Upload 8 files
Browse files- .mdl +0 -0
- .msc +0 -0
- .mv +1 -0
- config.json +42 -0
- configuration.json +1 -0
- configuration_falcon.py +192 -0
- generation_config.json +6 -0
- model.safetensors.index.json +371 -0
.mdl
ADDED
Binary file (54 Bytes). View file
|
|
.msc
ADDED
Binary file (2.76 kB). View file
|
|
.mv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Revision:master,CreatedAt:1724055407
|
config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/workspace/mode/xiaorui3/falcon11B_PFAI_57w",
|
3 |
+
"activation": "gelu",
|
4 |
+
"alibi": false,
|
5 |
+
"architectures": [
|
6 |
+
"FalconForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_falcon.FalconConfig",
|
11 |
+
"AutoModel": "modeling_falcon.FalconForCausalLM",
|
12 |
+
"AutoModelForCausalLM": "modeling_falcon.FalconForCausalLM",
|
13 |
+
"AutoModelForQuestionAnswering": "modeling_falcon.FalconForQuestionAnswering",
|
14 |
+
"AutoModelForSequenceClassification": "modeling_falcon.FalconForSequenceClassification",
|
15 |
+
"AutoModelForTokenClassification": "modeling_falcon.FalconForTokenClassification"
|
16 |
+
},
|
17 |
+
"bias": false,
|
18 |
+
"bos_token_id": 11,
|
19 |
+
"eos_token_id": 11,
|
20 |
+
"ff_factor": 4,
|
21 |
+
"ffn_hidden_size": 16384,
|
22 |
+
"hidden_dropout": 0.0,
|
23 |
+
"hidden_size": 4096,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"layer_norm_epsilon": 1e-05,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "falcon",
|
28 |
+
"multi_query": true,
|
29 |
+
"new_decoder_architecture": true,
|
30 |
+
"num_attention_heads": 32,
|
31 |
+
"num_hidden_layers": 60,
|
32 |
+
"num_kv_heads": 8,
|
33 |
+
"num_ln_in_parallel_attn": 1,
|
34 |
+
"parallel_attn": true,
|
35 |
+
"rope_scaling": null,
|
36 |
+
"rope_theta": 500042.0,
|
37 |
+
"tie_word_embeddings": false,
|
38 |
+
"torch_dtype": "bfloat16",
|
39 |
+
"transformers_version": "4.43.4",
|
40 |
+
"use_cache": true,
|
41 |
+
"vocab_size": 65024
|
42 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"text-generation"}
|
configuration_falcon.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Falcon configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
24 |
+
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class FalconConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the
|
33 |
+
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 65024):
|
41 |
+
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`FalconModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4544):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer decoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 71):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
50 |
+
The epsilon used by the layer normalization layers.
|
51 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
52 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
55 |
+
`config.is_decoder=True`.
|
56 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for MLP layers.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout probability for attention layers.
|
60 |
+
num_kv_heads (`int`, *optional*):
|
61 |
+
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
62 |
+
`num_attention_heads`.
|
63 |
+
alibi (`bool`, *optional*, defaults to `False`):
|
64 |
+
Whether to use ALiBi positional biases during self-attention.
|
65 |
+
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
67 |
+
arguments are ignored, as the new decoder always uses parallel attention.
|
68 |
+
multi_query (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
70 |
+
parallel_attn (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
72 |
+
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
73 |
+
bias (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use bias on Linear layers.
|
75 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
76 |
+
The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
|
77 |
+
Falcon models with RoPE support up to 2048 tokens.
|
78 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
79 |
+
The base period of the RoPE embeddings.
|
80 |
+
rope_scaling (`Dict`, *optional*):
|
81 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
82 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
83 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
84 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
85 |
+
these scaling strategies behave:
|
86 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
87 |
+
experimental feature, subject to breaking API changes in future versions.
|
88 |
+
bos_token_id (`int`, *optional*, defaults to 11):
|
89 |
+
The id of the "beginning-of-sequence" token.
|
90 |
+
eos_token_id (`int`, *optional*, defaults to 11):
|
91 |
+
The id of the "end-of-sequence" token.
|
92 |
+
|
93 |
+
Example:
|
94 |
+
|
95 |
+
```python
|
96 |
+
>>> from transformers import FalconModel, FalconConfig
|
97 |
+
|
98 |
+
>>> # Initializing a small (2-layer) Falcon configuration
|
99 |
+
>>> configuration = FalconConfig(num_hidden_layers=2)
|
100 |
+
|
101 |
+
>>> # Initializing a model from the small configuration
|
102 |
+
>>> model = FalconModel(configuration)
|
103 |
+
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "falcon"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=65024,
|
114 |
+
hidden_size=4544,
|
115 |
+
num_hidden_layers=32,
|
116 |
+
num_attention_heads=71,
|
117 |
+
layer_norm_epsilon=1e-5,
|
118 |
+
initializer_range=0.02,
|
119 |
+
use_cache=True,
|
120 |
+
hidden_dropout=0.0,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
num_kv_heads=None,
|
123 |
+
alibi=False,
|
124 |
+
new_decoder_architecture=False,
|
125 |
+
multi_query=True,
|
126 |
+
parallel_attn=True,
|
127 |
+
bias=False,
|
128 |
+
max_position_embeddings=8192,
|
129 |
+
rope_theta=10000.0,
|
130 |
+
rope_scaling=None,
|
131 |
+
bos_token_id=11,
|
132 |
+
eos_token_id=11,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
# Backward compatibility with n_embed kwarg
|
137 |
+
n_embed = kwargs.pop("n_embed", None)
|
138 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
139 |
+
self.num_hidden_layers = num_hidden_layers
|
140 |
+
self.num_attention_heads = num_attention_heads
|
141 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
142 |
+
self.initializer_range = initializer_range
|
143 |
+
self.use_cache = use_cache
|
144 |
+
self.hidden_dropout = hidden_dropout
|
145 |
+
self.attention_dropout = attention_dropout
|
146 |
+
|
147 |
+
self.bos_token_id = bos_token_id
|
148 |
+
self.eos_token_id = eos_token_id
|
149 |
+
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
150 |
+
self.alibi = alibi
|
151 |
+
self.new_decoder_architecture = new_decoder_architecture
|
152 |
+
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
153 |
+
self.parallel_attn = parallel_attn
|
154 |
+
self.bias = bias
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.rope_theta = rope_theta
|
157 |
+
self.rope_scaling = rope_scaling
|
158 |
+
self._rope_scaling_validation()
|
159 |
+
|
160 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
161 |
+
|
162 |
+
@property
|
163 |
+
def head_dim(self):
|
164 |
+
return self.hidden_size // self.num_attention_heads
|
165 |
+
|
166 |
+
@property
|
167 |
+
def rotary(self):
|
168 |
+
return not self.alibi
|
169 |
+
|
170 |
+
def _rope_scaling_validation(self):
|
171 |
+
"""
|
172 |
+
Validate the `rope_scaling` configuration.
