|
""" |
|
# api.py usage |
|
|
|
` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" ` |
|
|
|
## 执行参数: |
|
|
|
`-s` - `SoVITS模型路径, 可在 config.py 中指定` |
|
`-g` - `GPT模型路径, 可在 config.py 中指定` |
|
|
|
调用请求缺少参考音频时使用 |
|
`-dr` - `默认参考音频路径` |
|
`-dt` - `默认参考音频文本` |
|
`-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"` |
|
|
|
`-d` - `推理设备, "cuda","cpu"` |
|
`-a` - `绑定地址, 默认"127.0.0.1"` |
|
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定` |
|
`-fp` - `覆盖 config.py 使用全精度` |
|
`-hp` - `覆盖 config.py 使用半精度` |
|
|
|
`-hb` - `cnhubert路径` |
|
`-b` - `bert路径` |
|
|
|
## 调用: |
|
|
|
### 推理 |
|
|
|
endpoint: `/` |
|
|
|
使用执行参数指定的参考音频: |
|
GET: |
|
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` |
|
POST: |
|
```json |
|
{ |
|
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", |
|
"text_language": "zh" |
|
} |
|
``` |
|
|
|
手动指定当次推理所使用的参考音频: |
|
GET: |
|
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh` |
|
POST: |
|
```json |
|
{ |
|
"refer_wav_path": "123.wav", |
|
"prompt_text": "一二三。", |
|
"prompt_language": "zh", |
|
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。", |
|
"text_language": "zh" |
|
} |
|
``` |
|
|
|
RESP: |
|
成功: 直接返回 wav 音频流, http code 200 |
|
失败: 返回包含错误信息的 json, http code 400 |
|
|
|
|
|
### 更换默认参考音频 |
|
|
|
endpoint: `/change_refer` |
|
|
|
key与推理端一样 |
|
|
|
GET: |
|
`http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh` |
|
POST: |
|
```json |
|
{ |
|
"refer_wav_path": "123.wav", |
|
"prompt_text": "一二三。", |
|
"prompt_language": "zh" |
|
} |
|
``` |
|
|
|
RESP: |
|
成功: json, http code 200 |
|
失败: json, 400 |
|
|
|
|
|
### 命令控制 |
|
|
|
endpoint: `/control` |
|
|
|
command: |
|
"restart": 重新运行 |
|
"exit": 结束运行 |
|
|
|
GET: |
|
`http://127.0.0.1:9880/control?command=restart` |
|
POST: |
|
```json |
|
{ |
|
"command": "restart" |
|
} |
|
``` |
|
|
|
RESP: 无 |
|
|
|
""" |
|
|
|
|
|
import argparse |
|
import os |
|
import sys |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
sys.path.append("%s/GPT_SoVITS" % (now_dir)) |
|
|
|
import signal |
|
from time import time as ttime |
|
import torch |
|
import librosa |
|
import soundfile as sf |
|
from fastapi import FastAPI, Request, HTTPException |
|
from fastapi.responses import StreamingResponse, JSONResponse |
|
import uvicorn |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
import numpy as np |
|
from feature_extractor import cnhubert |
|
from io import BytesIO |
|
from module.models import SynthesizerTrn |
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from text import cleaned_text_to_sequence |
|
from text.cleaner import clean_text |
|
from module.mel_processing import spectrogram_torch |
|
from my_utils import load_audio |
|
import config as global_config |
|
|
|
g_config = global_config.Config() |
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="GPT-SoVITS api") |
|
|
|
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径") |
|
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径") |
|
|
|
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径") |
|
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") |
|
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") |
|
|
|
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu") |
|
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0") |
|
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880") |
|
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度") |
|
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度") |
|
|
|
|
|
|
|
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path") |
|
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path") |
|
|
|
args = parser.parse_args() |
|
|
|
sovits_path = args.sovits_path |
|
gpt_path = args.gpt_path |
|
|
|
|
|
class DefaultRefer: |
|
