|
for k in 1 2 3 5 10 |
|
do |
|
|
|
python finetune_custom.py \ |
|
--mode full \ |
|
--k $k \ |
|
--batch_size 64 \ |
|
--num_epochs 200 \ |
|
--checkpoint './checkpoint/UniMTS.pth' \ |
|
--X_train_path 'UniMTS_data/TNDA-HAR/X_train.npy' \ |
|
--y_train_path 'UniMTS_data/TNDA-HAR/y_train.npy' \ |
|
--X_test_path 'UniMTS_data/TNDA-HAR/X_test.npy' \ |
|
--y_test_path 'UniMTS_data/TNDA-HAR/y_test.npy' \ |
|
--config_path 'UniMTS_data/TNDA-HAR/TNDA-HAR.json' \ |
|
--joint_list 20 2 21 3 11 \ |
|
--original_sampling_rate 50 \ |
|
--num_class 8 |
|
|
|
done |
|
|
|
python finetune_custom.py \ |
|
--mode full \ |
|
--batch_size 64 \ |
|
--num_epochs 200 \ |
|
--checkpoint './checkpoint/UniMTS.pth' \ |
|
--X_train_path 'UniMTS_data/TNDA-HAR/X_train.npy' \ |
|
--y_train_path 'UniMTS_data/TNDA-HAR/y_train.npy' \ |
|
--X_test_path 'UniMTS_data/TNDA-HAR/X_test.npy' \ |
|
--y_test_path 'UniMTS_data/TNDA-HAR/y_test.npy' \ |
|
--config_path 'UniMTS_data/TNDA-HAR/TNDA-HAR.json' \ |
|
--joint_list 20 2 21 3 11 \ |
|
--original_sampling_rate 50 \ |
|
--num_class 8 |
|
|