|
|
|
from torch.utils.data import Dataset, IterableDataset |
|
from datasets import HFDataset, HFIterableDataset |
|
from math import ceil |
|
|
|
|
|
def prepare_regional_chunkified_dataset(dataset: Dataset, regional_chunk_size: int) -> Dataset: |
|
if not isinstance(dataset, (HFDataset, Dataset)): |
|
raise ValueError(f"Currently dataset must be a map-style Dataset, got {type(dataset)}") |
|
|
|
|
|
class RegionalChunkifiedDataset(Dataset): |
|
def __init__(self, dataset: Dataset, regional_chunk_size: int): |
|
self.dataset = dataset |
|
self.regional_chunk_size = regional_chunk_size |
|
self.get_num_regions_and_num_samples_after_regional_chunkify() |
|
|
|
def get_num_regions_and_num_samples_after_regional_chunkify(self): |
|
self.num_regions = 0 |
|
self.num_samples_after_regional_chunkify = 0 |
|
self.chunkified_sample_ids_to_sample_idx = {} |
|
for sample_idx, example in enumerate(self.dataset): |
|
for chunkified_sample_idx in range(ceil(len(example["regions"]) / self.regional_chunk_size)): |
|
self.chunkified_sample_ids_to_sample_idx[ |
|
self.num_samples_after_regional_chunkify + chunkified_sample_idx |
|
] = (sample_idx, chunkified_sample_idx) |
|
self.num_regions += len(example["regions"]) |
|
self.num_samples_after_regional_chunkify += ceil(len(example["regions"]) / self.regional_chunk_size) |
|
|
|
def __len__(self): |
|
return self.num_samples_after_regional_chunkify |
|
|
|
def __getitem__(self, idx): |
|
sample_idx, chunkified_sample_idx = self.chunkified_sample_ids_to_sample_idx[idx] |
|
example = self.dataset[sample_idx] |
|
regions = example.pop("regions") |
|
|
|
return { |
|
**example, |
|
"regions": regions[ |
|
chunkified_sample_idx |
|
* self.regional_chunk_size : (chunkified_sample_idx + 1) |
|
* self.regional_chunk_size |
|
], |
|
} |
|
|