robustvlm-object-centric / llava /eval /model_vqa_loader.py
xmutly's picture
Upload 294 files
e1aaaac verified
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
import random
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from open_flamingo.eval.models.of_eval_model_adv import EvalModelAdv
from open_flamingo.eval.vqa_metric import (
compute_vqa_accuracy,
postprocess_vqa_generation,
)
from PIL import Image
import math
import warnings
warnings.filterwarnings("ignore")
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def get_of_args(pretrained_rob_path=None):
model_args = {}
model_args['vision_encoder_pretrained'] = pretrained_rob_path
model_args['vision_encoder_path'] = 'ViT-L-14'
model_args['lm_path'] = 'anas-awadalla/mpt-7b'
model_args['lm_tokenizer_path'] = 'anas-awadalla/mpt-7b'
model_args['checkpoint_path'] = '/data/naman_deep_singh/project_multimodal/OpenFlamingo-9B-vitl-mpt7b.pt'
# model_args['device'] = 'cuda'
model_args['cross_attn_every_n_layers'] = 4
model_args['precision'] = 'float32'
return model_args
# Custom dataset class
class CustomDataset(Dataset):
def __init__(self, questions, image_folder, tokenizer, image_processor, model_config, model='LLAVA'):
self.questions = questions
self.image_folder = image_folder
self.tokenizer = tokenizer
self.image_processor = image_processor
self.model_config = model_config
self.model = model
def __getitem__(self, index):
line = self.questions[index]
image_file = line["image"]
qs = line["text"]
if self.model == 'LLAVA':
if self.model_config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if self.model == 'LLAVA':
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
image_tensor = process_images([image], self.image_processor, self.model_config)[0]
else:
image = Image.open(os.path.join(self.image_folder, image_file))
# image.load()
transform = transforms.Compose([
transforms.ToTensor()
])
image_tensor = transform(image) #.squeeze(0) #.load()
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
return input_ids, image_tensor
def __len__(self):
return len(self.questions)
# DataLoader
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4, model='LLAVA'):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config, model)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
return data_loader
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
if args.pretrained_rob_path == 'None':
args.pretrained_rob_path = None
print(f"Model at: {args.pretrained_rob_path}")
print(f"Need to load llava")
if args.eval_model == 'LLAVA':
model, image_processor, tokenizer, context_len = load_pretrained_model(model_path, args.model_base, model_name, pretrained_rob_path=args.pretrained_rob_path)
else:
_, image_processor, tokenizer, context_len = load_pretrained_model(model_path, args.model_base, model_name, pretrained_rob_path=args.pretrained_rob_path)
model_args = get_of_args(args.pretrained_rob_path)
eval_model = EvalModelAdv(model_args, adversarial=False)
os.environ["CUDA_VISIBLE_DEVICES"] = str(0)
device_id = 0
eval_model.set_device(device_id)
# model.config = None
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
args.conv_mode = args.conv_mode + '_mmtag'
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor if args.eval_model == 'LLAVA' else None, model.config if args.eval_model == 'LLAVA' else None, model=args.eval_model)
for (input_ids, image_tensor), line in tqdm(zip(data_loader, questions), total=len(questions)):
idx = line["question_id"]
cur_prompt = line["text"]
if args.eval_model == 'LLAVA':
stop_str = conv_templates[args.conv_mode].sep if conv_templates[args.conv_mode].sep_style != SeparatorStyle.TWO else conv_templates[args.conv_mode].sep2
input_ids = input_ids.to(device='cuda', non_blocking=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=128,
use_cache=True)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
predictions = outputs.strip()
else:
transs = transforms.ToPILImage()
ims = []
ims.append(transs(image_tensor.squeeze()))
image_tensor = []
image_tensor.append(ims)
batch_images = eval_model._prepare_images(image_tensor)
batch_text = []
yes_no = random.choice(['yes', 'no'])
add_str_1 = 'Is there some object in the image?'
add_str_2 = 'Is the image taken during day time?'
context_text = f"Question:{add_str_1} answer:{yes_no}<|endofchunk|>"
context_text += f"Question:{add_str_2} answer:{yes_no}<|endofchunk|>"
context_text += f"Question:{cur_prompt} answer:"
# Keep the text but remove the image tags for the zero-shot case
# if num_shots == 0:
# context_text = context_text.replace("<image>", "")
batch_text.append(
context_text + eval_model.get_vqa_prompt(question=cur_prompt)
)
# print(cur_prompt)
# batch_text.append(cur_prompt)
outputs = eval_model.get_outputs(
batch_images=batch_images,
batch_text=batch_text,
min_generation_length=0,
max_generation_length=1,
num_beams=3,
length_penalty=-2.0,
)
dataset_name = 'coco'
process_function = (
postprocess_ok_vqa_generation
if dataset_name == "ok_vqa"
else postprocess_vqa_generation
)
new_predictions = map(process_function, outputs) #.strip()
predictions = []
for new_prediction, sample_id in zip(new_predictions, cur_prompt):
predictions.append(new_prediction)
# outputs = outputs.strip()
predictions = predictions[0].strip()
# print(predictions)
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": cur_prompt,
"text": predictions,
"answer_id": ans_id,
"model_id": model_name if args.eval_model == 'LLAVA' else args.eval_model,
"metadata": {}}) + "\n")
# ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="liuhaotian/llava-v1.5-7b")
parser.add_argument("--pretrained_rob_path", type=str, default='openai', help='Pass None, openai or path-to-rob-ckpt')
# "/data/naman_deep_singh/project_multimodal/clip-finetune/sbatch/ViT-L-14_openai_imagenet_txtSup_False_vit-l-unsup-clean-0p1-eps4-3adv-lr1e-4-wd-1e-3_f8o0v/checkpoints/final.pt")
# /mnt/nsingh/project_multimodal/models/ViT-L-14_openai_imagenet_txtSup_False_vit-l-unsup-clean-0p1-eps4-3adv-lr1e-4-wd-1e-3_f8o0v/checkpoints/final.pt
parser.add_argument("--eval-model", type=str, default='LLAVA')
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
args = parser.parse_args()
eval_model(args)