Update README.md
Browse files
README.md
CHANGED
@@ -65,25 +65,6 @@ import cv2
|
|
65 |
import os
|
66 |
|
67 |
|
68 |
-
|
69 |
-
def HWC3(x):
|
70 |
-
assert x.dtype == np.uint8
|
71 |
-
if x.ndim == 2:
|
72 |
-
x = x[:, :, None]
|
73 |
-
assert x.ndim == 3
|
74 |
-
H, W, C = x.shape
|
75 |
-
assert C == 1 or C == 3 or C == 4
|
76 |
-
if C == 3:
|
77 |
-
return x
|
78 |
-
if C == 1:
|
79 |
-
return np.concatenate([x, x, x], axis=2)
|
80 |
-
if C == 4:
|
81 |
-
color = x[:, :, 0:3].astype(np.float32)
|
82 |
-
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
83 |
-
y = color * alpha + 255.0 * (1.0 - alpha)
|
84 |
-
y = y.clip(0, 255).astype(np.uint8)
|
85 |
-
return y
|
86 |
-
|
87 |
def nms(x, t, s):
|
88 |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
89 |
|
@@ -137,7 +118,7 @@ if random.random() > 0.5:
|
|
137 |
|
138 |
image_path = Image.open("your image path, the image can be real or anime, HED detector will extract its edge boundery")
|
139 |
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
140 |
-
controlnet_img = processor(image_path, scribble=
|
141 |
controlnet_img.save("a hed detect path for an image")
|
142 |
|
143 |
# following is some processing to simulate human sketch draw, different threshold can generate different width of lines
|
|
|
65 |
import os
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def nms(x, t, s):
|
69 |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
70 |
|
|
|
118 |
|
119 |
image_path = Image.open("your image path, the image can be real or anime, HED detector will extract its edge boundery")
|
120 |
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
121 |
+
controlnet_img = processor(image_path, scribble=False)
|
122 |
controlnet_img.save("a hed detect path for an image")
|
123 |
|
124 |
# following is some processing to simulate human sketch draw, different threshold can generate different width of lines
|