xiaorui1 commited on
Commit
28a90f6
·
verified ·
1 Parent(s): c8bcfcb

Upload 8 files

Browse files
Files changed (8) hide show
  1. .mdl +0 -0
  2. .msc +0 -0
  3. .mv +1 -0
  4. config.json +42 -0
  5. configuration.json +1 -0
  6. configuration_falcon.py +192 -0
  7. generation_config.json +6 -0
  8. model.safetensors.index.json +371 -0
.mdl ADDED
Binary file (54 Bytes). View file
 
.msc ADDED
Binary file (2.76 kB). View file
 
.mv ADDED
@@ -0,0 +1 @@
 
 
1
+ Revision:master,CreatedAt:1724055407
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/workspace/mode/xiaorui3/falcon11B_PFAI_57w",
3
+ "activation": "gelu",
4
+ "alibi": false,
5
+ "architectures": [
6
+ "FalconForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_falcon.FalconConfig",
11
+ "AutoModel": "modeling_falcon.FalconForCausalLM",
12
+ "AutoModelForCausalLM": "modeling_falcon.FalconForCausalLM",
13
+ "AutoModelForQuestionAnswering": "modeling_falcon.FalconForQuestionAnswering",
14
+ "AutoModelForSequenceClassification": "modeling_falcon.FalconForSequenceClassification",
15
+ "AutoModelForTokenClassification": "modeling_falcon.FalconForTokenClassification"
16
+ },
17
+ "bias": false,
18
+ "bos_token_id": 11,
19
+ "eos_token_id": 11,
20
+ "ff_factor": 4,
21
+ "ffn_hidden_size": 16384,
22
+ "hidden_dropout": 0.0,
23
+ "hidden_size": 4096,
24
+ "initializer_range": 0.02,
25
+ "layer_norm_epsilon": 1e-05,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "falcon",
28
+ "multi_query": true,
29
+ "new_decoder_architecture": true,
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 60,
32
+ "num_kv_heads": 8,
33
+ "num_ln_in_parallel_attn": 1,
34
+ "parallel_attn": true,
35
+ "rope_scaling": null,
36
+ "rope_theta": 500042.0,
37
+ "tie_word_embeddings": false,
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.43.4",
40
+ "use_cache": true,
41
+ "vocab_size": 65024
42
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"text-generation"}
configuration_falcon.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Falcon configuration"""
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
24
+ "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class FalconConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the
33
+ [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 65024):
41
+ Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`FalconModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4544):
44
+ Dimension of the hidden representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer decoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 71):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
50
+ The epsilon used by the layer normalization layers.
51
+ initializer_range (`float`, *optional*, defaults to 0.02):
52
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
53
+ use_cache (`bool`, *optional*, defaults to `True`):
54
+ Whether the model should return the last key/values attentions (not used by all models). Only relevant if
55
+ `config.is_decoder=True`.
56
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
57
+ The dropout probability for MLP layers.
58
+ attention_dropout (`float`, *optional*, defaults to 0.0):
59
+ The dropout probability for attention layers.
60
+ num_kv_heads (`int`, *optional*):
61
+ Number of key-value heads to use per attention layer. If unset, defaults to the same value as
62
+ `num_attention_heads`.
63
+ alibi (`bool`, *optional*, defaults to `False`):
64
+ Whether to use ALiBi positional biases during self-attention.
65
+ new_decoder_architecture (`bool`, *optional*, defaults to `False`):
66
+ Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
67
+ arguments are ignored, as the new decoder always uses parallel attention.
68
+ multi_query (`bool`, *optional*, defaults to `True`):
69
+ Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
70
+ parallel_attn (`bool`, *optional*, defaults to `True`):
71
+ Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
72
+ instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
73
+ bias (`bool`, *optional*, defaults to `False`):
74
+ Whether to use bias on Linear layers.
75
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
76
+ The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
77
+ Falcon models with RoPE support up to 2048 tokens.
78
+ rope_theta (`float`, *optional*, defaults to 10000.0):
79
+ The base period of the RoPE embeddings.
80
+ rope_scaling (`Dict`, *optional*):
81
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
82
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
83
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
84
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
85
+ these scaling strategies behave:
86
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
87
+ experimental feature, subject to breaking API changes in future versions.
88
+ bos_token_id (`int`, *optional*, defaults to 11):
89
+ The id of the "beginning-of-sequence" token.
90
+ eos_token_id (`int`, *optional*, defaults to 11):
91
+ The id of the "end-of-sequence" token.
