xianzhew commited on
Commit
3cdce7e
1 Parent(s): 13ffb19

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.8461538461538461
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.9761
35
- - Accuracy: 0.8462
36
 
37
  ## Model description
38
 
@@ -63,11 +63,11 @@ The following hyperparameters were used during training:
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
- | 0.4293 | 1.0 | 534 | 0.4071 | 0.8349 |
67
- | 0.2313 | 2.0 | 1068 | 0.4994 | 0.8246 |
68
- | 0.1162 | 3.0 | 1602 | 0.7041 | 0.8358 |
69
- | 0.0483 | 4.0 | 2136 | 0.9108 | 0.8462 |
70
- | 0.0187 | 5.0 | 2670 | 0.9761 | 0.8462 |
71
 
72
 
73
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.8405253283302064
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.9770
35
+ - Accuracy: 0.8405
36
 
37
  ## Model description
38
 
 
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.4274 | 1.0 | 534 | 0.3831 | 0.8452 |
67
+ | 0.2256 | 2.0 | 1068 | 0.5080 | 0.8405 |
68
+ | 0.1048 | 3.0 | 1602 | 0.7442 | 0.8368 |
69
+ | 0.0503 | 4.0 | 2136 | 0.8985 | 0.8443 |
70
+ | 0.0187 | 5.0 | 2670 | 0.9770 | 0.8405 |
71
 
72
 
73
  ### Framework versions