|
173 |
+
"""
|
174 |
+
if self.rope_scaling is None:
|
175 |
+
return
|
176 |
+
|
177 |
+
if self.alibi:
|
178 |
+
raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.")
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
181 |
+
raise ValueError(
|
182 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
183 |
+
f"got {self.rope_scaling}"
|
184 |
+
)
|
185 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
186 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
187 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
188 |
+
raise ValueError(
|
189 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
190 |
+
)
|
191 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
192 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 11,
|
4 |
+
"eos_token_id": 11,
|
5 |
+
"transformers_version": "4.43.4"
|
6 |
+
}
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 22205644800
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00024-of-00024.safetensors",
|
7 |
+
"transformer.h.0.input_layernorm.bias": "model-00001-of-00024.safetensors",
|
8 |
+
"transformer.h.0.input_layernorm.weight": "model-00001-of-00024.safetensors",
|
9 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00024.safetensors",
|
10 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00024.safetensors",
|
11 |
+
"transformer.h.0.self_attention.dense.weight": "model-00001-of-00024.safetensors",
|
12 |
+
"transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00024.safetensors",
|
13 |
+
"transformer.h.1.input_layernorm.bias": "model-00002-of-00024.safetensors",
|
14 |
+
"transformer.h.1.input_layernorm.weight": "model-00002-of-00024.safetensors",
|
15 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "model-00002-of-00024.safetensors",
|
16 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "model-00002-of-00024.safetensors",
|
17 |
+
"transformer.h.1.self_attention.dense.weight": "model-00001-of-00024.safetensors",
|
18 |
+
"transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00024.safetensors",
|
19 |
+
"transformer.h.10.input_layernorm.bias": "model-00005-of-00024.safetensors",
|
20 |
+
"transformer.h.10.input_layernorm.weight": "model-00005-of-00024.safetensors",
|
21 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "model-00005-of-00024.safetensors",
|
22 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "model-00005-of-00024.safetensors",
|
23 |
+
"transformer.h.10.self_attention.dense.weight": "model-00005-of-00024.safetensors",
|
24 |
+
"transformer.h.10.self_attention.query_key_value.weight": "model-00005-of-00024.safetensors",
|
25 |
+
"transformer.h.11.input_layernorm.bias": "model-00005-of-00024.safetensors",
|
26 |
+
"transformer.h.11.input_layernorm.weight": "model-00005-of-00024.safetensors",
|
27 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "model-00005-of-00024.safetensors",
|
28 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "model-00005-of-00024.safetensors",
|
29 |
+
"transformer.h.11.self_attention.dense.weight": "model-00005-of-00024.safetensors",
|
30 |
+
"transformer.h.11.self_attention.query_key_value.weight": "model-00005-of-00024.safetensors",
|
31 |
+
"transformer.h.12.input_layernorm.bias": "model-00006-of-00024.safetensors",
|
32 |
+
"transformer.h.12.input_layernorm.weight": "model-00006-of-00024.safetensors",
|
33 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "model-00006-of-00024.safetensors",
|
34 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "model-00006-of-00024.safetensors",
|
35 |
+
"transformer.h.12.self_attention.dense.weight": "model-00006-of-00024.safetensors",
|
36 |
+
"transformer.h.12.self_attention.query_key_value.weight": "model-00006-of-00024.safetensors",
|
37 |
+
"transformer.h.13.input_layernorm.bias": "model-00006-of-00024.safetensors",
|
38 |
+
"transformer.h.13.input_layernorm.weight": "model-00006-of-00024.safetensors",
|
39 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "model-00006-of-00024.safetensors",
|
40 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "model-00006-of-00024.safetensors",
|
41 |
+
"transformer.h.13.self_attention.dense.weight": "model-00006-of-00024.safetensors",
|
42 |
+
"transformer.h.13.self_attention.query_key_value.weight": "model-00006-of-00024.safetensors",
|
43 |
+
"transformer.h.14.input_layernorm.bias": "model-00007-of-00024.safetensors",
|
44 |
+
"transformer.h.14.input_layernorm.weight": "model-00007-of-00024.safetensors",
|
45 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "model-00007-of-00024.safetensors",
|
46 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "model-00006-of-00024.safetensors",
|
47 |
+
"transformer.h.14.self_attention.dense.weight": "model-00006-of-00024.safetensors",
|
48 |
+
"transformer.h.14.self_attention.query_key_value.weight": "model-00006-of-00024.safetensors",
|
49 |
+
"transformer.h.15.input_layernorm.bias": "model-00007-of-00024.safetensors",
|
50 |
+