92
+
93
+ Example:
94
+
95
+ ```python
96
+ >>> from transformers import FalconModel, FalconConfig
97
+
98
+ >>> # Initializing a small (2-layer) Falcon configuration
99
+ >>> configuration = FalconConfig(num_hidden_layers=2)
100
+
101
+ >>> # Initializing a model from the small configuration
102
+ >>> model = FalconModel(configuration)
103
+
104
+ >>> # Accessing the model configuration
105
+ >>> configuration = model.config
106
+ ```"""
107
+
108
+ model_type = "falcon"
109
+ keys_to_ignore_at_inference = ["past_key_values"]
110
+
111
+ def __init__(
112
+ self,
113
+ vocab_size=65024,
114
+ hidden_size=4544,
115
+ num_hidden_layers=32,
116
+ num_attention_heads=71,
117
+ layer_norm_epsilon=1e-5,
118
+ initializer_range=0.02,
119
+ use_cache=True,
120
+ hidden_dropout=0.0,
121
+ attention_dropout=0.0,
122
+ num_kv_heads=None,
123
+ alibi=False,
124
+ new_decoder_architecture=False,
125
+ multi_query=True,
126
+ parallel_attn=True,
127
+ bias=False,
128
+ max_position_embeddings=8192,
129
+ rope_theta=10000.0,
130
+ rope_scaling=None,
131
+ bos_token_id=11,
132
+ eos_token_id=11,
133
+ **kwargs,
134
+ ):
135
+ self.vocab_size = vocab_size
136
+ # Backward compatibility with n_embed kwarg
137
+ n_embed = kwargs.pop("n_embed", None)
138
+ self.hidden_size = hidden_size if n_embed is None else n_embed
139
+ self.num_hidden_layers = num_hidden_layers
140
+ self.num_attention_heads = num_attention_heads
141
+ self.layer_norm_epsilon = layer_norm_epsilon
142
+ self.initializer_range = initializer_range
143
+ self.use_cache = use_cache
144
+ self.hidden_dropout = hidden_dropout
145
+ self.attention_dropout = attention_dropout
146
+
147
+ self.bos_token_id = bos_token_id
148
+ self.eos_token_id = eos_token_id
149
+ self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
150
+ self.alibi = alibi
151
+ self.new_decoder_architecture = new_decoder_architecture
152
+ self.multi_query = multi_query # Ignored when new_decoder_architecture is True
153
+ self.parallel_attn = parallel_attn
154
+ self.bias = bias
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.rope_theta = rope_theta
157
+ self.rope_scaling = rope_scaling
158
+ self._rope_scaling_validation()
159
+
160
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
161
+
162
+ @property
163
+ def head_dim(self):
164
+ return self.hidden_size // self.num_attention_heads
165
+
166
+ @property
167
+ def rotary(self):
168
+ return not self.alibi
169
+
170
+ def _rope_scaling_validation(self):
171
+ """
172
+ Validate the `rope_scaling` configuration.
173
+ """
174
+ if self.rope_scaling is None:
175
+ return
176
+
177
+ if self.alibi:
178
+ raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.")
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
181
+ raise ValueError(
182
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
183
+ f"got {self.rope_scaling}"
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get("type", None)
186
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
187
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
188
+ raise ValueError(
189
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
190
+ )
191
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
192
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 11,
4
+ "eos_token_id": 11,
5
+ "transformers_version": "4.43.4"
6
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 22205644800
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00024-of-00024.safetensors",
7
+ "transformer.h.0.input_layernorm.bias": "model-00001-of-00024.safetensors",
8
+ "transformer.h.0.input_layernorm.weight": "model-00001-of-00024.safetensors",
9
+ "transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00024.safetensors",
10
+ "transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00024.safetensors",
11
+ "transformer.h.0.self_attention.dense.weight": "model-00001-of-00024.safetensors",
12
+ "transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00024.safetensors",
13
+ "transformer.h.1.input_layernorm.bias": "model-00002-of-00024.safetensors",
14
+ "transformer.h.1.input_layernorm.weight": "model-00002-of-00024.safetensors",
15
+ "transformer.h.1.mlp.dense_4h_to_h.weight": "model-00002-of-00024.safetensors",
16
+ "transformer.h.1.mlp.dense_h_to_4h.weight": "model-00002-of-00024.safetensors",
17
+ "transformer.h.1.self_attention.dense.weight": "model-00001-of-00024.safetensors",
18
+ "transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00024.safetensors",
19
+ "transformer.h.10.input_layernorm.bias": "model-00005-of-00024.safetensors",
20
+ "transformer.h.10.input_layernorm.weight": "model-00005-of-00024.safetensors",
21
+ "transformer.h.10.mlp.dense_4h_to_h.weight": "model-00005-of-00024.safetensors",
22
+ "transformer.h.10.mlp.dense_h_to_4h.weight": "model-00005-of-00024.safetensors",
23
+ "transformer.h.10.self_attention.dense.weight": "model-00005-of-00024.safetensors",
24
+ "transformer.h.10.self_attention.query_key_value.weight": "model-00005-of-00024.safetensors",
25
+ "transformer.h.11.input_layernorm.bias": "model-00005-of-00024.safetensors",