def __init__(self, path, text, language): |
|
self.path = args.default_refer_path |
|
self.text = args.default_refer_text |
|
self.language = args.default_refer_language |
|
|
|
def is_ready(self) -> bool: |
|
return is_full(self.path, self.text, self.language) |
|
|
|
|
|
default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language) |
|
|
|
device = args.device |
|
port = args.port |
|
host = args.bind_addr |
|
|
|
if sovits_path == "": |
|
sovits_path = g_config.pretrained_sovits_path |
|
print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}") |
|
if gpt_path == "": |
|
gpt_path = g_config.pretrained_gpt_path |
|
print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}") |
|
|
|
|
|
if default_refer.path == "" or default_refer.text == "" or default_refer.language == "": |
|
default_refer.path, default_refer.text, default_refer.language = "", "", "" |
|
print("[INFO] 未指定默认参考音频") |
|
else: |
|
print(f"[INFO] 默认参考音频路径: {default_refer.path}") |
|
print(f"[INFO] 默认参考音频文本: {default_refer.text}") |
|
print(f"[INFO] 默认参考音频语种: {default_refer.language}") |
|
|
|
is_half = g_config.is_half |
|
if args.full_precision: |
|
is_half = False |
|
if args.half_precision: |
|
is_half = True |
|
if args.full_precision and args.half_precision: |
|
is_half = g_config.is_half |
|
|
|
print(f"[INFO] 半精: {is_half}") |
|
|
|
cnhubert_base_path = args.hubert_path |
|
bert_path = args.bert_path |
|
|
|
cnhubert.cnhubert_base_path = cnhubert_base_path |
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) |
|
if is_half: |
|
bert_model = bert_model.half().to(device) |
|
else: |
|
bert_model = bert_model.to(device) |
|
|
|
|
|
def is_empty(*items): |
|
for item in items: |
|
if item is not None and item != "": |
|
return False |
|
return True |
|
|
|
|
|
def is_full(*items): |
|
for item in items: |
|
if item is None or item == "": |
|
return False |
|
return True |
|
|
|
def change_sovits_weights(sovits_path): |
|
global vq_model, hps |
|
dict_s2 = torch.load(sovits_path, map_location="cpu") |
|
hps = dict_s2["config"] |
|
hps = DictToAttrRecursive(hps) |
|
hps.model.semantic_frame_rate = "25hz" |
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model |
|
) |
|
if ("pretrained" not in sovits_path): |
|
del vq_model.enc_q |
|
if is_half == True: |
|
vq_model = vq_model.half().to(device) |
|
else: |
|
vq_model = vq_model.to(device) |
|
vq_model.eval() |
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) |
|
with open("./sweight.txt", "w", encoding="utf-8") as f: |
|
f.write(sovits_path) |
|
def change_gpt_weights(gpt_path): |
|
global hz, max_sec, t2s_model, config |
|
hz = 50 |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
max_sec = config["data"]["max_sec"] |
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if is_half == True: |
|
t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(device) |
|
t2s_model.eval() |
|
total = sum([param.nelement() for param in t2s_model.parameters()]) |
|
print("Number of parameter: %.2fM" % (total / 1e6)) |
|
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) |
|
|
|
|
|
def get_bert_feature(text, word2ph): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = bert_model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] |
|
assert len(word2ph) == len(text) |
|
phone_level_feature = [] |
|
for i in range(len(word2ph)): |
|
repeat_feature = res[i].repeat(word2ph[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|
|
|
|
n_semantic = 1024 |
|
dict_s2 = torch.load(sovits_path, map_location="cpu") |
|
hps = dict_s2["config"] |
|
|
|
|
|
class DictToAttrRecursive: |
|
def __init__(self, input_dict): |
|
for key, value in input_dict.items(): |
|
if isinstance(value, dict): |
|
|
|
setattr(self, key, DictToAttrRecursive(value)) |
|
else: |
|