"transformer.h.15.input_layernorm.weight": "model-00007-of-00024.safetensors",
|
51 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "model-00007-of-00024.safetensors",
|
52 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "model-00007-of-00024.safetensors",
|
53 |
+
"transformer.h.15.self_attention.dense.weight": "model-00007-of-00024.safetensors",
|
54 |
+
"transformer.h.15.self_attention.query_key_value.weight": "model-00007-of-00024.safetensors",
|
55 |
+
"transformer.h.16.input_layernorm.bias": "model-00007-of-00024.safetensors",
|
56 |
+
"transformer.h.16.input_layernorm.weight": "model-00007-of-00024.safetensors",
|
57 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "model-00007-of-00024.safetensors",
|
58 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "model-00007-of-00024.safetensors",
|
59 |
+
"transformer.h.16.self_attention.dense.weight": "model-00007-of-00024.safetensors",
|
60 |
+
"transformer.h.16.self_attention.query_key_value.weight": "model-00007-of-00024.safetensors",
|
61 |
+
"transformer.h.17.input_layernorm.bias": "model-00008-of-00024.safetensors",
|
62 |
+
"transformer.h.17.input_layernorm.weight": "model-00008-of-00024.safetensors",
|
63 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "model-00008-of-00024.safetensors",
|
64 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "model-00008-of-00024.safetensors",
|
65 |
+
"transformer.h.17.self_attention.dense.weight": "model-00007-of-00024.safetensors",
|
66 |
+
"transformer.h.17.self_attention.query_key_value.weight": "model-00007-of-00024.safetensors",
|
67 |
+
"transformer.h.18.input_layernorm.bias": "model-00008-of-00024.safetensors",
|
68 |
+
"transformer.h.18.input_layernorm.weight": "model-00008-of-00024.safetensors",
|
69 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "model-00008-of-00024.safetensors",
|
70 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "model-00008-of-00024.safetensors",
|
71 |
+
"transformer.h.18.self_attention.dense.weight": "model-00008-of-00024.safetensors",
|
72 |
+
"transformer.h.18.self_attention.query_key_value.weight": "model-00008-of-00024.safetensors",
|
73 |
+
"transformer.h.19.input_layernorm.bias": "model-00008-of-00024.safetensors",
|
74 |
+
"transformer.h.19.input_layernorm.weight": "model-00008-of-00024.safetensors",
|
75 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "model-00008-of-00024.safetensors",
|
76 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "model-00008-of-00024.safetensors",
|
77 |
+
"transformer.h.19.self_attention.dense.weight": "model-00008-of-00024.safetensors",
|
78 |
+
"transformer.h.19.self_attention.query_key_value.weight": "model-00008-of-00024.safetensors",
|
79 |
+
"transformer.h.2.input_layernorm.bias": "model-00002-of-00024.safetensors",
|
80 |
+
"transformer.h.2.input_layernorm.weight": "model-00002-of-00024.safetensors",
|
81 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "model-00002-of-00024.safetensors",
|
82 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "model-00002-of-00024.safetensors",
|
83 |
+
"transformer.h.2.self_attention.dense.weight": "model-00002-of-00024.safetensors",
|
84 |
+
"transformer.h.2.self_attention.query_key_value.weight": "model-00002-of-00024.safetensors",
|
85 |
+
"transformer.h.20.input_layernorm.bias": "model-00009-of-00024.safetensors",
|
86 |
+
"transformer.h.20.input_layernorm.weight": "model-00009-of-00024.safetensors",
|
87 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "model-00009-of-00024.safetensors",
|
88 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "model-00009-of-00024.safetensors",
|
89 |
+
"transformer.h.20.self_attention.dense.weight": "model-00009-of-00024.safetensors",
|
90 |
+
"transformer.h.20.self_attention.query_key_value.weight": "model-00009-of-00024.safetensors",
|
91 |
+
"transformer.h.21.input_layernorm.bias": "model-00009-of-00024.safetensors",
|
92 |
+
"transformer.h.21.input_layernorm.weight": "model-00009-of-00024.safetensors",
|
93 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "model-00009-of-00024.safetensors",
|
94 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "model-00009-of-00024.safetensors",
|
95 |
+
"transformer.h.21.self_attention.dense.weight": "model-00009-of-00024.safetensors",
|
96 |
+
"transformer.h.21.self_attention.query_key_value.weight": "model-00009-of-00024.safetensors",
|
97 |
+
"transformer.h.22.input_layernorm.bias": "model-00010-of-00024.safetensors",
|
98 |
+
"transformer.h.22.input_layernorm.weight": "model-00010-of-00024.safetensors",
|
99 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "model-00010-of-00024.safetensors",
|
100 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "model-00009-of-00024.safetensors",
|
101 |
+
"transformer.h.22.self_attention.dense.weight": "model-00009-of-00024.safetensors",
|
102 |
+
"transformer.h.22.self_attention.query_key_value.weight": "model-00009-of-00024.safetensors",
|
103 |
+
"transformer.h.23.input_layernorm.bias": "model-00010-of-00024.safetensors",