26
+ "transformer.h.11.input_layernorm.weight": "model-00005-of-00024.safetensors",
27
+ "transformer.h.11.mlp.dense_4h_to_h.weight": "model-00005-of-00024.safetensors",
28
+ "transformer.h.11.mlp.dense_h_to_4h.weight": "model-00005-of-00024.safetensors",
29
+ "transformer.h.11.self_attention.dense.weight": "model-00005-of-00024.safetensors",
30
+ "transformer.h.11.self_attention.query_key_value.weight": "model-00005-of-00024.safetensors",
31
+ "transformer.h.12.input_layernorm.bias": "model-00006-of-00024.safetensors",
32
+ "transformer.h.12.input_layernorm.weight": "model-00006-of-00024.safetensors",
33
+ "transformer.h.12.mlp.dense_4h_to_h.weight": "model-00006-of-00024.safetensors",
34
+ "transformer.h.12.mlp.dense_h_to_4h.weight": "model-00006-of-00024.safetensors",
35
+ "transformer.h.12.self_attention.dense.weight": "model-00006-of-00024.safetensors",
36
+ "transformer.h.12.self_attention.query_key_value.weight": "model-00006-of-00024.safetensors",
37
+ "transformer.h.13.input_layernorm.bias": "model-00006-of-00024.safetensors",
38
+ "transformer.h.13.input_layernorm.weight": "model-00006-of-00024.safetensors",
39
+ "transformer.h.13.mlp.dense_4h_to_h.weight": "model-00006-of-00024.safetensors",
40
+ "transformer.h.13.mlp.dense_h_to_4h.weight": "model-00006-of-00024.safetensors",
41
+ "transformer.h.13.self_attention.dense.weight": "model-00006-of-00024.safetensors",
42
+ "transformer.h.13.self_attention.query_key_value.weight": "model-00006-of-00024.safetensors",
43
+ "transformer.h.14.input_layernorm.bias": "model-00007-of-00024.safetensors",
44
+ "transformer.h.14.input_layernorm.weight": "model-00007-of-00024.safetensors",
45
+ "transformer.h.14.mlp.dense_4h_to_h.weight": "model-00007-of-00024.safetensors",
46
+ "transformer.h.14.mlp.dense_h_to_4h.weight": "model-00006-of-00024.safetensors",
47
+ "transformer.h.14.self_attention.dense.weight": "model-00006-of-00024.safetensors",
48
+ "transformer.h.14.self_attention.query_key_value.weight": "model-00006-of-00024.safetensors",
49
+ "transformer.h.15.input_layernorm.bias": "model-00007-of-00024.safetensors",
50
+ "transformer.h.15.input_layernorm.weight": "model-00007-of-00024.safetensors",
51
+ "transformer.h.15.mlp.dense_4h_to_h.weight": "model-00007-of-00024.safetensors",
52
+ "transformer.h.15.mlp.dense_h_to_4h.weight": "model-00007-of-00024.safetensors",
53
+ "transformer.h.15.self_attention.dense.weight": "model-00007-of-00024.safetensors",
54
+ "transformer.h.15.self_attention.query_key_value.weight": "model-00007-of-00024.safetensors",
55
+ "transformer.h.16.input_layernorm.bias": "model-00007-of-00024.safetensors",
56
+ "transformer.h.16.input_layernorm.weight": "model-00007-of-00024.safetensors",
57
+ "transformer.h.16.mlp.dense_4h_to_h.weight": "model-00007-of-00024.safetensors",
58
+ "transformer.h.16.mlp.dense_h_to_4h.weight": "model-00007-of-00024.safetensors",
59
+ "transformer.h.16.self_attention.dense.weight": "model-00007-of-00024.safetensors",
60
+ "transformer.h.16.self_attention.query_key_value.weight": "model-00007-of-00024.safetensors",
61
+ "transformer.h.17.input_layernorm.bias": "model-00008-of-00024.safetensors",
62
+ "transformer.h.17.input_layernorm.weight": "model-00008-of-00024.safetensors",
63
+ "transformer.h.17.mlp.dense_4h_to_h.weight": "model-00008-of-00024.safetensors",
64
+ "transformer.h.17.mlp.dense_h_to_4h.weight": "model-00008-of-00024.safetensors",
65
+ "transformer.h.17.self_attention.dense.weight": "model-00007-of-00024.safetensors",
66
+ "transformer.h.17.self_attention.query_key_value.weight": "model-00007-of-00024.safetensors",
67
+ "transformer.h.18.input_layernorm.bias": "model-00008-of-00024.safetensors",
68
+ "transformer.h.18.input_layernorm.weight": "model-00008-of-00024.safetensors",
69
+ "transformer.h.18.mlp.dense_4h_to_h.weight": "model-00008-of-00024.safetensors",
70
+ "transformer.h.18.mlp.dense_h_to_4h.weight": "model-00008-of-00024.safetensors",
71
+ "transformer.h.18.self_attention.dense.weight": "model-00008-of-00024.safetensors",
72
+ "transformer.h.18.self_attention.query_key_value.weight": "model-00008-of-00024.safetensors",
73
+ "transformer.h.19.input_layernorm.bias": "model-00008-of-00024.safetensors",
74
+ "transformer.h.19.input_layernorm.weight": "model-00008-of-00024.safetensors",
75
+ "transformer.h.19.mlp.dense_4h_to_h.weight": "model-00008-of-00024.safetensors",
76
+ "transformer.h.19.mlp.dense_h_to_4h.weight": "model-00008-of-00024.safetensors",
77
+ "transformer.h.19.self_attention.dense.weight": "model-00008-of-00024.safetensors",
78
+ "transformer.h.19.self_attention.query_key_value.weight": "model-00008-of-00024.safetensors",
79
+ "transformer.h.2.input_layernorm.bias": "model-00002-of-00024.safetensors",
80
+ "transformer.h.2.input_layernorm.weight": "model-00002-of-00024.safetensors",
81
+ "transformer.h.2.mlp.dense_4h_to_h.weight": "model-00002-of-00024.safetensors",
82
+ "transformer.h.2.mlp.dense_h_to_4h.weight": "model-00002-of-00024.safetensors",
83
+ "transformer.h.2.self_attention.dense.weight": "model-00002-of-00024.safetensors",
