|
|
|
|
|
import os |
|
import dotenv |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed |
|
|
|
set_seed(42) |
|
cache_dir = ".model.cache" |
|
|
|
dotenv.load_dotenv(".env") |
|
use_auth_token = os.getenv("USE_AUTH_TOKEN", False) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"stabilityai/stablelm-3b-4e1t", |
|
cache_dir=cache_dir, |
|
use_auth_token=use_auth_token, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"stabilityai/stablelm-3b-4e1t", |
|
trust_remote_code=True, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
cache_dir=cache_dir, |
|
use_auth_token=use_auth_token, |
|
) |
|
|
|
inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(model.device) |
|
tokens = model.generate( |
|
**inputs, |
|
max_new_tokens=64, |
|
temperature=0.75, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
print(tokenizer.decode(tokens[0], skip_special_tokens=True)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed |
|
|
|
set_seed(42) |
|
cache_dir = ".model.cache" |
|
|
|
dotenv.load_dotenv(".env") |
|
use_auth_token = os.getenv("USE_AUTH_TOKEN", False) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"stabilityai/stablelm-zephyr-3b", |
|
cache_dir=cache_dir, |
|
use_auth_token=use_auth_token, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"stabilityai/stablelm-zephyr-3b", |
|
trust_remote_code=True, |
|
device_map="auto", |
|
cache_dir=cache_dir, |
|
use_auth_token=use_auth_token, |
|
) |
|
|
|
prompt = [{"role": "user", "content": 'List 3 synonyms for the word "tiny"'}] |
|
inputs = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt") |
|
|
|
tokens = model.generate(inputs.to(model.device), max_new_tokens=1024, temperature=0.8, do_sample=True) |
|
|
|
print(tokenizer.decode(tokens[0], skip_special_tokens=False)) |
|
|
|
|
|
|
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed |
|
|
|
set_seed(42) |
|
cache_dir = ".model.cache" |
|
|
|
dotenv.load_dotenv(".env") |
|
use_auth_token = os.getenv("USE_AUTH_TOKEN", False) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"microsoft/phi-2", |
|
trust_remote_code=True, |
|
cache_dir=cache_dir, |
|
use_auth_token=use_auth_token, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"microsoft/phi-2", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
device_map="auto", |
|
cache_dir=cache_dir, |
|
use_auth_token=use_auth_token, |
|
) |
|
|
|
inputs = tokenizer( |
|
'''def print_prime(n): |
|
""" |
|
Print all primes between 1 and n |
|
"""''', |
|
return_tensors="pt", |
|
return_attention_mask=False, |
|
).to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_length=200) |
|
text = tokenizer.batch_decode(outputs)[0] |
|
print(text) |
|
|