|
104 |
+
"transformer.h.23.input_layernorm.weight": "model-00010-of-00024.safetensors",
|
105 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "model-00010-of-00024.safetensors",
|
106 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "model-00010-of-00024.safetensors",
|
107 |
+
"transformer.h.23.self_attention.dense.weight": "model-00010-of-00024.safetensors",
|
108 |
+
"transformer.h.23.self_attention.query_key_value.weight": "model-00010-of-00024.safetensors",
|
109 |
+
"transformer.h.24.input_layernorm.bias": "model-00010-of-00024.safetensors",
|
110 |
+
"transformer.h.24.input_layernorm.weight": "model-00010-of-00024.safetensors",
|
111 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "model-00010-of-00024.safetensors",
|
112 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "model-00010-of-00024.safetensors",
|
113 |
+
"transformer.h.24.self_attention.dense.weight": "model-00010-of-00024.safetensors",
|
114 |
+
"transformer.h.24.self_attention.query_key_value.weight": "model-00010-of-00024.safetensors",
|
115 |
+
"transformer.h.25.input_layernorm.bias": "model-00011-of-00024.safetensors",
|
116 |
+
"transformer.h.25.input_layernorm.weight": "model-00011-of-00024.safetensors",
|
117 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "model-00011-of-00024.safetensors",
|
118 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "model-00011-of-00024.safetensors",
|
119 |
+
"transformer.h.25.self_attention.dense.weight": "model-00010-of-00024.safetensors",
|
120 |
+
"transformer.h.25.self_attention.query_key_value.weight": "model-00010-of-00024.safetensors",
|
121 |
+
"transformer.h.26.input_layernorm.bias": "model-00011-of-00024.safetensors",
|
122 |
+
"transformer.h.26.input_layernorm.weight": "model-00011-of-00024.safetensors",
|
123 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "model-00011-of-00024.safetensors",
|
124 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "model-00011-of-00024.safetensors",
|
125 |
+
"transformer.h.26.self_attention.dense.weight": "model-00011-of-00024.safetensors",
|
126 |
+
"transformer.h.26.self_attention.query_key_value.weight": "model-00011-of-00024.safetensors",
|
127 |
+
"transformer.h.27.input_layernorm.bias": "model-00011-of-00024.safetensors",
|
128 |
+
"transformer.h.27.input_layernorm.weight": "model-00011-of-00024.safetensors",
|
129 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "model-00011-of-00024.safetensors",
|
130 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "model-00011-of-00024.safetensors",
|
131 |
+
"transformer.h.27.self_attention.dense.weight": "model-00011-of-00024.safetensors",
|
132 |
+
"transformer.h.27.self_attention.query_key_value.weight": "model-00011-of-00024.safetensors",
|
133 |
+
"transformer.h.28.input_layernorm.bias": "model-00012-of-00024.safetensors",
|
134 |
+
"transformer.h.28.input_layernorm.weight": "model-00012-of-00024.safetensors",
|
135 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "model-00012-of-00024.safetensors",
|
136 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "model-00012-of-00024.safetensors",
|
137 |
+
"transformer.h.28.self_attention.dense.weight": "model-00012-of-00024.safetensors",
|
138 |
+
"transformer.h.28.self_attention.query_key_value.weight": "model-00012-of-00024.safetensors",
|
139 |
+
"transformer.h.29.input_layernorm.bias": "model-00012-of-00024.safetensors",
|
140 |
+
"transformer.h.29.input_layernorm.weight": "model-00012-of-00024.safetensors",
|
141 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "model-00012-of-00024.safetensors",
|
142 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "model-00012-of-00024.safetensors",
|
143 |
+
"transformer.h.29.self_attention.dense.weight": "model-00012-of-00024.safetensors",
|
144 |
+
"transformer.h.29.self_attention.query_key_value.weight": "model-00012-of-00024.safetensors",
|
145 |
+
"transformer.h.3.input_layernorm.bias": "model-00002-of-00024.safetensors",
|
146 |
+
"transformer.h.3.input_layernorm.weight": "model-00002-of-00024.safetensors",
|
147 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "model-00002-of-00024.safetensors",
|
148 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "model-00002-of-00024.safetensors",
|
149 |
+
"transformer.h.3.self_attention.dense.weight": "model-00002-of-00024.safetensors",
|
150 |
+
"transformer.h.3.self_attention.query_key_value.weight": "model-00002-of-00024.safetensors",
|
151 |
+
"transformer.h.30.input_layernorm.bias": "model-00013-of-00024.safetensors",
|
152 |
+
"transformer.h.30.input_layernorm.weight": "model-00013-of-00024.safetensors",
|
153 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "model-00013-of-00024.safetensors",
|
154 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "model-00012-of-00024.safetensors",
|
155 |
+
"transformer.h.30.self_attention.dense.weight": "model-00012-of-00024.safetensors",
|
156 |
+
