xh3b4sd commited on
Commit
cf8422a
1 Parent(s): 7da74b8

create lunar lander model for deep-rl-class unit 1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 170.87 +/- 38.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f08fb8e18c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08fb8e1950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08fb8e19e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08fb8e1a70>", "_build": "<function ActorCriticPolicy._build at 0x7f08fb8e1b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f08fb8e1b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08fb8e1c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f08fb8e1cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08fb8e1d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08fb8e1dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08fb8e1e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f08fb93b0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666116041032926082, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACA2P74pLmM7ckTcOudKLLjYFRe9W3f+uQAAgD8AAIA/Rn6sviYgiT9aJUi+PcmnvhMeC757BuE9AAAAAAAAAAAI2bi+wHJVP6qXpb4/HIe+bNtsvgdME74AAAAAAAAAAKaRhD3DEUu6kDocul654LRwXJG6U0UzOQAAgD8AAIA/Ro2Xvkbuez8Ia5y+dBLWvl1N4L2eAVI7AAAAAAAAAACgRiu+0gf+u5523buBkdW5Ny9cPZUFsToAAIA/AACAP01D0b1cTy+6Xyg4OrP9YTXWXuu6es9TuQAAgD8AAIA/zXS7PcPVC7rfwDo6YHWgtf/lBrubIFu5AACAPwAAgD/mXck9QfyNPn6shT1A5Je9ZHryO2XB170AAAAAAAAAAOJpxb7x4zk/qQ2bvfevpL41qca9r7yAvAAAAAAAAAAAjTmMvVx/CLplEdK7X0bxOMfIgrud2dY5AACAPwAAgD8tB3o+iOhuP5XHFb6Py3G+h+DHPQztCL4AAAAAAAAAAFPMYb73oQW9/sPDu63UYbq5v3U+nDIoOwAAgD8AAIA/ZjatPfakFrr+IO67YSwctTSSCTqdjo80AACAPwAAgD+gggq+pCUxu3NVmD1anKa9chwAvWhLTb4AAIA/AACAP5o9TD1c91C6vp7CuUuE57V/Mek6q/3iOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+N9Kdmx1UsCUhpRSlIwBbJRNwwGMAXSUR0CEKuXokiUxdX2UKGgGaAloD0MIEarU7IGnVkCUhpRSlGgVTegDaBZHQIQv7QJHAh11fZQoaAZoCWgPQwjUD+oihf42QJSGlFKUaBVL8WgWR0CEQOGXXyy2dX2UKGgGaAloD0MIHRzsTQylWkCUhpRSlGgVTegDaBZHQIRBRU96kZd1fZQoaAZoCWgPQwg5Qgby7EBRwJSGlFKUaBVNBQFoFkdAhEPNAcDKYHV9lChoBmgJaA9DCDjAzHfwNlpAlIaUUpRoFU3oA2gWR0CEbl18stkGdX2UKGgGaAloD0MIiuWWVkOOYECUhpRSlGgVTegDaBZHQIR84Lsrupl1fZQoaAZoCWgPQwj/snvysHRcQJSGlFKUaBVN6ANoFkdAhHziq6vq1XV9lChoBmgJaA9DCLYsX5fhNWvAlIaUUpRoFU2DAWgWR0CEf8vnr6cidX2UKGgGaAloD0MIg6Pk1TncXECUhpRSlGgVTegDaBZHQISCilxffGd1fZQoaAZoCWgPQwhehCnKpY1dQJSGlFKUaBVN6ANoFkdAhIMr9deIEnV9lChoBmgJaA9DCARZT62+ijbAlIaUUpRoFUv+aBZHQISFh06o2n91fZQoaAZoCWgPQwie6pCb4Q9YQJSGlFKUaBVN6ANoFkdAhJSfoaDPGHV9lChoBmgJaA9DCNds5SX/tznAlIaUUpRoFUviaBZHQISbHrfLs8h1fZQoaAZoCWgPQwj8x0J0iBJmQJSGlFKUaBVN6ANoFkdAhJ8r9ETg23V9lChoBmgJaA9DCEonEkw1O0DAlIaUUpRoFU0HAWgWR0CEoj8lXzUadX2UKGgGaAloD0MIQUmBBTBYXECUhpRSlGgVTegDaBZHQISnTGipNsZ1fZQoaAZoCWgPQwgIILWJkxBZQJSGlFKUaBVN6ANoFkdAhLqPZZjhDXV9lChoBmgJaA9DCBx+N92ye2JAlIaUUpRoFU3oA2gWR0CEvCrWiDdydX2UKGgGaAloD0MIGeJYF7frU0CUhpRSlGgVTegDaBZHQIS9Wskpqh11fZQoaAZoCWgPQwhATwMGSYs6QJSGlFKUaBVNBgFoFkdAhL4KcmShanV9lChoBmgJaA9DCJ1M3CqI7WJAlIaUUpRoFU3oA2gWR0CEyrOqNp/PdX2UKGgGaAloD0MIy/W2mQorVECUhpRSlGgVTegDaBZHQITdScbzbvh1fZQoaAZoCWgPQwgSTgte9OBZQJSGlFKUaBVN6ANoFkdAhOADIaLn93V9lChoBmgJaA9DCLnCu1zEKVpAlIaUUpRoFU3oA2gWR0CFCmpHZsbedX2UKGgGaAloD0MIpwLuef6cTMCUhpRSlGgVTVQBaBZHQIUK5r1uivh1fZQoaAZoCWgPQwgOTdnpB304wJSGlFKUaBVNRAFoFkdAhQul3hXKbXV9lChoBmgJaA9DCA4tsp3vwF5AlIaUUpRoFU3oA2gWR0CFGEgXdj5LdX2UKGgGaAloD0MI+Q/pt6/iV0CUhpRSlGgVTegDaBZHQIUYSL61stV1fZQoaAZoCWgPQwgWNZiG4btaQJSGlFKUaBVN6ANoFkdAhRs83++/QHV9lChoBmgJaA9DCL6ECg4vImVAlIaUUpRoFU3oA2gWR0CFHc+6iCardX2UKGgGaAloD0MIY0UNpmFYYUCUhpRSlGgVTegDaBZHQIUz2f29L6F1fZQoaAZoCWgPQwgt6L0xBE9rQJSGlFKUaBVNrAFoFkdAhTh+HaewtHV9lChoBmgJaA9DCLfUQV4P2WBAlIaUUpRoFU3oA2gWR0CFO6/KQq7RdX2UKGgGaAloD0MIsyRATS0rMMCUhpRSlGgVTRABaBZHQIVAtNL127p1fZQoaAZoCWgPQwg5J/bQPoZWQJSGlFKUaBVN6ANoFkdAhUPwEZBLPHV9lChoBmgJaA9DCLMMcayLZWNAlIaUUpRoFU3oA2gWR0CFS7KvFFUidX2UKGgGaAloD0MI7s9FQ8Z+YkCUhpRSlGgVTegDaBZHQIVoYD5j6N51fZQoaAZoCWgPQwjOVfMckQBiQJSGlFKUaBVN6ANoFkdAhWqHHNorWnV9lChoBmgJaA9DCGjqdYvAFlxAlIaUUpRoFU3oA2gWR0CFeLbrTpgUdX2UKGgGaAloD0MIYRxcOmbLZkCUhpRSlGgVTVcCaBZHQIWMSBNEgGN1fZQoaAZoCWgPQwiOIQA49jRgQJSGlFKUaBVN6ANoFkdAhZAmbCrLhnV9lChoBmgJaA9DCFq3Qe23NkLAlIaUUpRoFU0dAWgWR0CFkhwnYxtYdX2UKGgGaAloD0MIZRpNLsZNXECUhpRSlGgVTegDaBZHQIWVQYYR/Vl1fZQoaAZoCWgPQwg2yY/4FWFRQJSGlFKUaBVN6ANoFkdAhZW81n/T9nV9lChoBmgJaA9DCLtIoSz8N2BAlIaUUpRoFU3oA2gWR0CFlmynDR+jdX2UKGgGaAloD0MI8X7cfvmBWkCUhpRSlGgVTegDaBZHQIXIR19v0iB1fZQoaAZoCWgPQwirQgOxbHJUQJSGlFKUaBVN6ANoFkdAhchIZhrnDHV9lChoBmgJaA9DCPKZ7J8nk2RAlIaUUpRoFU3oA2gWR0CFyxfKISDidX2UKGgGaAloD0MIeJlho6z6UkCUhpRSlGgVTegDaBZHQIXpo2hqTKV1fZQoaAZoCWgPQwjUnSees8hgQJSGlFKUaBVN6ANoFkdAhe0Tkhib2HV9lChoBmgJaA9DCAa7YduiLCLAlIaUUpRoFU0mAWgWR0CF7yQSSNfgdX2UKGgGaAloD0MIh8PSwI8sWUCUhpRSlGgVTegDaBZHQIXyz4WUKRd1fZQoaAZoCWgPQwiTAgtgytpYQJSGlFKUaBVN6ANoFkdAhfW9itq59XV9lChoBmgJaA9DCFpmEYotYGBAlIaUUpRoFU3oA2gWR0CF+4cTakAQdX2UKGgGaAloD0MILdFZZpH5YkCUhpRSlGgVTXcCaBZHQIYDXGhmGud1fZQoaAZoCWgPQwjFceDVco1OwJSGlFKUaBVNAQFoFkdAhgrIVVPva3V9lChoBmgJaA9DCAXdXtIYjFBAlIaUUpRoFU3oA2gWR0CGEPAIIF/ydX2UKGgGaAloD0MIxD4BFCNHRsCUhpRSlGgVTTcBaBZHQIYUiaG5+Yt1fZQoaAZoCWgPQwgLC+4HPDFcQJSGlFKUaBVN6ANoFkdAhiAt+kP+XXV9lChoBmgJaA9DCBMLfEW3tiDAlIaUUpRoFU00AWgWR0CGKqYVIqb0dX2UKGgGaAloD0MIaQBvgQR9WkCUhpRSlGgVTegDaBZHQIY3IOOKfnR1fZQoaAZoCWgPQwjdJXFWRIFkQJSGlFKUaBVN6ANoFkdAhjkh19v0iHV9lChoBmgJaA9DCCzy64fYRFtAlIaUUpRoFU3oA2gWR0CGPCmZVn27dX2UKGgGaAloD0MICtl5G5uOXECUhpRSlGgVTegDaBZHQIY8pUkv9Lp1fZQoaAZoCWgPQwjWdD3RdclGQJSGlFKUaBVN6ANoFkdAhj1IkAxSHnV9lChoBmgJaA9DCHQkl/+QvkvAlIaUUpRoFU03AWgWR0CGPfz3AVO9dX2UKGgGaAloD0MI1NLcCmEXYkCUhpRSlGgVTegDaBZHQIZuMbkwN9Z1fZQoaAZoCWgPQwhS1m8mplhcQJSGlFKUaBVN6ANoFkdAhnDL0SRKYnV9lChoBmgJaA9DCFa3ek56vy7AlIaUUpRoFU07AWgWR0CGh7pfx+a0dX2UKGgGaAloD0MI9z5VhYacYUCUhpRSlGgVTegDaBZHQIaS5emelKt1fZQoaAZoCWgPQwhSYtf29h9gQJSGlFKUaBVN6ANoFkdAhpav73wkPnV9lChoBmgJaA9DCEYJ+gu9AGFAlIaUUpRoFU3oA2gWR0CGmc5aNdZ8dX2UKGgGaAloD0MIHQOy17uqX0CUhpRSlGgVTegDaBZHQIagCP8yeqd1fZQoaAZoCWgPQwgicvp6vqhaQJSGlFKUaBVN6ANoFkdAhrGuuJUHZHV9lChoBmgJaA9DCJC/tKhPMF1AlIaUUpRoFU3oA2gWR0CGuJNqxkd4dX2UKGgGaAloD0MI22rWGV+YYUCUhpRSlGgVTegDaBZHQIbLEt9QXRB1fZQoaAZoCWgPQwg+ITtvY49dQJSGlFKUaBVN6ANoFkdAhtdo7vG6w3V9lChoBmgJaA9DCOVfyyvXwV5AlIaUUpRoFU3oA2gWR0CG5UV1wHZ9dX2UKGgGaAloD0MIA7UYPEwhYkCUhpRSlGgVTegDaBZHQIbnoFcIJJJ1fZQoaAZoCWgPQwgfLjnulNVZQJSGlFKUaBVN6ANoFkdAhutEVN5+pnV9lChoBmgJaA9DCEuxo3EosWFAlIaUUpRoFU3oA2gWR0CG69FOO802dX2UKGgGaAloD0MIn1inyvf7XECUhpRSlGgVTegDaBZHQIbsj8YQ8Ol1fZQoaAZoCWgPQwiemPViKFJcQJSGlFKUaBVN6ANoFkdAhx/TGYKIBXV9lChoBmgJaA9DCO2CwTX3dWFAlIaUUpRoFU3oA2gWR0CHIwtjCpFTdX2UKGgGaAloD0MIRpc3h2sVMMCUhpRSlGgVTT4BaBZHQIc1tMh5gPV1fZQoaAZoCWgPQwieJjPeVt9cQJSGlFKUaBVN6ANoFkdAhzzQKKHfuXV9lChoBmgJaA9DCCU+d4L971VAlIaUUpRoFU3oA2gWR0CHR032mHgxdX2UKGgGaAloD0MIi90+q8x9XkCUhpRSlGgVTegDaBZHQIdKqRyOrAB1fZQoaAZoCWgPQwi2K/TBMg5cQJSGlFKUaBVN6ANoFkdAh01VzhgmZ3V9lChoBmgJaA9DCFpj0AmhS2JAlIaUUpRoFU3oA2gWR0CHUqGSIP9UdX2UKGgGaAloD0MIHH433TKhZECUhpRSlGgVTegDaBZHQIdiXRXwLE11fZQoaAZoCWgPQwiKq8q+K7ZjQJSGlFKUaBVN6ANoFkdAh2jEhJRO13V9lChoBmgJaA9DCI+mejL/E1hAlIaUUpRoFU3oA2gWR0CHeiUh3aBadX2UKGgGaAloD0MI7j1cctxZWkCUhpRSlGgVTegDaBZHQIeFcHryDqZ1fZQoaAZoCWgPQwiCAu/kUyVkQJSGlFKUaBVN6ANoFkdAh5PnqFAVwnV9lChoBmgJaA9DCITx07g3r11AlIaUUpRoFU3oA2gWR0CHl0y4Wk8BdX2UKGgGaAloD0MIVz1gHjJyX0CUhpRSlGgVTegDaBZHQIeX0abWmP51fZQoaAZoCWgPQwgdIm5OJUtgQJSGlFKUaBVN6ANoFkdAh5iTLns9jnV9lChoBmgJaA9DCE1lUdjFjmlAlIaUUpRoFU1EAmgWR0CHmS189fTkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cfd57ca3a21823e96611533f5e7993429513c4e412cae2738dd323fb4349fd1
3
+ size 147150
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f08fb8e18c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08fb8e1950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08fb8e19e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08fb8e1a70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f08fb8e1b00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f08fb8e1b90>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08fb8e1c20>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f08fb8e1cb0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08fb8e1d40>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08fb8e1dd0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08fb8e1e60>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f08fb93b0f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1666116041032926082,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACA2P74pLmM7ckTcOudKLLjYFRe9W3f+uQAAgD8AAIA/Rn6sviYgiT9aJUi+PcmnvhMeC757BuE9AAAAAAAAAAAI2bi+wHJVP6qXpb4/HIe+bNtsvgdME74AAAAAAAAAAKaRhD3DEUu6kDocul654LRwXJG6U0UzOQAAgD8AAIA/Ro2Xvkbuez8Ia5y+dBLWvl1N4L2eAVI7AAAAAAAAAACgRiu+0gf+u5523buBkdW5Ny9cPZUFsToAAIA/AACAP01D0b1cTy+6