84
+ "transformer.h.2.self_attention.query_key_value.weight": "model-00002-of-00024.safetensors",
85
+ "transformer.h.20.input_layernorm.bias": "model-00009-of-00024.safetensors",
86
+ "transformer.h.20.input_layernorm.weight": "model-00009-of-00024.safetensors",
87
+ "transformer.h.20.mlp.dense_4h_to_h.weight": "model-00009-of-00024.safetensors",
88
+ "transformer.h.20.mlp.dense_h_to_4h.weight": "model-00009-of-00024.safetensors",
89
+ "transformer.h.20.self_attention.dense.weight": "model-00009-of-00024.safetensors",
90
+ "transformer.h.20.self_attention.query_key_value.weight": "model-00009-of-00024.safetensors",
91
+ "transformer.h.21.input_layernorm.bias": "model-00009-of-00024.safetensors",
92
+ "transformer.h.21.input_layernorm.weight": "model-00009-of-00024.safetensors",
93
+ "transformer.h.21.mlp.dense_4h_to_h.weight": "model-00009-of-00024.safetensors",
94
+ "transformer.h.21.mlp.dense_h_to_4h.weight": "model-00009-of-00024.safetensors",
95
+ "transformer.h.21.self_attention.dense.weight": "model-00009-of-00024.safetensors",
96
+ "transformer.h.21.self_attention.query_key_value.weight": "model-00009-of-00024.safetensors",
97
+ "transformer.h.22.input_layernorm.bias": "model-00010-of-00024.safetensors",
98
+ "transformer.h.22.input_layernorm.weight": "model-00010-of-00024.safetensors",
99
+ "transformer.h.22.mlp.dense_4h_to_h.weight": "model-00010-of-00024.safetensors",
100
+ "transformer.h.22.mlp.dense_h_to_4h.weight": "model-00009-of-00024.safetensors",
101
+ "transformer.h.22.self_attention.dense.weight": "model-00009-of-00024.safetensors",
102
+ "transformer.h.22.self_attention.query_key_value.weight": "model-00009-of-00024.safetensors",
103
+ "transformer.h.23.input_layernorm.bias": "model-00010-of-00024.safetensors",
104
+ "transformer.h.23.input_layernorm.weight": "model-00010-of-00024.safetensors",
105
+ "transformer.h.23.mlp.dense_4h_to_h.weight": "model-00010-of-00024.safetensors",
106
+ "transformer.h.23.mlp.dense_h_to_4h.weight": "model-00010-of-00024.safetensors",
107
+ "transformer.h.23.self_attention.dense.weight": "model-00010-of-00024.safetensors",
108
+ "transformer.h.23.self_attention.query_key_value.weight": "model-00010-of-00024.safetensors",
109
+ "transformer.h.24.input_layernorm.bias": "model-00010-of-00024.safetensors",
110
+ "transformer.h.24.input_layernorm.weight": "model-00010-of-00024.safetensors",
111
+ "transformer.h.24.mlp.dense_4h_to_h.weight": "model-00010-of-00024.safetensors",
112
+ "transformer.h.24.mlp.dense_h_to_4h.weight": "model-00010-of-00024.safetensors",
113
+ "transformer.h.24.self_attention.dense.weight": "model-00010-of-00024.safetensors",
114
+ "transformer.h.24.self_attention.query_key_value.weight": "model-00010-of-00024.safetensors",
115
+ "transformer.h.25.input_layernorm.bias": "model-00011-of-00024.safetensors",
116
+ "transformer.h.25.input_layernorm.weight": "model-00011-of-00024.safetensors",
117
+ "transformer.h.25.mlp.dense_4h_to_h.weight": "model-00011-of-00024.safetensors",
118
+ "transformer.h.25.mlp.dense_h_to_4h.weight": "model-00011-of-00024.safetensors",
119
+ "transformer.h.25.self_attention.dense.weight": "model-00010-of-00024.safetensors",
120
+ "transformer.h.25.self_attention.query_key_value.weight": "model-00010-of-00024.safetensors",
121
+ "transformer.h.26.input_layernorm.bias": "model-00011-of-00024.safetensors",
122
+ "transformer.h.26.input_layernorm.weight": "model-00011-of-00024.safetensors",
123
+ "transformer.h.26.mlp.dense_4h_to_h.weight": "model-00011-of-00024.safetensors",
124
+ "transformer.h.26.mlp.dense_h_to_4h.weight": "model-00011-of-00024.safetensors",
125
+ "transformer.h.26.self_attention.dense.weight": "model-00011-of-00024.safetensors",
126
+ "transformer.h.26.self_attention.query_key_value.weight": "model-00011-of-00024.safetensors",
127
+ "transformer.h.27.input_layernorm.bias": "model-00011-of-00024.safetensors",
128
+ "transformer.h.27.input_layernorm.weight": "model-00011-of-00024.safetensors",
129
+ "transformer.h.27.mlp.dense_4h_to_h.weight": "model-00011-of-00024.safetensors",
130
+ "transformer.h.27.mlp.dense_h_to_4h.weight": "model-00011-of-00024.safetensors",
131
+ "transformer.h.27.self_attention.dense.weight": "model-00011-of-00024.safetensors",
132
+ "transformer.h.27.self_attention.query_key_value.weight": "model-00011-of-00024.safetensors",
133
+ "transformer.h.28.input_layernorm.bias": "model-00012-of-00024.safetensors",
134
+ "transformer.h.28.input_layernorm.weight": "model-00012-of-00024.safetensors",
135
+ "transformer.h.28.mlp.dense_4h_to_h.weight": "model-00012-of-00024.safetensors",
136
+ "transformer.h.28.mlp.dense_h_to_4h.weight": "model-00012-of-00024.safetensors",
137
+ "transformer.h.28.self_attention.dense.weight": "model-00012-of-00024.safetensors",
138
+ "transformer.h.28.self_attention.query_key_value.weight": "model-00012-of-00024.safetensors",
139
+ "transformer.h.29.input_layernorm.bias": "model-00012-of-00024.safetensors",
140
+ "transformer.h.29.input_layernorm.weight": "model-00012-of-00024.safetensors",