"transformer.h.30.self_attention.query_key_value.weight": "model-00012-of-00024.safetensors",
|
157 |
+
"transformer.h.31.input_layernorm.bias": "model-00013-of-00024.safetensors",
|
158 |
+
"transformer.h.31.input_layernorm.weight": "model-00013-of-00024.safetensors",
|
159 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "model-00013-of-00024.safetensors",
|
160 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "model-00013-of-00024.safetensors",
|
161 |
+
"transformer.h.31.self_attention.dense.weight": "model-00013-of-00024.safetensors",
|
162 |
+
"transformer.h.31.self_attention.query_key_value.weight": "model-00013-of-00024.safetensors",
|
163 |
+
"transformer.h.32.input_layernorm.bias": "model-00013-of-00024.safetensors",
|
164 |
+
"transformer.h.32.input_layernorm.weight": "model-00013-of-00024.safetensors",
|
165 |
+
"transformer.h.32.mlp.dense_4h_to_h.weight": "model-00013-of-00024.safetensors",
|
166 |
+
"transformer.h.32.mlp.dense_h_to_4h.weight": "model-00013-of-00024.safetensors",
|
167 |
+
"transformer.h.32.self_attention.dense.weight": "model-00013-of-00024.safetensors",
|
168 |
+
"transformer.h.32.self_attention.query_key_value.weight": "model-00013-of-00024.safetensors",
|
169 |
+
"transformer.h.33.input_layernorm.bias": "model-00014-of-00024.safetensors",
|
170 |
+
"transformer.h.33.input_layernorm.weight": "model-00014-of-00024.safetensors",
|
171 |
+
"transformer.h.33.mlp.dense_4h_to_h.weight": "model-00014-of-00024.safetensors",
|
172 |
+
"transformer.h.33.mlp.dense_h_to_4h.weight": "model-00014-of-00024.safetensors",
|
173 |
+
"transformer.h.33.self_attention.dense.weight": "model-00013-of-00024.safetensors",
|
174 |
+
"transformer.h.33.self_attention.query_key_value.weight": "model-00013-of-00024.safetensors",
|
175 |
+
"transformer.h.34.input_layernorm.bias": "model-00014-of-00024.safetensors",
|
176 |
+
"transformer.h.34.input_layernorm.weight": "model-00014-of-00024.safetensors",
|
177 |
+
"transformer.h.34.mlp.dense_4h_to_h.weight": "model-00014-of-00024.safetensors",
|
178 |
+
"transformer.h.34.mlp.dense_h_to_4h.weight": "model-00014-of-00024.safetensors",
|
179 |
+
"transformer.h.34.self_attention.dense.weight": "model-00014-of-00024.safetensors",
|
180 |
+
"transformer.h.34.self_attention.query_key_value.weight": "model-00014-of-00024.safetensors",
|
181 |
+
"transformer.h.35.input_layernorm.bias": "model-00014-of-00024.safetensors",
|
182 |
+
"transformer.h.35.input_layernorm.weight": "model-00014-of-00024.safetensors",
|
183 |
+
"transformer.h.35.mlp.dense_4h_to_h.weight": "model-00014-of-00024.safetensors",
|
184 |
+
"transformer.h.35.mlp.dense_h_to_4h.weight": "model-00014-of-00024.safetensors",
|
185 |
+
"transformer.h.35.self_attention.dense.weight": "model-00014-of-00024.safetensors",
|
186 |
+
"transformer.h.35.self_attention.query_key_value.weight": "model-00014-of-00024.safetensors",
|
187 |
+
"transformer.h.36.input_layernorm.bias": "model-00015-of-00024.safetensors",
|
188 |
+
"transformer.h.36.input_layernorm.weight": "model-00015-of-00024.safetensors",
|
189 |
+
"transformer.h.36.mlp.dense_4h_to_h.weight": "model-00015-of-00024.safetensors",
|
190 |
+
"transformer.h.36.mlp.dense_h_to_4h.weight": "model-00015-of-00024.safetensors",
|
191 |
+
"transformer.h.36.self_attention.dense.weight": "model-00015-of-00024.safetensors",
|
192 |
+
"transformer.h.36.self_attention.query_key_value.weight": "model-00015-of-00024.safetensors",
|
193 |
+
"transformer.h.37.input_layernorm.bias": "model-00015-of-00024.safetensors",
|
194 |
+
"transformer.h.37.input_layernorm.weight": "model-00015-of-00024.safetensors",
|
195 |
+
"transformer.h.37.mlp.dense_4h_to_h.weight": "model-00015-of-00024.safetensors",
|
196 |
+
"transformer.h.37.mlp.dense_h_to_4h.weight": "model-00015-of-00024.safetensors",
|
197 |
+
"transformer.h.37.self_attention.dense.weight": "model-00015-of-00024.safetensors",
|
198 |
+
"transformer.h.37.self_attention.query_key_value.weight": "model-00015-of-00024.safetensors",
|
199 |
+
"transformer.h.38.input_layernorm.bias": "model-00016-of-00024.safetensors",
|
200 |
+
"transformer.h.38.input_layernorm.weight": "model-00016-of-00024.safetensors",
|
201 |
+
"transformer.h.38.mlp.dense_4h_to_h.weight": "model-00016-of-00024.safetensors",
|
202 |
+
"transformer.h.38.mlp.dense_h_to_4h.weight": "model-00015-of-00024.safetensors",
|
203 |
+
"transformer.h.38.self_attention.dense.weight": "model-00015-of-00024.safetensors",
|
204 |
+
"transformer.h.38.self_attention.query_key_value.weight": "model-00015-of-00024.safetensors",
|
205 |
+
"transformer.h.39.input_layernorm.bias": "model-00016-of-00024.safetensors",
|
206 |
+
"transformer.h.39.input_layernorm.weight": "model-00016-of-00024.safetensors",
|
207 |
+
"transformer.h.39.mlp.dense_4h_to_h.weight": "model-00016-of-00024.safetensors",
|
208 |
+
"transformer.h.39.mlp.dense_h_to_4h.weight": "model-00016-of-00024.safetensors",
|
209 |
+
"transformer.h.39.self_attention.dense.weight": "model-00016-of-00024.safetensors",
