|
|
import pandas as pd
|
|
|
import numpy as np
|
|
|
import os
|
|
|
from scipy.io import loadmat, savemat
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
import logging
|
|
|
|
|
|
|
|
|
def process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name):
|
|
|
metadata_name1 = f"{train_data_name.replace('_all', '').upper()}_metadata.csv"
|
|
|
metadata_name2 = f"{test_data_name.replace('_all', '').upper()}_metadata.csv"
|
|
|
|
|
|
train_df = pd.read_csv(f'{metadata_path}/{metadata_name1}')
|
|
|
test_df = pd.read_csv(f'{metadata_path}/{metadata_name2}')
|
|
|
|
|
|
|
|
|
grey_df_train = pd.read_csv(f"{metadata_path}/greyscale_report/{train_data_name.replace('_all', '').upper()}_greyscale_metadata.csv")
|
|
|
grey_df_test = pd.read_csv(f"{metadata_path}/greyscale_report/{test_data_name.replace('_all', '').upper()}_greyscale_metadata.csv")
|
|
|
grey_indices_train = grey_df_train.iloc[:, 0].tolist()
|
|
|
grey_indices_test = grey_df_test.iloc[:, 0].tolist()
|
|
|
train_df = train_df.drop(index=grey_indices_train).reset_index(drop=True)
|
|
|
test_df = test_df.drop(index=grey_indices_test).reset_index(drop=True)
|
|
|
|
|
|
|
|
|
train_vids = train_df.iloc[:, 0]
|
|
|
test_vids = test_df.iloc[:, 0]
|
|
|
|
|
|
|
|
|
train_scores = train_df['mos'].tolist()
|
|
|
test_scores = test_df['mos'].tolist()
|
|
|
if train_data_name == 'konvid_1k_all' or train_data_name == 'youtube_ugc_all':
|
|
|
train_mos_list = ((np.array(train_scores) - 1) * (99/4) + 1.0).tolist()
|
|
|
else:
|
|
|
train_mos_list = train_scores
|
|
|
if test_data_name == 'konvid_1k_all' or test_data_name == 'youtube_ugc_all':
|
|
|
test_mos_list = ((np.array(test_scores) - 1) * (99/4) + 1.0).tolist()
|
|
|
else:
|
|
|
test_mos_list = test_scores
|
|
|
|
|
|
|
|
|
sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']})
|
|
|
sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']})
|
|
|
|
|
|
|
|
|
train_data = loadmat(f"{feature_path}/{train_data_name.replace('_all', '')}_{network_name}_feats.mat")
|
|
|
test_data = loadmat(f"{feature_path}/{test_data_name.replace('_all', '')}_{network_name}_feats.mat")
|
|
|
train_features = train_data[f"{train_data_name.replace('_all', '')}"]
|
|
|
test_features = test_data[f"{test_data_name.replace('_all', '')}"]
|
|
|
train_features = np.delete(train_features, grey_indices_train, axis=0)
|
|
|
test_features = np.delete(test_features, grey_indices_test, axis=0)
|
|
|
|
|
|
|
|
|
sorted_train_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_train.csv', index=False)
|
|
|
sorted_test_df.to_csv(f'{metadata_path}mos_files/{test_data_name}_MOS_test.csv', index=False)
|
|
|
os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True)
|
|
|
savemat(f'{feature_path}/split_train_test/{train_data_name}_{network_name}_cross_train_features.mat', {f'{train_data_name}_train_features': train_features})
|
|
|
savemat(f'{feature_path}/split_train_test/{test_data_name}_{network_name}_cross_test_features.mat', {f'{test_data_name}_test_features': test_features})
|
|
|
|
|
|
return train_features, test_features, test_vids
|
|
|
|
|
|
|
|
|
def process_lsvq(train_data_name, test_data_name, metadata_path, feature_path, network_name):
|
|
|
train_df = pd.read_csv(f'{metadata_path}/{train_data_name.upper()}_metadata.csv')
|
|
|
test_df = pd.read_csv(f'{metadata_path}/{test_data_name.upper()}_metadata.csv')
|
|
|
|
|
|
|
|
|
grey_df_train = pd.read_csv(f'{metadata_path}/greyscale_report/{train_data_name.upper()}_greyscale_metadata.csv')
|
|
|
grey_df_test = pd.read_csv(f'{metadata_path}/greyscale_report/{test_data_name.upper()}_greyscale_metadata.csv')
|
|
|
grey_indices_train = grey_df_train.iloc[:, 0].tolist()
|
|
|
grey_indices_test = grey_df_test.iloc[:, 0].tolist()
|
|
|
train_df = train_df.drop(index=grey_indices_train).reset_index(drop=True)
|
|
|
test_df = test_df.drop(index=grey_indices_test).reset_index(drop=True)
|
|
|
test_vids = test_df['vid']
|
|
|
|
|
|
|
|
|
train_scores = train_df['mos'].tolist()
|
|
|
test_scores = test_df['mos'].tolist()
|
|
|
train_mos_list = train_scores
|
|
|
test_mos_list = test_scores
|
|
|
|
|
|
|
|
|
sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']})
|
|
|
sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']})
|
|
|
|
|
|
|
|
|
train_data_chunk_1 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_1.mat')[f'{train_data_name}']
|
|
|
train_data_chunk_2 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_2.mat')[f'{train_data_name}']
|
|
|
train_data_chunk_3 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_3.mat')[f'{train_data_name}']
|
|
|
merged_train_data = np.vstack((train_data_chunk_1, train_data_chunk_2, train_data_chunk_3))
|
|
|
print(f"loaded {train_data_name}: dimensions are {merged_train_data.shape}")
|
|
|
train_features = merged_train_data
|
|
|
|
|
|
test_data = loadmat(f'{feature_path}/{test_data_name}_{network_name}_feats.mat')
|
|
|
test_features = test_data[f'{test_data_name}']
|
|
|
train_features = np.delete(train_features, grey_indices_train, axis=0)
|
|
|
test_features = np.delete(test_features, grey_indices_test, axis=0)
|
|
|
print(len(train_features))
|
|
|
print(len(test_features))
|
|
|
|
|
|
|
|
|
sorted_train_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_train.csv', index=False)
|
|
|
sorted_test_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_test.csv', index=False)
|
|
|
os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
return train_features, test_features, test_vids
|
|
|
|
|
|
def process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name):
|
|
|
metadata_name = f'{data_name.upper()}_metadata.csv'
|
|
|
if data_name == 'test':
|
|
|
metadata_name = f'{data_name}_videos.csv'
|
|
|
|
|
|
df = pd.read_csv(f'{metadata_path}/{metadata_name}')
|
|
|
|
|
|
if data_name == 'youtube_ugc':
|
|
|
|
|
|
grey_df = pd.read_csv(f'{metadata_path}/greyscale_report/{data_name.upper()}_greyscale_metadata.csv')
|
|
|
grey_indices = grey_df.iloc[:, 0].tolist()
|
|
|
df = df.drop(index=grey_indices).reset_index(drop=True)
|
|
|
|
|
|
|
|
|
unique_vids = df['vid'].unique()
|
|
|
|
|
|
|
|
|
train_vids, test_vids = train_test_split(unique_vids, test_size=test_size, random_state=random_state)
|
|
|
|
|
|
|
|
|
train_df = df[df['vid'].isin(train_vids)]
|
|
|
test_df = df[df['vid'].isin(test_vids)]
|
|
|
|
|
|
|
|
|
train_scores = train_df['mos'].tolist()
|
|
|
test_scores = test_df['mos'].tolist()
|
|
|
train_mos_list = train_scores
|
|
|
test_mos_list = test_scores
|
|
|
|
|
|
|
|
|
sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']})
|
|
|
sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']})
|
|
|
|
|
|
|
|
|
data = loadmat(f'{feature_path}/{data_name}_{network_name}_feats.mat')
|
|
|
features = data[f'{data_name}']
|
|
|
if data_name == 'youtube_ugc':
|
|
|
features = np.delete(features, grey_indices, axis=0)
|
|
|
train_features = features[train_df.index]
|
|
|
test_features = features[test_df.index]
|
|
|
|
|
|
|
|
|
sorted_train_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_train.csv', index=False)
|
|
|
sorted_test_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_test.csv', index=False)
|
|
|
os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True)
|
|
|
savemat(f'{feature_path}/split_train_test/{data_name}_{network_name}_train_features.mat', {f'{data_name}_train_features': train_features})
|
|
|
savemat(f'{feature_path}/split_train_test/{data_name}_{network_name}_test_features.mat', {f'{data_name}_test_features': test_features})
|
|
|
|
|
|
return train_features, test_features, test_vids
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
network_name = 'relaxvqa'
|
|
|
data_name = "test"
|
|
|
metadata_path = '../../metadata/'
|
|
|
feature_path = '../../features/'
|
|
|
|
|
|
|
|
|
test_size = 0.2
|
|
|
random_state = None
|
|
|
|
|
|
if data_name == 'lsvq_train':
|
|
|
test_data_name = 'lsvq_test'
|
|
|
process_lsvq(data_name, test_data_name, metadata_path, feature_path, network_name)
|
|
|
|
|
|
elif data_name == 'cross_dataset':
|
|
|
train_data_name = 'youtube_ugc_all'
|
|
|
test_data_name = 'cvd_2014_all'
|
|
|
_, _, test_vids = process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name)
|
|
|
|
|
|
else:
|
|
|
process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name)
|
|
|
|