xmutly's picture
Upload 294 files
e1aaaac verified
import math
import torch
from torch.nn import functional as F
def projection_linf(points_to_project, w_hyperplane, b_hyperplane):
device = points_to_project.device
t, w, b = points_to_project, w_hyperplane.clone(), b_hyperplane.clone()
sign = 2 * ((w * t).sum(1) - b >= 0) - 1
w.mul_(sign.unsqueeze(1))
b.mul_(sign)
a = (w < 0).float()
d = (a - t) * (w != 0).float()
p = a - t * (2 * a - 1)
indp = torch.argsort(p, dim=1)
b = b - (w * t).sum(1)
b0 = (w * d).sum(1)
indp2 = indp.flip((1,))
ws = w.gather(1, indp2)
bs2 = - ws * d.gather(1, indp2)
s = torch.cumsum(ws.abs(), dim=1)
sb = torch.cumsum(bs2, dim=1) + b0.unsqueeze(1)
b2 = sb[:, -1] - s[:, -1] * p.gather(1, indp[:, 0:1]).squeeze(1)
c_l = b - b2 > 0
c2 = (b - b0 > 0) & (~c_l)
lb = torch.zeros(c2.sum(), device=device)
ub = torch.full_like(lb, w.shape[1] - 1)
nitermax = math.ceil(math.log2(w.shape[1]))
indp_, sb_, s_, p_, b_ = indp[c2], sb[c2], s[c2], p[c2], b[c2]
for counter in range(nitermax):
counter4 = torch.floor((lb + ub) / 2)
counter2 = counter4.long().unsqueeze(1)
indcurr = indp_.gather(1, indp_.size(1) - 1 - counter2)
b2 = (sb_.gather(1, counter2) - s_.gather(1, counter2) * p_.gather(1, indcurr)).squeeze(1)
c = b_ - b2 > 0
lb = torch.where(c, counter4, lb)
ub = torch.where(c, ub, counter4)
lb = lb.long()
if c_l.any():
lmbd_opt = torch.clamp_min((b[c_l] - sb[c_l, -1]) / (-s[c_l, -1]), min=0).unsqueeze(-1)
d[c_l] = (2 * a[c_l] - 1) * lmbd_opt
lmbd_opt = torch.clamp_min((b[c2] - sb[c2, lb]) / (-s[c2, lb]), min=0).unsqueeze(-1)
d[c2] = torch.min(lmbd_opt, d[c2]) * a[c2] + torch.max(-lmbd_opt, d[c2]) * (1 - a[c2])
return d * (w != 0).float()
def projection_l2(points_to_project, w_hyperplane, b_hyperplane):
device = points_to_project.device
t, w, b = points_to_project, w_hyperplane.clone(), b_hyperplane
c = (w * t).sum(1) - b
ind2 = 2 * (c >= 0) - 1
w.mul_(ind2.unsqueeze(1))
c.mul_(ind2)
r = torch.max(t / w, (t - 1) / w).clamp(min=-1e12, max=1e12)
r.masked_fill_(w.abs() < 1e-8, 1e12)
r[r == -1e12] *= -1
rs, indr = torch.sort(r, dim=1)
rs2 = F.pad(rs[:, 1:], (0, 1))
rs.masked_fill_(rs == 1e12, 0)
rs2.masked_fill_(rs2 == 1e12, 0)
w3s = (w ** 2).gather(1, indr)
w5 = w3s.sum(dim=1, keepdim=True)
ws = w5 - torch.cumsum(w3s, dim=1)
d = -(r * w)
d.mul_((w.abs() > 1e-8).float())
s = torch.cat((-w5 * rs[:, 0:1], torch.cumsum((-rs2 + rs) * ws, dim=1) - w5 * rs[:, 0:1]), 1)
c4 = s[:, 0] + c < 0
c3 = (d * w).sum(dim=1) + c > 0
c2 = ~(c4 | c3)
lb = torch.zeros(c2.sum(), device=device)
ub = torch.full_like(lb, w.shape[1] - 1)
nitermax = math.ceil(math.log2(w.shape[1]))
s_, c_ = s[c2], c[c2]
for counter in range(nitermax):
counter4 = torch.floor((lb + ub) / 2)
counter2 = counter4.long().unsqueeze(1)
c3 = s_.gather(1, counter2).squeeze(1) + c_ > 0
lb = torch.where(c3, counter4, lb)
ub = torch.where(c3, ub, counter4)
lb = lb.long()
if c4.any():
alpha = c[c4] / w5[c4].squeeze(-1)
d[c4] = -alpha.unsqueeze(-1) * w[c4]
if c2.any():
alpha = (s[c2, lb] + c[c2]) / ws[c2, lb] + rs[c2, lb]
alpha[ws[c2, lb] == 0] = 0
c5 = (alpha.unsqueeze(-1) > r[c2]).float()
d[c2] = d[c2] * c5 - alpha.unsqueeze(-1) * w[c2] * (1 - c5)
return d * (w.abs() > 1e-8).float()
def projection_l1(points_to_project, w_hyperplane, b_hyperplane):
device = points_to_project.device
t, w, b = points_to_project, w_hyperplane.clone(), b_hyperplane
c = (w * t).sum(1) - b
ind2 = 2 * (c >= 0) - 1
w.mul_(ind2.unsqueeze(1))
c.mul_(ind2)
r = (1 / w).abs().clamp_max(1e12)
indr = torch.argsort(r, dim=1)
indr_rev = torch.argsort(indr)
c6 = (w < 0).float()
d = (-t + c6) * (w != 0).float()
ds = torch.min(-w * t, w * (1 - t)).gather(1, indr)
ds2 = torch.cat((c.unsqueeze(-1), ds), 1)
s = torch.cumsum(ds2, dim=1)
c2 = s[:, -1] < 0
lb = torch.zeros(c2.sum(), device=device)
ub = torch.full_like(lb, s.shape[1])
nitermax = math.ceil(math.log2(w.shape[1]))
s_ = s[c2]
for counter in range(nitermax):
counter4 = torch.floor((lb + ub) / 2)
counter2 = counter4.long().unsqueeze(1)
c3 = s_.gather(1, counter2).squeeze(1) > 0
lb = torch.where(c3, counter4, lb)
ub = torch.where(c3, ub, counter4)
lb2 = lb.long()
if c2.any():
indr = indr[c2].gather(1, lb2.unsqueeze(1)).squeeze(1)
u = torch.arange(0, w.shape[0], device=device).unsqueeze(1)
u2 = torch.arange(0, w.shape[1], device=device, dtype=torch.float).unsqueeze(0)
alpha = -s[c2, lb2] / w[c2, indr]
c5 = u2 < lb.unsqueeze(-1)
u3 = c5[u[:c5.shape[0]], indr_rev[c2]]
d[c2] = d[c2] * u3.float()
d[c2, indr] = alpha
return d * (w.abs() > 1e-8).float()