|
210 |
+
"transformer.h.39.self_attention.query_key_value.weight": "model-00016-of-00024.safetensors",
|
211 |
+
"transformer.h.4.input_layernorm.bias": "model-00003-of-00024.safetensors",
|
212 |
+
"transformer.h.4.input_layernorm.weight": "model-00003-of-00024.safetensors",
|
213 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "model-00003-of-00024.safetensors",
|
214 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "model-00003-of-00024.safetensors",
|
215 |
+
"transformer.h.4.self_attention.dense.weight": "model-00003-of-00024.safetensors",
|
216 |
+
"transformer.h.4.self_attention.query_key_value.weight": "model-00003-of-00024.safetensors",
|
217 |
+
"transformer.h.40.input_layernorm.bias": "model-00016-of-00024.safetensors",
|
218 |
+
"transformer.h.40.input_layernorm.weight": "model-00016-of-00024.safetensors",
|
219 |
+
"transformer.h.40.mlp.dense_4h_to_h.weight": "model-00016-of-00024.safetensors",
|
220 |
+
"transformer.h.40.mlp.dense_h_to_4h.weight": "model-00016-of-00024.safetensors",
|
221 |
+
"transformer.h.40.self_attention.dense.weight": "model-00016-of-00024.safetensors",
|
222 |
+
"transformer.h.40.self_attention.query_key_value.weight": "model-00016-of-00024.safetensors",
|
223 |
+
"transformer.h.41.input_layernorm.bias": "model-00017-of-00024.safetensors",
|
224 |
+
"transformer.h.41.input_layernorm.weight": "model-00017-of-00024.safetensors",
|
225 |
+
"transformer.h.41.mlp.dense_4h_to_h.weight": "model-00017-of-00024.safetensors",
|
226 |
+
"transformer.h.41.mlp.dense_h_to_4h.weight": "model-00017-of-00024.safetensors",
|
227 |
+
"transformer.h.41.self_attention.dense.weight": "model-00016-of-00024.safetensors",
|
228 |
+
"transformer.h.41.self_attention.query_key_value.weight": "model-00016-of-00024.safetensors",
|
229 |
+
"transformer.h.42.input_layernorm.bias": "model-00017-of-00024.safetensors",
|
230 |
+
"transformer.h.42.input_layernorm.weight": "model-00017-of-00024.safetensors",
|
231 |
+
"transformer.h.42.mlp.dense_4h_to_h.weight": "model-00017-of-00024.safetensors",
|
232 |
+
"transformer.h.42.mlp.dense_h_to_4h.weight": "model-00017-of-00024.safetensors",
|
233 |
+
"transformer.h.42.self_attention.dense.weight": "model-00017-of-00024.safetensors",
|
234 |
+
"transformer.h.42.self_attention.query_key_value.weight": "model-00017-of-00024.safetensors",
|
235 |
+
"transformer.h.43.input_layernorm.bias": "model-00017-of-00024.safetensors",
|
236 |
+
"transformer.h.43.input_layernorm.weight": "model-00017-of-00024.safetensors",
|
237 |
+
"transformer.h.43.mlp.dense_4h_to_h.weight": "model-00017-of-00024.safetensors",
|
238 |
+
"transformer.h.43.mlp.dense_h_to_4h.weight": "model-00017-of-00024.safetensors",
|
239 |
+
"transformer.h.43.self_attention.dense.weight": "model-00017-of-00024.safetensors",
|
240 |
+
"transformer.h.43.self_attention.query_key_value.weight": "model-00017-of-00024.safetensors",
|
241 |
+
"transformer.h.44.input_layernorm.bias": "model-00018-of-00024.safetensors",
|
242 |
+
"transformer.h.44.input_layernorm.weight": "model-00018-of-00024.safetensors",
|
243 |
+
"transformer.h.44.mlp.dense_4h_to_h.weight": "model-00018-of-00024.safetensors",
|
244 |
+
"transformer.h.44.mlp.dense_h_to_4h.weight": "model-00018-of-00024.safetensors",
|
245 |
+
"transformer.h.44.self_attention.dense.weight": "model-00018-of-00024.safetensors",
|
246 |
+
"transformer.h.44.self_attention.query_key_value.weight": "model-00018-of-00024.safetensors",
|
247 |
+
"transformer.h.45.input_layernorm.bias": "model-00018-of-00024.safetensors",
|
248 |
+
"transformer.h.45.input_layernorm.weight": "model-00018-of-00024.safetensors",
|
249 |
+
"transformer.h.45.mlp.dense_4h_to_h.weight": "model-00018-of-00024.safetensors",
|
250 |
+
"transformer.h.45.mlp.dense_h_to_4h.weight": "model-00018-of-00024.safetensors",
|
251 |
+
"transformer.h.45.self_attention.dense.weight": "model-00018-of-00024.safetensors",
|
252 |
+
"transformer.h.45.self_attention.query_key_value.weight": "model-00018-of-00024.safetensors",
|
253 |
+
"transformer.h.46.input_layernorm.bias": "model-00019-of-00024.safetensors",
|
254 |
+
"transformer.h.46.input_layernorm.weight": "model-00019-of-00024.safetensors",
|
255 |
+
"transformer.h.46.mlp.dense_4h_to_h.weight": "model-00019-of-00024.safetensors",
|
256 |
+
"transformer.h.46.mlp.dense_h_to_4h.weight": "model-00018-of-00024.safetensors",
|
257 |
+
"transformer.h.46.self_attention.dense.weight": "model-00018-of-00024.safetensors",
|
258 |
+
"transformer.h.46.self_attention.query_key_value.weight": "model-00018-of-00024.safetensors",
|
259 |
+
"transformer.h.47.input_layernorm.bias": "model-00019-of-00024.safetensors",
|
260 |
+
"transformer.h.47.input_layernorm.weight": "model-00019-of-00024.safetensors",
|
261 |
+
"transformer.h.47.mlp.dense_4h_to_h.weight": "model-00019-of-00024.safetensors",
|
262 |
+
"transformer.h.47.mlp.dense_h_to_4h.weight": "model-00019-of-00024.safetensors",
|
263 |
+