141
+ "transformer.h.29.mlp.dense_4h_to_h.weight": "model-00012-of-00024.safetensors",
142
+ "transformer.h.29.mlp.dense_h_to_4h.weight": "model-00012-of-00024.safetensors",
143
+ "transformer.h.29.self_attention.dense.weight": "model-00012-of-00024.safetensors",
144
+ "transformer.h.29.self_attention.query_key_value.weight": "model-00012-of-00024.safetensors",
145
+ "transformer.h.3.input_layernorm.bias": "model-00002-of-00024.safetensors",
146
+ "transformer.h.3.input_layernorm.weight": "model-00002-of-00024.safetensors",
147
+ "transformer.h.3.mlp.dense_4h_to_h.weight": "model-00002-of-00024.safetensors",
148
+ "transformer.h.3.mlp.dense_h_to_4h.weight": "model-00002-of-00024.safetensors",
149
+ "transformer.h.3.self_attention.dense.weight": "model-00002-of-00024.safetensors",
150
+ "transformer.h.3.self_attention.query_key_value.weight": "model-00002-of-00024.safetensors",
151
+ "transformer.h.30.input_layernorm.bias": "model-00013-of-00024.safetensors",
152
+ "transformer.h.30.input_layernorm.weight": "model-00013-of-00024.safetensors",
153
+ "transformer.h.30.mlp.dense_4h_to_h.weight": "model-00013-of-00024.safetensors",
154
+ "transformer.h.30.mlp.dense_h_to_4h.weight": "model-00012-of-00024.safetensors",
155
+ "transformer.h.30.self_attention.dense.weight": "model-00012-of-00024.safetensors",
156
+ "transformer.h.30.self_attention.query_key_value.weight": "model-00012-of-00024.safetensors",
157
+ "transformer.h.31.input_layernorm.bias": "model-00013-of-00024.safetensors",
158
+ "transformer.h.31.input_layernorm.weight": "model-00013-of-00024.safetensors",
159
+ "transformer.h.31.mlp.dense_4h_to_h.weight": "model-00013-of-00024.safetensors",
160
+ "transformer.h.31.mlp.dense_h_to_4h.weight": "model-00013-of-00024.safetensors",
161
+ "transformer.h.31.self_attention.dense.weight": "model-00013-of-00024.safetensors",
162
+ "transformer.h.31.self_attention.query_key_value.weight": "model-00013-of-00024.safetensors",
163
+ "transformer.h.32.input_layernorm.bias": "model-00013-of-00024.safetensors",
164
+ "transformer.h.32.input_layernorm.weight": "model-00013-of-00024.safetensors",
165
+ "transformer.h.32.mlp.dense_4h_to_h.weight": "model-00013-of-00024.safetensors",
166
+ "transformer.h.32.mlp.dense_h_to_4h.weight": "model-00013-of-00024.safetensors",
167
+ "transformer.h.32.self_attention.dense.weight": "model-00013-of-00024.safetensors",
168
+ "transformer.h.32.self_attention.query_key_value.weight": "model-00013-of-00024.safetensors",
169
+ "transformer.h.33.input_layernorm.bias": "model-00014-of-00024.safetensors",
170
+ "transformer.h.33.input_layernorm.weight": "model-00014-of-00024.safetensors",
171
+ "transformer.h.33.mlp.dense_4h_to_h.weight": "model-00014-of-00024.safetensors",
172
+ "transformer.h.33.mlp.dense_h_to_4h.weight": "model-00014-of-00024.safetensors",
173
+ "transformer.h.33.self_attention.dense.weight": "model-00013-of-00024.safetensors",
174
+ "transformer.h.33.self_attention.query_key_value.weight": "model-00013-of-00024.safetensors",
175
+ "transformer.h.34.input_layernorm.bias": "model-00014-of-00024.safetensors",
176
+ "transformer.h.34.input_layernorm.weight": "model-00014-of-00024.safetensors",
177
+ "transformer.h.34.mlp.dense_4h_to_h.weight": "model-00014-of-00024.safetensors",
178
+ "transformer.h.34.mlp.dense_h_to_4h.weight": "model-00014-of-00024.safetensors",
179
+ "transformer.h.34.self_attention.dense.weight": "model-00014-of-00024.safetensors",
180
+ "transformer.h.34.self_attention.query_key_value.weight": "model-00014-of-00024.safetensors",
181
+ "transformer.h.35.input_layernorm.bias": "model-00014-of-00024.safetensors",
182
+ "transformer.h.35.input_layernorm.weight": "model-00014-of-00024.safetensors",
183
+ "transformer.h.35.mlp.dense_4h_to_h.weight": "model-00014-of-00024.safetensors",
184
+ "transformer.h.35.mlp.dense_h_to_4h.weight": "model-00014-of-00024.safetensors",
185
+ "transformer.h.35.self_attention.dense.weight": "model-00014-of-00024.safetensors",
186
+ "transformer.h.35.self_attention.query_key_value.weight": "model-00014-of-00024.safetensors",
187
+ "transformer.h.36.input_layernorm.bias": "model-00015-of-00024.safetensors",
188
+ "transformer.h.36.input_layernorm.weight": "model-00015-of-00024.safetensors",
189
+ "transformer.h.36.mlp.dense_4h_to_h.weight": "model-00015-of-00024.safetensors",
190
+ "transformer.h.36.mlp.dense_h_to_4h.weight": "model-00015-of-00024.safetensors",
191
+ "transformer.h.36.self_attention.dense.weight": "model-00015-of-00024.safetensors",
192
+ "transformer.h.36.self_attention.query_key_value.weight": "model-00015-of-00024.safetensors",
193
+ "transformer.h.37.input_layernorm.bias": "model-00015-of-00024.safetensors",
194
+ "transformer.h.37.input_layernorm.weight": "model-00015-of-00024.safetensors",
195
+ "transformer.h.37.mlp.dense_4h_to_h.weight": "model-00015-of-00024.safetensors",
196
+ "transformer.h.37.mlp.dense_h_to_4h.weight": "model-00015-of-00024.safetensors",
197
+ "transformer.h.37.self_attention.dense.weight": "model-00015-of-00024.safetensors",
198