Xyg4OrP9YTXWXuu6es9TuQAAgD8AAIA/zXS7PcPVC7rfwDo6YHWgtf/lBrubIFu5AACAPwAAgD/mXck9QfyNPn6shT1A5Je9ZHryO2XB170AAAAAAAAAAOJpxb7x4zk/qQ2bvfevpL41qca9r7yAvAAAAAAAAAAAjTmMvVx/CLplEdK7X0bxOMfIgrud2dY5AACAPwAAgD8tB3o+iOhuP5XHFb6Py3G+h+DHPQztCL4AAAAAAAAAAFPMYb73oQW9/sPDu63UYbq5v3U+nDIoOwAAgD8AAIA/ZjatPfakFrr+IO67YSwctTSSCTqdjo80AACAPwAAgD+gggq+pCUxu3NVmD1anKa9chwAvWhLTb4AAIA/AACAP5o9TD1c91C6vp7CuUuE57V/Mek6q/3iOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+N9Kdmx1UsCUhpRSlIwBbJRNwwGMAXSUR0CEKuXokiUxdX2UKGgGaAloD0MIEarU7IGnVkCUhpRSlGgVTegDaBZHQIQv7QJHAh11fZQoaAZoCWgPQwjUD+oihf42QJSGlFKUaBVL8WgWR0CEQOGXXyy2dX2UKGgGaAloD0MIHRzsTQylWkCUhpRSlGgVTegDaBZHQIRBRU96kZd1fZQoaAZoCWgPQwg5Qgby7EBRwJSGlFKUaBVNBQFoFkdAhEPNAcDKYHV9lChoBmgJaA9DCDjAzHfwNlpAlIaUUpRoFU3oA2gWR0CEbl18stkGdX2UKGgGaAloD0MIiuWWVkOOYECUhpRSlGgVTegDaBZHQIR84Lsrupl1fZQoaAZoCWgPQwj/snvysHRcQJSGlFKUaBVN6ANoFkdAhHziq6vq1XV9lChoBmgJaA9DCLYsX5fhNWvAlIaUUpRoFU2DAWgWR0CEf8vnr6cidX2UKGgGaAloD0MIg6Pk1TncXECUhpRSlGgVTegDaBZHQISCilxffGd1fZQoaAZoCWgPQwhehCnKpY1dQJSGlFKUaBVN6ANoFkdAhIMr9deIEnV9lChoBmgJaA9DCARZT62+ijbAlIaUUpRoFUv+aBZHQISFh06o2n91fZQoaAZoCWgPQwie6pCb4Q9YQJSGlFKUaBVN6ANoFkdAhJSfoaDPGHV9lChoBmgJaA9DCNds5SX/tznAlIaUUpRoFUviaBZHQISbHrfLs8h1fZQoaAZoCWgPQwj8x0J0iBJmQJSGlFKUaBVN6ANoFkdAhJ8r9ETg23V9lChoBmgJaA9DCEonEkw1O0DAlIaUUpRoFU0HAWgWR0CEoj8lXzUadX2UKGgGaAloD0MIQUmBBTBYXECUhpRSlGgVTegDaBZHQISnTGipNsZ1fZQoaAZoCWgPQwgIILWJkxBZQJSGlFKUaBVN6ANoFkdAhLqPZZjhDXV9lChoBmgJaA9DCBx+N92ye2JAlIaUUpRoFU3oA2gWR0CEvCrWiDdydX2UKGgGaAloD0MIGeJYF7frU0CUhpRSlGgVTegDaBZHQIS9Wskpqh11fZQoaAZoCWgPQwhATwMGSYs6QJSGlFKUaBVNBgFoFkdAhL4KcmShanV9lChoBmgJaA9DCJ1M3CqI7WJAlIaUUpRoFU3oA2gWR0CEyrOqNp/PdX2UKGgGaAloD0MIy/W2mQorVECUhpRSlGgVTegDaBZHQITdScbzbvh1fZQoaAZoCWgPQwgSTgte9OBZQJSGlFKUaBVN6ANoFkdAhOADIaLn93V9lChoBmgJaA9DCLnCu1zEKVpAlIaUUpRoFU3oA2gWR0CFCmpHZsbedX2UKGgGaAloD0MIpwLuef6cTMCUhpRSlGgVTVQBaBZHQIUK5r1uivh1fZQoaAZoCWgPQwgOTdnpB304wJSGlFKUaBVNRAFoFkdAhQul3hXKbXV9lChoBmgJaA9DCA4tsp3vwF5AlIaUUpRoFU3oA2gWR0CFGEgXdj5LdX2UKGgGaAloD0MI+Q/pt6/iV0CUhpRSlGgVTegDaBZHQIUYSL61stV1fZQoaAZoCWgPQwgWNZiG4btaQJSGlFKUaBVN6ANoFkdAhRs83++/QHV9lChoBmgJaA9DCL6ECg4vImVAlIaUUpRoFU3oA2gWR0