"transformer.h.47.self_attention.dense.weight": "model-00019-of-00024.safetensors",
|
264 |
+
"transformer.h.47.self_attention.query_key_value.weight": "model-00019-of-00024.safetensors",
|
265 |
+
"transformer.h.48.input_layernorm.bias": "model-00019-of-00024.safetensors",
|
266 |
+
"transformer.h.48.input_layernorm.weight": "model-00019-of-00024.safetensors",
|
267 |
+
"transformer.h.48.mlp.dense_4h_to_h.weight": "model-00019-of-00024.safetensors",
|
268 |
+
"transformer.h.48.mlp.dense_h_to_4h.weight": "model-00019-of-00024.safetensors",
|
269 |
+
"transformer.h.48.self_attention.dense.weight": "model-00019-of-00024.safetensors",
|
270 |
+
"transformer.h.48.self_attention.query_key_value.weight": "model-00019-of-00024.safetensors",
|
271 |
+
"transformer.h.49.input_layernorm.bias": "model-00020-of-00024.safetensors",
|
272 |
+
"transformer.h.49.input_layernorm.weight": "model-00020-of-00024.safetensors",
|
273 |
+
"transformer.h.49.mlp.dense_4h_to_h.weight": "model-00020-of-00024.safetensors",
|
274 |
+
"transformer.h.49.mlp.dense_h_to_4h.weight": "model-00020-of-00024.safetensors",
|
275 |
+
"transformer.h.49.self_attention.dense.weight": "model-00019-of-00024.safetensors",
|
276 |
+
"transformer.h.49.self_attention.query_key_value.weight": "model-00019-of-00024.safetensors",
|
277 |
+
"transformer.h.5.input_layernorm.bias": "model-00003-of-00024.safetensors",
|
278 |
+
"transformer.h.5.input_layernorm.weight": "model-00003-of-00024.safetensors",
|
279 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "model-00003-of-00024.safetensors",
|
280 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "model-00003-of-00024.safetensors",
|
281 |
+
"transformer.h.5.self_attention.dense.weight": "model-00003-of-00024.safetensors",
|
282 |
+
"transformer.h.5.self_attention.query_key_value.weight": "model-00003-of-00024.safetensors",
|
283 |
+
"transformer.h.50.input_layernorm.bias": "model-00020-of-00024.safetensors",
|
284 |
+
"transformer.h.50.input_layernorm.weight": "model-00020-of-00024.safetensors",
|
285 |
+
"transformer.h.50.mlp.dense_4h_to_h.weight": "model-00020-of-00024.safetensors",
|
286 |
+
"transformer.h.50.mlp.dense_h_to_4h.weight": "model-00020-of-00024.safetensors",
|
287 |
+
"transformer.h.50.self_attention.dense.weight": "model-00020-of-00024.safetensors",
|
288 |
+
"transformer.h.50.self_attention.query_key_value.weight": "model-00020-of-00024.safetensors",
|
289 |
+
"transformer.h.51.input_layernorm.bias": "model-00020-of-00024.safetensors",
|
290 |
+
"transformer.h.51.input_layernorm.weight": "model-00020-of-00024.safetensors",
|
291 |
+
"transformer.h.51.mlp.dense_4h_to_h.weight": "model-00020-of-00024.safetensors",
|
292 |
+
"transformer.h.51.mlp.dense_h_to_4h.weight": "model-00020-of-00024.safetensors",
|
293 |
+
"transformer.h.51.self_attention.dense.weight": "model-00020-of-00024.safetensors",
|
294 |
+
"transformer.h.51.self_attention.query_key_value.weight": "model-00020-of-00024.safetensors",
|
295 |
+
"transformer.h.52.input_layernorm.bias": "model-00021-of-00024.safetensors",
|
296 |
+
"transformer.h.52.input_layernorm.weight": "model-00021-of-00024.safetensors",
|
297 |
+
"transformer.h.52.mlp.dense_4h_to_h.weight": "model-00021-of-00024.safetensors",
|
298 |
+
"transformer.h.52.mlp.dense_h_to_4h.weight": "model-00021-of-00024.safetensors",
|
299 |
+
"transformer.h.52.self_attention.dense.weight": "model-00021-of-00024.safetensors",
|
300 |
+
"transformer.h.52.self_attention.query_key_value.weight": "model-00021-of-00024.safetensors",
|
301 |
+
"transformer.h.53.input_layernorm.bias": "model-00021-of-00024.safetensors",
|
302 |
+
"transformer.h.53.input_layernorm.weight": "model-00021-of-00024.safetensors",
|
303 |
+
"transformer.h.53.mlp.dense_4h_to_h.weight": "model-00021-of-00024.safetensors",
|
304 |
+
"transformer.h.53.mlp.dense_h_to_4h.weight": "model-00021-of-00024.safetensors",
|
305 |
+
"transformer.h.53.self_attention.dense.weight": "model-00021-of-00024.safetensors",
|
306 |
+
"transformer.h.53.self_attention.query_key_value.weight": "model-00021-of-00024.safetensors",
|
307 |
+
"transformer.h.54.input_layernorm.bias": "model-00022-of-00024.safetensors",
|
308 |
+
"transformer.h.54.input_layernorm.weight": "model-00022-of-00024.safetensors",
|
309 |
+
"transformer.h.54.mlp.dense_4h_to_h.weight": "model-00022-of-00024.safetensors",
|
310 |
+
"transformer.h.54.mlp.dense_h_to_4h.weight": "model-00021-of-00024.safetensors",
|
311 |
+
"transformer.h.54.self_attention.dense.weight": "model-00021-of-00024.safetensors",
|
312 |
+
"transformer.h.54.self_attention.query_key_value.weight": "model-00021-of-00024.safetensors",
|
313 |
+
"transformer.h.55.input_layernorm.bias": "model-00022-of-00024.safetensors",
|
314 |
+
"transformer.h.55.input_layernorm.weight": "model-00022-of-00024.safetensors",
|
315 |
+
"transformer.h.55.mlp.dense_4h_to_h.weight": "model-00022-of-00024.safetensors",
|
316 |
+
"transformer.h.55.mlp.dense_h_to_4h.weight": "model-00022-of-00024.safetensors",
