xiaotinghe
commited on
Commit
·
32bd338
1
Parent(s):
4fc9846
Upload model
Browse files- config.json +36 -0
- configuration.py +55 -0
- embedding_model.py +29 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "buffer-embedding-002",
|
3 |
+
"apply_residual_connection_post_layernorm": false,
|
4 |
+
"architectures": [
|
5 |
+
"DualModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"attention_softmax_in_fp32": true,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoModel": "embedding_model.DualModel"
|
11 |
+
},
|
12 |
+
"bias_dropout_fusion": true,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_dropout": 0.0,
|
16 |
+
"hidden_size": 1536,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"layer_norm_epsilon": 1e-05,
|
19 |
+
"masked_softmax_fusion": true,
|
20 |
+
"model_type": "bloom",
|
21 |
+
"n_head": 16,
|
22 |
+
"n_inner": null,
|
23 |
+
"n_layer": 24,
|
24 |
+
"offset_alibi": 100,
|
25 |
+
"pad_token_id": 3,
|
26 |
+
"pretraining_tp": 1,
|
27 |
+
"seq_length": 2048,
|
28 |
+
"skip_bias_add": true,
|
29 |
+
"skip_bias_add_qkv": false,
|
30 |
+
"slow_but_exact": false,
|
31 |
+
"torch_dtype": "float16",
|
32 |
+
"transformers_version": "4.31.0",
|
33 |
+
"unk_token_id": 0,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 46145
|
36 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.utils import logging
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
8 |
+
|
9 |
+
|
10 |
+
class BufferEmbeddingConfig(PretrainedConfig):
|
11 |
+
model_type = "buffer_embedding"
|
12 |
+
_auto_class = "AutoConfig"
|
13 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
14 |
+
attribute_map = {
|
15 |
+
"num_hidden_layers": "n_layer",
|
16 |
+
"num_attention_heads": "n_head",
|
17 |
+
}
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
vocab_size=250880,
|
21 |
+
hidden_size=64,
|
22 |
+
n_layer=2,
|
23 |
+
n_head=8,
|
24 |
+
layer_norm_epsilon=1e-5,
|
25 |
+
initializer_range=0.02,
|
26 |
+
use_cache=True,
|
27 |
+
bos_token_id=1,
|
28 |
+
eos_token_id=2,
|
29 |
+
apply_residual_connection_post_layernorm=False,
|
30 |
+
hidden_dropout=0.0,
|
31 |
+
attention_dropout=0.0,
|
32 |
+
pretraining_tp=1, # TP rank used when training with megatron
|
33 |
+
slow_but_exact=False,
|
34 |
+
**kwargs,
|
35 |
+
):
|
36 |
+
self.vocab_size = vocab_size
|
37 |
+
# Backward compatibility with n_embed kwarg
|
38 |
+
n_embed = kwargs.pop("n_embed", None)
|
39 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
40 |
+
self.n_layer = n_layer
|
41 |
+
self.n_head = n_head
|
42 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
43 |
+
self.initializer_range = initializer_range
|
44 |
+
self.use_cache = use_cache
|
45 |
+
self.pretraining_tp = pretraining_tp
|
46 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
47 |
+
self.hidden_dropout = hidden_dropout
|
48 |
+
self.attention_dropout = attention_dropout
|
49 |
+
|
50 |
+
self.bos_token_id = bos_token_id
|
51 |
+
self.eos_token_id = eos_token_id
|
52 |
+
self.slow_but_exact = slow_but_exact
|
53 |
+
|
54 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
55 |
+
|
embedding_model.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
from transformers import BloomForCausalLM, PreTrainedModel
|
5 |
+
from .configuration import BufferEmbeddingConfig
|
6 |
+
|
7 |
+
|
8 |
+
class DualModel(PreTrainedModel):
|
9 |
+
config_class = BufferEmbeddingConfig
|
10 |
+
_auto_class = "AutoModel"
|
11 |
+
def __init__(self, config):
|
12 |
+
super(DualModel, self).__init__(config)
|
13 |
+
self.model = BloomForCausalLM(config)#.from_pretrained('Langboat/bloom-800m-zh')
|
14 |
+
self.classifier = nn.Linear(1536, 1536)
|
15 |
+
self.hidden = nn.Sequential(nn.Linear(1536, 1536),
|
16 |
+
nn.Tanh())
|
17 |
+
def forward(self,
|
18 |
+
input_ids,
|
19 |
+
token_type_ids=None,
|
20 |
+
position_ids_ids=None,
|
21 |
+
attention_mask=None,
|
22 |
+
labels=None
|
23 |
+
):
|
24 |
+
attention_mask = torch.ne(input_ids, 3) # size: batch_size, max_len
|
25 |
+
|
26 |
+
y = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
27 |
+
embedding = (y.hidden_states[-1]*attention_mask.unsqueeze(-1)).sum(1)/attention_mask.sum(1).unsqueeze(-1)
|
28 |
+
embedding = self.classifier(self.hidden(embedding))
|
29 |
+
return F.normalize(embedding, p=2, dim=-1)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d52d56062dce41743e6a21f04e7e725a82ef7eff0a3edc01e610cc2ddd9619f
|
3 |
+
size 1652985845
|