CFHc+6iCardX2UKGgGaAloD0MIY0UNpmFYYUCUhpRSlGgVTegDaBZHQIUz2f29L6F1fZQoaAZoCWgPQwgt6L0xBE9rQJSGlFKUaBVNrAFoFkdAhTh+HaewtHV9lChoBmgJaA9DCLfUQV4P2WBAlIaUUpRoFU3oA2gWR0CFO6/KQq7RdX2UKGgGaAloD0MIsyRATS0rMMCUhpRSlGgVTRABaBZHQIVAtNL127p1fZQoaAZoCWgPQwg5J/bQPoZWQJSGlFKUaBVN6ANoFkdAhUPwEZBLPHV9lChoBmgJaA9DCLMMcayLZWNAlIaUUpRoFU3oA2gWR0CFS7KvFFUidX2UKGgGaAloD0MI7s9FQ8Z+YkCUhpRSlGgVTegDaBZHQIVoYD5j6N51fZQoaAZoCWgPQwjOVfMckQBiQJSGlFKUaBVN6ANoFkdAhWqHHNorWnV9lChoBmgJaA9DCGjqdYvAFlxAlIaUUpRoFU3oA2gWR0CFeLbrTpgUdX2UKGgGaAloD0MIYRxcOmbLZkCUhpRSlGgVTVcCaBZHQIWMSBNEgGN1fZQoaAZoCWgPQwiOIQA49jRgQJSGlFKUaBVN6ANoFkdAhZAmbCrLhnV9lChoBmgJaA9DCFq3Qe23NkLAlIaUUpRoFU0dAWgWR0CFkhwnYxtYdX2UKGgGaAloD0MIZRpNLsZNXECUhpRSlGgVTegDaBZHQIWVQYYR/Vl1fZQoaAZoCWgPQwg2yY/4FWFRQJSGlFKUaBVN6ANoFkdAhZW81n/T9nV9lChoBmgJaA9DCLtIoSz8N2BAlIaUUpRoFU3oA2gWR0CFlmynDR+jdX2UKGgGaAloD0MI8X7cfvmBWkCUhpRSlGgVTegDaBZHQIXIR19v0iB1fZQoaAZoCWgPQwirQgOxbHJUQJSGlFKUaBVN6ANoFkdAhchIZhrnDHV9lChoBmgJaA9DCPKZ7J8nk2RAlIaUUpRoFU3oA2gWR0CFyxfKISDidX2UKGgGaAloD0MIeJlho6z6UkCUhpRSlGgVTegDaBZHQIXpo2hqTKV1fZQoaAZoCWgPQwjUnSees8hgQJSGlFKUaBVN6ANoFkdAhe0Tkhib2HV9lChoBmgJaA9DCAa7YduiLCLAlIaUUpRoFU0mAWgWR0CF7yQSSNfgdX2UKGgGaAloD0MIh8PSwI8sWUCUhpRSlGgVTegDaBZHQIXyz4WUKRd1fZQoaAZoCWgPQwiTAgtgytpYQJSGlFKUaBVN6ANoFkdAhfW9itq59XV9lChoBmgJaA9DCFpmEYotYGBAlIaUUpRoFU3oA2gWR0CF+4cTakAQdX2UKGgGaAloD0MILdFZZpH5YkCUhpRSlGgVTXcCaBZHQIYDXGhmGud1fZQoaAZoCWgPQwjFceDVco1OwJSGlFKUaBVNAQFoFkdAhgrIVVPva3V9lChoBmgJaA9DCAXdXtIYjFBAlIaUUpRoFU3oA2gWR0CGEPAIIF/ydX2UKGgGaAloD0MIxD4BFCNHRsCUhpRSlGgVTTcBaBZHQIYUiaG5+Yt1fZQoaAZoCWgPQwgLC+4HPDFcQJSGlFKUaBVN6ANoFkdAhiAt+kP+XXV9lChoBmgJaA9DCBMLfEW3tiDAlIaUUpRoFU00AWgWR0CGKqYVIqb0dX2UKGgGaAloD0MIaQBvgQR9WkCUhpRSlGgVTegDaBZHQIY3IOOKfnR1fZQoaAZoCWgPQwjdJXFWRIFkQJSGlFKUaBVN6ANoFkdAhjkh19v0iHV9lChoBmgJaA9DCCzy64fYRFtAlIaUUpRoFU3oA2gWR0CGPCmZVn27dX2UKGgGaAloD0MICtl5G5uOXECUhpRSlGgVTegDaBZHQIY8pUkv9Lp1fZQoaAZoCWgPQwjWdD3RdclGQJSGlFKUaBVN6ANoFkdAhj1IkAxSHnV9lChoBmgJaA9DCHQkl/+QvkvAlIaUUpRoFU03AWgWR0CGPfz3AVO9dX2UKGgGaAloD0MI1NLcCmEXYkCUhpRSlGgVTegDaBZHQIZuMbkwN9Z1fZQoaAZoCWgPQwhS1m8mplhcQJSGlFKUaBVN6ANoFkdAhnDL0SRKYnV9lChoBmgJaA9DCFa3ek56vy7AlIaUUpRoFU07AWgWR0CGh7pfx+a0dX2UKGgGaAloD0MI9z5VhYacYUCUhpRSlGgVTegDaBZHQIaS5emelKt1fZQoaAZoCWgPQwhSYtf29h9gQJSGlFKUaBVN6ANoFkdAhpav73wkPnV9lChoBmgJaA9DCEYJ+gu9AGFAlIaUUpRoFU3oA2gWR0CGmc5aNdZ8dX2UKGgGaAloD0MIHQOy17uqX0CUhpRSlGgVTegDaBZHQIagCP8yeqd1fZQoaAZoCWgPQwgicvp6vqhaQJSGlFKUaBVN6ANoFkdAhrGuuJUHZHV9lChoBmgJaA9DCJC/tKhPMF1AlIaUUpRoFU3oA2gWR0CGuJNqxkd4dX2UKGgGaAloD0MI22rWGV+YYUCUhpRSlGgVTegDaBZHQIbLEt9QXRB1fZQoaAZoCWgPQwg+ITtvY49dQJSGlFKUaBVN6ANoFkdAhtdo7vG6w3V9lChoBmgJaA9DCOVfyyvXwV5AlIaUUpRoFU3oA2gWR0CG5UV1wHZ9dX2UKGgGaAloD0MIA7UYPEwhYkCUhpRSlGgVTegDaBZHQIbnoFcIJJJ1fZQoaAZoCWgPQwgfLjnulNVZQJSGlFKUaBVN6ANoFkdAhutEVN5+pnV9lChoBmgJaA9DCEuxo3EosWFAlIaUUpRoFU3oA2gWR0CG69FOO802dX2UKGgGaAloD0MIn1inyvf7XECUhpRSlGgVTegDaBZHQIbsj8YQ8Ol1fZQoaAZoCWgPQwiemPViKFJcQJSGlFKUaBVN6ANoFkdAhx/TGYKIBXV9lChoBmgJaA9DCO2CwTX3dWFAlIaUUpRoFU3oA2gWR0CHIwtjCpFTdX2UKGgGaAloD0MIRpc3h2sVMMCUhpRSlGgVTT4BaBZHQIc1tMh5gPV1fZQoaAZoCWgPQwieJjPeVt9cQJSGlFKUaBVN6ANoFkdAhzzQKKHfuXV9lChoBmgJaA9DCCU+d4L971VAlIaUUpRoFU3oA2gWR0CHR032mHgxdX2UKGgGaAloD0MIi90+q8x9XkCUhpRSlGgVTegDaBZHQIdKqRyOrAB1fZQoaAZoCWgPQwi2K/TBMg5cQJSGlFKUaBVN6ANoFkdAh01VzhgmZ3V9lChoBmgJaA9DCFpj0AmhS2JAlIaUUpRoFU3oA2gWR0CHUqGSIP9UdX2UKGgGaAloD0MIHH433TKhZECUhpRSlGgVTegDaBZHQIdiXRXwLE11fZQoaAZoCWgPQwiKq8q+K7ZjQJSGlFKUaBVN6ANoFkdAh2jEhJRO13V9lChoBmgJaA9DCI+mejL/E1hAlIaUUpRoFU3oA2gWR0CHeiUh3aBadX2UKGgGaAloD0MI7j1cctxZWkCUhpRSlGgVTegDaBZHQIeFcHryDqZ1fZQoaAZoCWgPQwiCAu/kUyVkQJSGlFKUaBVN6ANoFkdAh5PnqFAVwnV9lChoBmgJaA9DCITx07g3r11AlIaUUpRoFU3oA2gWR0CHl0y4Wk8BdX2UKGgGaAloD0MIVz1gHjJyX0CUhpRSlGgVTegDaBZHQIeX0abWmP51fZQoaAZoCWgPQwgdIm5OJUtgQJSGlFKUaBVN6ANoFkdAh5iTLns9jnV9lChoBmgJaA9DCE1lUdjFjmlAlIaUUpRoFU1EAmgWR0CHmS189fTkdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63dcb8c051d29859f0c1e51139a24ed1ad375a735659d2712005f1d57e94c269
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d519d9ab715acf6b82cda54cfdeb83728327e1271a58ba1516b979599258151
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (249 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 170.8666135562498, "std_reward": 38.439328590299645, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-18T18:15:39.115272"}