+ "transformer.h.37.self_attention.query_key_value.weight": "model-00015-of-00024.safetensors",
199
+ "transformer.h.38.input_layernorm.bias": "model-00016-of-00024.safetensors",
200
+ "transformer.h.38.input_layernorm.weight": "model-00016-of-00024.safetensors",
201
+ "transformer.h.38.mlp.dense_4h_to_h.weight": "model-00016-of-00024.safetensors",
202
+ "transformer.h.38.mlp.dense_h_to_4h.weight": "model-00015-of-00024.safetensors",
203
+ "transformer.h.38.self_attention.dense.weight": "model-00015-of-00024.safetensors",
204
+ "transformer.h.38.self_attention.query_key_value.weight": "model-00015-of-00024.safetensors",
205
+ "transformer.h.39.input_layernorm.bias": "model-00016-of-00024.safetensors",
206
+ "transformer.h.39.input_layernorm.weight": "model-00016-of-00024.safetensors",
207
+ "transformer.h.39.mlp.dense_4h_to_h.weight": "model-00016-of-00024.safetensors",
208
+ "transformer.h.39.mlp.dense_h_to_4h.weight": "model-00016-of-00024.safetensors",
209
+ "transformer.h.39.self_attention.dense.weight": "model-00016-of-00024.safetensors",
210
+ "transformer.h.39.self_attention.query_key_value.weight": "model-00016-of-00024.safetensors",
211
+ "transformer.h.4.input_layernorm.bias": "model-00003-of-00024.safetensors",
212
+ "transformer.h.4.input_layernorm.weight": "model-00003-of-00024.safetensors",
213
+ "transformer.h.4.mlp.dense_4h_to_h.weight": "model-00003-of-00024.safetensors",
214
+ "transformer.h.4.mlp.dense_h_to_4h.weight": "model-00003-of-00024.safetensors",
215
+ "transformer.h.4.self_attention.dense.weight": "model-00003-of-00024.safetensors",
216
+ "transformer.h.4.self_attention.query_key_value.weight": "model-00003-of-00024.safetensors",
217
+ "transformer.h.40.input_layernorm.bias": "model-00016-of-00024.safetensors",
218
+ "transformer.h.40.input_layernorm.weight": "model-00016-of-00024.safetensors",
219
+ "transformer.h.40.mlp.dense_4h_to_h.weight": "model-00016-of-00024.safetensors",
220
+ "transformer.h.40.mlp.dense_h_to_4h.weight": "model-00016-of-00024.safetensors",
221
+ "transformer.h.40.self_attention.dense.weight": "model-00016-of-00024.safetensors",
222
+ "transformer.h.40.self_attention.query_key_value.weight": "model-00016-of-00024.safetensors",
223
+ "transformer.h.41.input_layernorm.bias": "model-00017-of-00024.safetensors",
224
+ "transformer.h.41.input_layernorm.weight": "model-00017-of-00024.safetensors",
225
+ "transformer.h.41.mlp.dense_4h_to_h.weight": "model-00017-of-00024.safetensors",
226
+ "transformer.h.41.mlp.dense_h_to_4h.weight": "model-00017-of-00024.safetensors",
227
+ "transformer.h.41.self_attention.dense.weight": "model-00016-of-00024.safetensors",
228
+ "transformer.h.41.self_attention.query_key_value.weight": "model-00016-of-00024.safetensors",
229
+ "transformer.h.42.input_layernorm.bias": "model-00017-of-00024.safetensors",
230
+ "transformer.h.42.input_layernorm.weight": "model-00017-of-00024.safetensors",
231
+ "transformer.h.42.mlp.dense_4h_to_h.weight": "model-00017-of-00024.safetensors",
232
+ "transformer.h.42.mlp.dense_h_to_4h.weight": "model-00017-of-00024.safetensors",
233
+ "transformer.h.42.self_attention.dense.weight": "model-00017-of-00024.safetensors",
234
+ "transformer.h.42.self_attention.query_key_value.weight": "model-00017-of-00024.safetensors",
235
+ "transformer.h.43.input_layernorm.bias": "model-00017-of-00024.safetensors",
236
+ "transformer.h.43.input_layernorm.weight": "model-00017-of-00024.safetensors",
237
+ "transformer.h.43.mlp.dense_4h_to_h.weight": "model-00017-of-00024.safetensors",
238
+ "transformer.h.43.mlp.dense_h_to_4h.weight": "model-00017-of-00024.safetensors",
239
+ "transformer.h.43.self_attention.dense.weight": "model-00017-of-00024.safetensors",
240
+ "transformer.h.43.self_attention.query_key_value.weight": "model-00017-of-00024.safetensors",
241
+ "transformer.h.44.input_layernorm.bias": "model-00018-of-00024.safetensors",
242
+ "transformer.h.44.input_layernorm.weight": "model-00018-of-00024.safetensors",
243
+ "transformer.h.44.mlp.dense_4h_to_h.weight": "model-00018-of-00024.safetensors",
244
+ "transformer.h.44.mlp.dense_h_to_4h.weight": "model-00018-of-00024.safetensors",
245
+ "transformer.h.44.self_attention.dense.weight": "model-00018-of-00024.safetensors",
246
+ "transformer.h.44.self_attention.query_key_value.weight": "model-00018-of-00024.safetensors",
247
+ "transformer.h.45.input_layernorm.bias": "model-00018-of-00024.safetensors",
248
+ "transformer.h.45.input_layernorm.weight": "model-00018-of-00024.safetensors",
249
+ "transformer.h.45.mlp.dense_4h_to_h.weight": "model-00018-of-00024.safetensors",
250
+ "transformer.h.45.mlp.dense_h_to_4h.weight": "model-00018-of-00024.safetensors",
251
+ "transformer.h.45.self_attention.dense.weight": "model-00018-of-00024.safetensors",
252
+ "transformer.h.45.self_attention.query_key_value.weight": "model-00018-of-00024.safetensors",
253
+ "transformer.h.46.input_layernorm.bias": "model-00019-of-00024.safetensors",
254
+ "transformer.h.46.input_layernorm.weight": "model-00019-of-00024.safetensors",
255