|
317 |
+
"transformer.h.55.self_attention.dense.weight": "model-00022-of-00024.safetensors",
|
318 |
+
"transformer.h.55.self_attention.query_key_value.weight": "model-00022-of-00024.safetensors",
|
319 |
+
"transformer.h.56.input_layernorm.bias": "model-00022-of-00024.safetensors",
|
320 |
+
"transformer.h.56.input_layernorm.weight": "model-00022-of-00024.safetensors",
|
321 |
+
"transformer.h.56.mlp.dense_4h_to_h.weight": "model-00022-of-00024.safetensors",
|
322 |
+
"transformer.h.56.mlp.dense_h_to_4h.weight": "model-00022-of-00024.safetensors",
|
323 |
+
"transformer.h.56.self_attention.dense.weight": "model-00022-of-00024.safetensors",
|
324 |
+
"transformer.h.56.self_attention.query_key_value.weight": "model-00022-of-00024.safetensors",
|
325 |
+
"transformer.h.57.input_layernorm.bias": "model-00023-of-00024.safetensors",
|
326 |
+
"transformer.h.57.input_layernorm.weight": "model-00023-of-00024.safetensors",
|
327 |
+
"transformer.h.57.mlp.dense_4h_to_h.weight": "model-00023-of-00024.safetensors",
|
328 |
+
"transformer.h.57.mlp.dense_h_to_4h.weight": "model-00023-of-00024.safetensors",
|
329 |
+
"transformer.h.57.self_attention.dense.weight": "model-00022-of-00024.safetensors",
|
330 |
+
"transformer.h.57.self_attention.query_key_value.weight": "model-00022-of-00024.safetensors",
|
331 |
+
"transformer.h.58.input_layernorm.bias": "model-00023-of-00024.safetensors",
|
332 |
+
"transformer.h.58.input_layernorm.weight": "model-00023-of-00024.safetensors",
|
333 |
+
"transformer.h.58.mlp.dense_4h_to_h.weight": "model-00023-of-00024.safetensors",
|
334 |
+
"transformer.h.58.mlp.dense_h_to_4h.weight": "model-00023-of-00024.safetensors",
|
335 |
+
"transformer.h.58.self_attention.dense.weight": "model-00023-of-00024.safetensors",
|
336 |
+
"transformer.h.58.self_attention.query_key_value.weight": "model-00023-of-00024.safetensors",
|
337 |
+
"transformer.h.59.input_layernorm.bias": "model-00023-of-00024.safetensors",
|
338 |
+
"transformer.h.59.input_layernorm.weight": "model-00023-of-00024.safetensors",
|
339 |
+
"transformer.h.59.mlp.dense_4h_to_h.weight": "model-00023-of-00024.safetensors",
|
340 |
+
"transformer.h.59.mlp.dense_h_to_4h.weight": "model-00023-of-00024.safetensors",
|
341 |
+
"transformer.h.59.self_attention.dense.weight": "model-00023-of-00024.safetensors",
|
342 |
+
"transformer.h.59.self_attention.query_key_value.weight": "model-00023-of-00024.safetensors",
|
343 |
+
"transformer.h.6.input_layernorm.bias": "model-00004-of-00024.safetensors",
|
344 |
+
"transformer.h.6.input_layernorm.weight": "model-00004-of-00024.safetensors",
|
345 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "model-00004-of-00024.safetensors",
|
346 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "model-00003-of-00024.safetensors",
|
347 |
+
"transformer.h.6.self_attention.dense.weight": "model-00003-of-00024.safetensors",
|
348 |
+
"transformer.h.6.self_attention.query_key_value.weight": "model-00003-of-00024.safetensors",
|
349 |
+
"transformer.h.7.input_layernorm.bias": "model-00004-of-00024.safetensors",
|
350 |
+
"transformer.h.7.input_layernorm.weight": "model-00004-of-00024.safetensors",
|
351 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "model-00004-of-00024.safetensors",
|
352 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "model-00004-of-00024.safetensors",
|
353 |
+
"transformer.h.7.self_attention.dense.weight": "model-00004-of-00024.safetensors",
|
354 |
+
"transformer.h.7.self_attention.query_key_value.weight": "model-00004-of-00024.safetensors",
|
355 |
+
"transformer.h.8.input_layernorm.bias": "model-00004-of-00024.safetensors",
|
356 |
+
"transformer.h.8.input_layernorm.weight": "model-00004-of-00024.safetensors",
|
357 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "model-00004-of-00024.safetensors",
|
358 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "model-00004-of-00024.safetensors",
|
359 |
+
"transformer.h.8.self_attention.dense.weight": "model-00004-of-00024.safetensors",
|
360 |
+
"transformer.h.8.self_attention.query_key_value.weight": "model-00004-of-00024.safetensors",
|
361 |
+
"transformer.h.9.input_layernorm.bias": "model-00005-of-00024.safetensors",
|
362 |
+
"transformer.h.9.input_layernorm.weight": "model-00005-of-00024.safetensors",
|
363 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "model-00005-of-00024.safetensors",
|
364 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "model-00005-of-00024.safetensors",
|
365 |
+
"transformer.h.9.self_attention.dense.weight": "model-00004-of-00024.safetensors",
|
366 |
+
"transformer.h.9.self_attention.query_key_value.weight": "model-00004-of-00024.safetensors",
|
367 |
+
"transformer.ln_f.bias": "model-00023-of-00024.safetensors",
|
368 |
+
"transformer.ln_f.weight": "model-00023-of-00024.safetensors",
|
369 |
+
"transformer.word_embeddings.weight": "model-00001-of-00024.safetensors"
|
370 |
+
}
|
371 |
+
}
|