718178,
277
+ "eval_loss": 0.6844632029533386,
278
+ "eval_macro_fpr": 0.018374590871553166,
279
+ "eval_macro_sensitivity": 0.6226306971157384,
280
+ "eval_macro_specificity": 0.9849182887766558,
281
+ "eval_precision": 0.7921866196991937,
282
+ "eval_precision_macro": 0.6110720619206644,
283
+ "eval_recall": 0.7978311386522076,
284
+ "eval_recall_macro": 0.6226306971157384,
285
+ "eval_runtime": 35.566,
286
+ "eval_samples_per_second": 36.299,
287
+ "eval_steps_per_second": 4.555,
288
+ "eval_weighted_fpr": 0.017778080512226686,
289
+ "eval_weighted_sensitivity": 0.7978311386522076,
290
+ "eval_weighted_specificity": 0.975943192997628,
291
+ "step": 1929
292
+ },
293
+ {
294
+ "epoch": 12.44,
295
+ "learning_rate": 8.333333333333334e-06,
296
+ "loss": 0.3838,
297
+ "step": 2000
298
+ },
299
+ {
300
+ "epoch": 13.0,
301
+ "eval_accuracy": 0.7986057319907048,
302
+ "eval_f1_macro": 0.5954068998935002,
303
+ "eval_f1_micro": 0.7986057319907048,
304
+ "eval_f1_weighted": 0.7903483756475167,
305
+ "eval_loss": 0.6928977370262146,
306
+ "eval_macro_fpr": 0.0184204271351787,
307
+ "eval_macro_sensitivity": 0.6038340182662734,
308
+ "eval_macro_specificity": 0.9848585042092353,
309
+ "eval_precision": 0.7946985083189905,
310
+ "eval_precision_macro": 0.6346663909366547,
311
+ "eval_recall": 0.7986057319907048,
312
+ "eval_recall_macro": 0.6038340182662734,
313
+ "eval_runtime": 33.0309,
314
+ "eval_samples_per_second": 39.085,
315
+ "eval_steps_per_second": 4.905,
316
+ "eval_weighted_fpr": 0.01769429699196951,
317
+ "eval_weighted_sensitivity": 0.7986057319907048,
318
+ "eval_weighted_specificity": 0.9742718311478232,
319
+ "step": 2089
320
+ },
321
+ {
322
+ "epoch": 14.0,
323
+ "eval_accuracy": 0.801704105344694,
324
+ "eval_f1_macro": 0.6173679522576865,
325
+ "eval_f1_micro": 0.801704105344694,
326
+ "eval_f1_weighted": 0.7952025212023197,
327
+ "eval_loss": 0.6928758025169373,
328
+ "eval_macro_fpr": 0.01800544482613472,
329
+ "eval_macro_sensitivity": 0.6269909571861924,
330
+ "eval_macro_specificity": 0.985137611575089,
331
+ "eval_precision": 0.7959796451639289,
332
+ "eval_precision_macro": 0.6369499539059621,
333
+ "eval_recall": 0.801704105344694,
334
+ "eval_recall_macro": 0.6269909571861924,
335
+ "eval_runtime": 32.8583,
336
+ "eval_samples_per_second": 39.29,
337
+ "eval_steps_per_second": 4.93,
338
+ "eval_weighted_fpr": 0.0173606401736064,
339
+ "eval_weighted_sensitivity": 0.801704105344694,
340
+ "eval_weighted_specificity": 0.9753600682816376,
341
+ "step": 2250
342
+ },
343
+ {
344
+ "epoch": 14.93,
345
+ "eval_accuracy": 0.8048024786986832,
346
+ "eval_f1_macro": 0.6233079593854421,
347
+ "eval_f1_micro": 0.804802478698683,
348
+ "eval_f1_weighted": 0.7978122721784159,
349
+ "eval_loss": 0.6840828061103821,
350
+ "eval_macro_fpr": 0.017694121611631287,
351
+ "eval_macro_sensitivity": 0.6315536711716451,
352
+ "eval_macro_specificity": 0.9853428489438554,
353
+ "eval_precision": 0.7955229182430892,
354
+ "eval_precision_macro": 0.6332000311054261,
355
+ "eval_recall": 0.8048024786986832,
356
+ "eval_recall_macro": 0.6315536711716451,
357
+ "eval_runtime": 32.8856,
358
+ "eval_samples_per_second": 39.257,
359
+ "eval_steps_per_second": 4.926,
360
+ "eval_weighted_fpr": 0.017029328287606435,
361
+ "eval_weighted_sensitivity": 0.8048024786986832,
362
+ "eval_weighted_specificity": 0.9753402554591518,
363
+ "step": 2400
364
+ }
365
+ ],
366
+ "logging_steps": 500,
367
+ "max_steps": 2400,
368
+ "num_train_epochs": 15,
369
+ "save_steps": 500,
370
+ "total_flos": 2.082121538560819e+16,
371
+ "trial_name": null,
372
+ "trial_params": null
373
+ }
training_checkpoints/checkpoint-2400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42e37e1d0aec45f3692bb7a4c436045ab2c0731c0f9a577af785da6a2da60500
3
+ size 4600
training_checkpoints/checkpoint-2400/vocab.txt ADDED
The diff for this file is too large to render. See raw diff