+ "transformer.h.46.mlp.dense_4h_to_h.weight": "model-00019-of-00024.safetensors",
256
+ "transformer.h.46.mlp.dense_h_to_4h.weight": "model-00018-of-00024.safetensors",
257
+ "transformer.h.46.self_attention.dense.weight": "model-00018-of-00024.safetensors",
258
+ "transformer.h.46.self_attention.query_key_value.weight": "model-00018-of-00024.safetensors",
259
+ "transformer.h.47.input_layernorm.bias": "model-00019-of-00024.safetensors",
260
+ "transformer.h.47.input_layernorm.weight": "model-00019-of-00024.safetensors",
261
+ "transformer.h.47.mlp.dense_4h_to_h.weight": "model-00019-of-00024.safetensors",
262
+ "transformer.h.47.mlp.dense_h_to_4h.weight": "model-00019-of-00024.safetensors",
263
+ "transformer.h.47.self_attention.dense.weight": "model-00019-of-00024.safetensors",
264
+ "transformer.h.47.self_attention.query_key_value.weight": "model-00019-of-00024.safetensors",
265
+ "transformer.h.48.input_layernorm.bias": "model-00019-of-00024.safetensors",
266
+ "transformer.h.48.input_layernorm.weight": "model-00019-of-00024.safetensors",
267
+ "transformer.h.48.mlp.dense_4h_to_h.weight": "model-00019-of-00024.safetensors",
268
+ "transformer.h.48.mlp.dense_h_to_4h.weight": "model-00019-of-00024.safetensors",
269
+ "transformer.h.48.self_attention.dense.weight": "model-00019-of-00024.safetensors",
270
+ "transformer.h.48.self_attention.query_key_value.weight": "model-00019-of-00024.safetensors",
271
+ "transformer.h.49.input_layernorm.bias": "model-00020-of-00024.safetensors",
272
+ "transformer.h.49.input_layernorm.weight": "model-00020-of-00024.safetensors",
273
+ "transformer.h.49.mlp.dense_4h_to_h.weight": "model-00020-of-00024.safetensors",
274
+ "transformer.h.49.mlp.dense_h_to_4h.weight": "model-00020-of-00024.safetensors",
275
+ "transformer.h.49.self_attention.dense.weight": "model-00019-of-00024.safetensors",
276
+ "transformer.h.49.self_attention.query_key_value.weight": "model-00019-of-00024.safetensors",
277
+ "transformer.h.5.input_layernorm.bias": "model-00003-of-00024.safetensors",
278
+ "transformer.h.5.input_layernorm.weight": "model-00003-of-00024.safetensors",
279
+ "transformer.h.5.mlp.dense_4h_to_h.weight": "model-00003-of-00024.safetensors",
280
+ "transformer.h.5.mlp.dense_h_to_4h.weight": "model-00003-of-00024.safetensors",
281
+ "transformer.h.5.self_attention.dense.weight": "model-00003-of-00024.safetensors",
282
+ "transformer.h.5.self_attention.query_key_value.weight": "model-00003-of-00024.safetensors",
283
+ "transformer.h.50.input_layernorm.bias": "model-00020-of-00024.safetensors",
284
+ "transformer.h.50.input_layernorm.weight": "model-00020-of-00024.safetensors",
285
+ "transformer.h.50.mlp.dense_4h_to_h.weight": "model-00020-of-00024.safetensors",
286
+ "transformer.h.50.mlp.dense_h_to_4h.weight": "model-00020-of-00024.safetensors",
287
+ "transformer.h.50.self_attention.dense.weight": "model-00020-of-00024.safetensors",
288
+ "transformer.h.50.self_attention.query_key_value.weight": "model-00020-of-00024.safetensors",
289
+ "transformer.h.51.input_layernorm.bias": "model-00020-of-00024.safetensors",
290
+ "transformer.h.51.input_layernorm.weight": "model-00020-of-00024.safetensors",
291
+ "transformer.h.51.mlp.dense_4h_to_h.weight": "model-00020-of-00024.safetensors",
292
+ "transformer.h.51.mlp.dense_h_to_4h.weight": "model-00020-of-00024.safetensors",
293
+ "transformer.h.51.self_attention.dense.weight": "model-00020-of-00024.safetensors",
294
+ "transformer.h.51.self_attention.query_key_value.weight": "model-00020-of-00024.safetensors",
295
+ "transformer.h.52.input_layernorm.bias": "model-00021-of-00024.safetensors",
296
+ "transformer.h.52.input_layernorm.weight": "model-00021-of-00024.safetensors",
297
+ "transformer.h.52.mlp.dense_4h_to_h.weight": "model-00021-of-00024.safetensors",
298
+ "transformer.h.52.mlp.dense_h_to_4h.weight": "model-00021-of-00024.safetensors",
299
+ "transformer.h.52.self_attention.dense.weight": "model-00021-of-00024.safetensors",
300
+ "transformer.h.52.self_attention.query_key_value.weight": "model-00021-of-00024.safetensors",
301
+ "transformer.h.53.input_layernorm.bias": "model-00021-of-00024.safetensors",
302
+ "transformer.h.53.input_layernorm.weight": "model-00021-of-00024.safetensors",
303
+ "transformer.h.53.mlp.dense_4h_to_h.weight": "model-00021-of-00024.safetensors",
304
+ "transformer.h.53.mlp.dense_h_to_4h.weight": "model-00021-of-00024.safetensors",
305
+ "transformer.h.53.self_attention.dense.weight": "model-00021-of-00024.safetensors",
306
+ "transformer.h.53.self_attention.query_key_value.weight": "model-00021-of-00024.safetensors",
307
+ "transformer.h.54.input_layernorm.bias": "model-00022-of-00024.safetensors",
308
+ "transformer.h.54.input_layernorm.weight": "model-00022-of-00024.safetensors",
309
+ "transformer.h.54.mlp.dense_4h_to_h.weight": "model-00022-of-00024.safetensors",
310
+ "transformer.h.54.mlp.dense_h_to_4h.weight": "model-00021-of-00024.safetensors",
311
+ "transformer.h.54.self_attention.dense.weight": "model-00021-of-00024.safetensors",
312