setattr(self, key, value) |
|
|
|
|
|
hps = DictToAttrRecursive(hps) |
|
hps.model.semantic_frame_rate = "25hz" |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
ssl_model = cnhubert.get_model() |
|
if is_half: |
|
ssl_model = ssl_model.half().to(device) |
|
else: |
|
ssl_model = ssl_model.to(device) |
|
|
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
if is_half: |
|
vq_model = vq_model.half().to(device) |
|
else: |
|
vq_model = vq_model.to(device) |
|
vq_model.eval() |
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) |
|
hz = 50 |
|
max_sec = config['data']['max_sec'] |
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if is_half: |
|
t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(device) |
|
t2s_model.eval() |
|
total = sum([param.nelement() for param in t2s_model.parameters()]) |
|
print("Number of parameter: %.2fM" % (total / 1e6)) |
|
|
|
|
|
def get_spepc(hps, filename): |
|
audio = load_audio(filename, int(hps.data.sampling_rate)) |
|
audio = torch.FloatTensor(audio) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, |
|
hps.data.win_length, center=False) |
|
return spec |
|
|
|
|
|
dict_language = { |
|
"中文": "zh", |
|
"英文": "en", |
|
"日文": "ja", |
|
"ZH": "zh", |
|
"EN": "en", |
|
"JA": "ja", |
|
"zh": "zh", |
|
"en": "en", |
|
"ja": "ja" |
|
} |
|
|
|
|
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): |
|
t0 = ttime() |
|
prompt_text = prompt_text.strip("\n") |
|
prompt_language, text = prompt_language, text.strip("\n") |
|
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) |
|
with torch.no_grad(): |
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) |
|
wav16k = torch.from_numpy(wav16k) |
|
zero_wav_torch = torch.from_numpy(zero_wav) |
|
if (is_half == True): |
|
wav16k = wav16k.half().to(device) |
|
zero_wav_torch = zero_wav_torch.half().to(device) |
|
else: |
|
wav16k = wav16k.to(device) |
|
zero_wav_torch = zero_wav_torch.to(device) |
|
wav16k = torch.cat([wav16k, zero_wav_torch]) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) |
|
codes = vq_model.extract_latent(ssl_content) |
|
prompt_semantic = codes[0, 0] |
|
t1 = ttime() |
|
prompt_language = dict_language[prompt_language] |
|
text_language = dict_language[text_language] |
|
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) |
|
phones1 = cleaned_text_to_sequence(phones1) |
|
texts = text.split("\n") |
|
audio_opt = [] |
|
|
|
for text in texts: |
|
phones2, word2ph2, norm_text2 = clean_text(text, text_language) |
|
phones2 = cleaned_text_to_sequence(phones2) |
|
if (prompt_language == "zh"): |
|
bert1 = get_bert_feature(norm_text1, word2ph1).to(device) |
|
else: |
|
bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to( |
|
device) |
|
if (text_language == "zh"): |
|
bert2 = get_bert_feature(norm_text2, word2ph2).to(device) |
|
else: |
|
bert2 = torch.zeros((1024, len(phones2))).to(bert1) |
|
bert = torch.cat([bert1, bert2], 1) |
|
|
|
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) |
|
prompt = prompt_semantic.unsqueeze(0).to(device) |
|
t2 = ttime() |
|
with torch.no_grad(): |
|
|
|
pred_semantic, idx = t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_len, |
|
prompt, |
|
bert, |
|
|
|
top_k=config['inference']['top_k'], |
|
early_stop_num=hz * max_sec) |
|
t3 = ttime() |
|
|
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) |
|
refer = get_spepc(hps, ref_wav_path) |
|
if (is_half == True): |
|
refer = refer.half().to(device) |
|
else: |
|
refer = refer.to(device) |
|
|
|
audio = \ |
|
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), |
|
refer).detach().cpu().numpy()[ |
|
0, 0] |
|
audio_opt.append(audio) |
|
audio_opt.append(zero_wav) |
|
t4 = ttime() |
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) |
|