+ "transformer.h.54.self_attention.query_key_value.weight": "model-00021-of-00024.safetensors",
313
+ "transformer.h.55.input_layernorm.bias": "model-00022-of-00024.safetensors",
314
+ "transformer.h.55.input_layernorm.weight": "model-00022-of-00024.safetensors",
315
+ "transformer.h.55.mlp.dense_4h_to_h.weight": "model-00022-of-00024.safetensors",
316
+ "transformer.h.55.mlp.dense_h_to_4h.weight": "model-00022-of-00024.safetensors",
317
+ "transformer.h.55.self_attention.dense.weight": "model-00022-of-00024.safetensors",
318
+ "transformer.h.55.self_attention.query_key_value.weight": "model-00022-of-00024.safetensors",
319
+ "transformer.h.56.input_layernorm.bias": "model-00022-of-00024.safetensors",
320
+ "transformer.h.56.input_layernorm.weight": "model-00022-of-00024.safetensors",
321
+ "transformer.h.56.mlp.dense_4h_to_h.weight": "model-00022-of-00024.safetensors",
322
+ "transformer.h.56.mlp.dense_h_to_4h.weight": "model-00022-of-00024.safetensors",
323
+ "transformer.h.56.self_attention.dense.weight": "model-00022-of-00024.safetensors",
324
+ "transformer.h.56.self_attention.query_key_value.weight": "model-00022-of-00024.safetensors",
325
+ "transformer.h.57.input_layernorm.bias": "model-00023-of-00024.safetensors",
326
+ "transformer.h.57.input_layernorm.weight": "model-00023-of-00024.safetensors",
327
+ "transformer.h.57.mlp.dense_4h_to_h.weight": "model-00023-of-00024.safetensors",
328
+ "transformer.h.57.mlp.dense_h_to_4h.weight": "model-00023-of-00024.safetensors",
329
+ "transformer.h.57.self_attention.dense.weight": "model-00022-of-00024.safetensors",
330
+ "transformer.h.57.self_attention.query_key_value.weight": "model-00022-of-00024.safetensors",
331
+ "transformer.h.58.input_layernorm.bias": "model-00023-of-00024.safetensors",
332
+ "transformer.h.58.input_layernorm.weight": "model-00023-of-00024.safetensors",
333
+ "transformer.h.58.mlp.dense_4h_to_h.weight": "model-00023-of-00024.safetensors",
334
+ "transformer.h.58.mlp.dense_h_to_4h.weight": "model-00023-of-00024.safetensors",
335
+ "transformer.h.58.self_attention.dense.weight": "model-00023-of-00024.safetensors",
336
+ "transformer.h.58.self_attention.query_key_value.weight": "model-00023-of-00024.safetensors",
337
+ "transformer.h.59.input_layernorm.bias": "model-00023-of-00024.safetensors",
338
+ "transformer.h.59.input_layernorm.weight": "model-00023-of-00024.safetensors",
339
+ "transformer.h.59.mlp.dense_4h_to_h.weight": "model-00023-of-00024.safetensors",
340
+ "transformer.h.59.mlp.dense_h_to_4h.weight": "model-00023-of-00024.safetensors",
341
+ "transformer.h.59.self_attention.dense.weight": "model-00023-of-00024.safetensors",
342
+ "transformer.h.59.self_attention.query_key_value.weight": "model-00023-of-00024.safetensors",
343
+ "transformer.h.6.input_layernorm.bias": "model-00004-of-00024.safetensors",
344
+ "transformer.h.6.input_layernorm.weight": "model-00004-of-00024.safetensors",
345
+ "transformer.h.6.mlp.dense_4h_to_h.weight": "model-00004-of-00024.safetensors",
346
+ "transformer.h.6.mlp.dense_h_to_4h.weight": "model-00003-of-00024.safetensors",
347
+ "transformer.h.6.self_attention.dense.weight": "model-00003-of-00024.safetensors",
348
+ "transformer.h.6.self_attention.query_key_value.weight": "model-00003-of-00024.safetensors",
349
+ "transformer.h.7.input_layernorm.bias": "model-00004-of-00024.safetensors",
350
+ "transformer.h.7.input_layernorm.weight": "model-00004-of-00024.safetensors",
351
+ "transformer.h.7.mlp.dense_4h_to_h.weight": "model-00004-of-00024.safetensors",
352
+ "transformer.h.7.mlp.dense_h_to_4h.weight": "model-00004-of-00024.safetensors",
353
+ "transformer.h.7.self_attention.dense.weight": "model-00004-of-00024.safetensors",
354
+ "transformer.h.7.self_attention.query_key_value.weight": "model-00004-of-00024.safetensors",
355
+ "transformer.h.8.input_layernorm.bias": "model-00004-of-00024.safetensors",
356
+ "transformer.h.8.input_layernorm.weight": "model-00004-of-00024.safetensors",
357
+ "transformer.h.8.mlp.dense_4h_to_h.weight": "model-00004-of-00024.safetensors",
358
+ "transformer.h.8.mlp.dense_h_to_4h.weight": "model-00004-of-00024.safetensors",
359
+ "transformer.h.8.self_attention.dense.weight": "model-00004-of-00024.safetensors",
360
+ "transformer.h.8.self_attention.query_key_value.weight": "model-00004-of-00024.safetensors",
361
+ "transformer.h.9.input_layernorm.bias": "model-00005-of-00024.safetensors",
362
+ "transformer.h.9.input_layernorm.weight": "model-00005-of-00024.safetensors",
363
+ "transformer.h.9.mlp.dense_4h_to_h.weight": "model-00005-of-00024.safetensors",
364
+ "transformer.h.9.mlp.dense_h_to_4h.weight": "model-00005-of-00024.safetensors",
365
+ "transformer.h.9.self_attention.dense.weight": "model-00004-of-00024.safetensors",
366
+ "transformer.h.9.self_attention.query_key_value.weight": "model-00004-of-00024.safetensors",
367
+ "transformer.ln_f.bias": "model-00023-of-00024.safetensors",
368
+ "transformer.ln_f.weight": "model-00023-of-00024.safetensors",
369
+ "transformer.word_embeddings.weight": "model-00001-of-00024.safetensors"
370
+ }
371
+ }