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) |
|
|
|
|
|
def handle_control(command): |
|
if command == "restart": |
|
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv) |
|
elif command == "exit": |
|
os.kill(os.getpid(), signal.SIGTERM) |
|
exit(0) |
|
|
|
|
|
def handle_change(path, text, language): |
|
if is_empty(path, text, language): |
|
return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400) |
|
|
|
if path != "" or path is not None: |
|
default_refer.path = path |
|
if text != "" or text is not None: |
|
default_refer.text = text |
|
if language != "" or language is not None: |
|
default_refer.language = language |
|
|
|
print(f"[INFO] 当前默认参考音频路径: {default_refer.path}") |
|
print(f"[INFO] 当前默认参考音频文本: {default_refer.text}") |
|
print(f"[INFO] 当前默认参考音频语种: {default_refer.language}") |
|
print(f"[INFO] is_ready: {default_refer.is_ready()}") |
|
|
|
return JSONResponse({"code": 0, "message": "Success"}, status_code=200) |
|
|
|
|
|
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language): |
|
if ( |
|
refer_wav_path == "" or refer_wav_path is None |
|
or prompt_text == "" or prompt_text is None |
|
or prompt_language == "" or prompt_language is None |
|
): |
|
refer_wav_path, prompt_text, prompt_language = ( |
|
default_refer.path, |
|
default_refer.text, |
|
default_refer.language, |
|
) |
|
if not default_refer.is_ready(): |
|
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400) |
|
|
|
with torch.no_grad(): |
|
gen = get_tts_wav( |
|
refer_wav_path, prompt_text, prompt_language, text, text_language |
|
) |
|
sampling_rate, audio_data = next(gen) |
|
|
|
wav = BytesIO() |
|
sf.write(wav, audio_data, sampling_rate, format="wav") |
|
wav.seek(0) |
|
|
|
torch.cuda.empty_cache() |
|
return StreamingResponse(wav, media_type="audio/wav") |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
|
|
@app.post("/set_model") |
|
async def set_model(request: Request): |
|
json_post_raw = await request.json() |
|
global gpt_path |
|
gpt_path=json_post_raw.get("gpt_model_path") |
|
global sovits_path |
|
sovits_path=json_post_raw.get("sovits_model_path") |
|
print("gptpath"+gpt_path+";vitspath"+sovits_path) |
|
change_sovits_weights(sovits_path) |
|
change_gpt_weights(gpt_path) |
|
return "ok" |
|
|
|
|
|
@app.post("/control") |
|
async def control(request: Request): |
|
json_post_raw = await request.json() |
|
return handle_control(json_post_raw.get("command")) |
|
|
|
|
|
@app.get("/control") |
|
async def control(command: str = None): |
|
return handle_control(command) |
|
|
|
|
|
@app.post("/change_refer") |
|
async def change_refer(request: Request): |
|
json_post_raw = await request.json() |
|
return handle_change( |
|
json_post_raw.get("refer_wav_path"), |
|
json_post_raw.get("prompt_text"), |
|
json_post_raw.get("prompt_language") |
|
) |
|
|
|
|
|
@app.get("/change_refer") |
|
async def change_refer( |
|
refer_wav_path: str = None, |
|
prompt_text: str = None, |
|
prompt_language: str = None |
|
): |
|
return handle_change(refer_wav_path, prompt_text, prompt_language) |
|
|
|
|
|
@app.post("/") |
|
async def tts_endpoint(request: Request): |
|
json_post_raw = await request.json() |
|
return handle( |
|
json_post_raw.get("refer_wav_path"), |
|
json_post_raw.get("prompt_text"), |
|
json_post_raw.get("prompt_language"), |
|
json_post_raw.get("text"), |
|
json_post_raw.get("text_language"), |
|
) |
|
|
|
|
|
@app.get("/") |
|
async def tts_endpoint( |
|
refer_wav_path: str = None, |
|
prompt_text: str = None, |
|
prompt_language: str = None, |
|
text: str = None, |
|
text_language: str = None, |
|
): |
|
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language) |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host=host, port=port, workers=1) |
|
|