create lunar lander model for deep-rl-class unit 1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 170.87 +/- 38.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f08fb8e18c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08fb8e1950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08fb8e19e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08fb8e1a70>", "_build": "<function ActorCriticPolicy._build at 0x7f08fb8e1b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f08fb8e1b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08fb8e1c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f08fb8e1cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08fb8e1d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08fb8e1dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08fb8e1e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f08fb93b0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666116041032926082, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACA2P74pLmM7ckTcOudKLLjYFRe9W3f+uQAAgD8AAIA/Rn6sviYgiT9aJUi+PcmnvhMeC757BuE9AAAAAAAAAAAI2bi+wHJVP6qXpb4/HIe+bNtsvgdME74AAAAAAAAAAKaRhD3DEUu6kDocul654LRwXJG6U0UzOQAAgD8AAIA/Ro2Xvkbuez8Ia5y+dBLWvl1N4L2eAVI7AAAAAAAAAACgRiu+0gf+u5523buBkdW5Ny9cPZUFsToAAIA/AACAP01D0b1cTy+6Xyg4OrP9YTXWXuu6es9TuQAAgD8AAIA/zXS7PcPVC7rfwDo6YHWgtf/lBrubIFu5AACAPwAAgD/mXck9QfyNPn6shT1A5Je9ZHryO2XB170AAAAAAAAAAOJpxb7x4zk/qQ2bvfevpL41qca9r7yAvAAAAAAAAAAAjTmMvVx/CLplEdK7X0bxOMfIgrud2dY5AACAPwAAgD8tB3o+iOhuP5XHFb6Py3G+h+DHPQztCL4AAAAAAAAAAFPMYb73oQW9/sPDu63UYbq5v3U+nDIoOwAAgD8AAIA/ZjatPfakFrr+IO67YSwctTSSCTqdjo80AACAPwAAgD+gggq+pCUxu3NVmD1anKa9chwAvWhLTb4AAIA/AACAP5o9TD1c91C6vp7CuUuE57V/Mek6q/3iOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+N9Kdmx1UsCUhpRSlIwBbJRNwwGMAXSUR0CEKuXokiUxdX2UKGgGaAloD0MIEarU7IGnVkCUhpRSlGgVTegDaBZHQIQv7QJHAh11fZQoaAZoCWgPQwjUD+oihf42QJSGlFKUaBVL8WgWR0CEQOGXXyy2dX2UKGgGaAloD0MIHRzsTQylWkCUhpRSlGgVTegDaBZHQIRBRU96kZd1fZQoaAZoCWgPQwg5Qgby7EBRwJSGlFKUaBVNBQFoFkdAhEPNAcDKYHV9lChoBmgJaA9DCDjAzHfwNlpAlIaUUpRoFU3oA2gWR0CEbl18stkGdX2UKGgGaAloD0MIiuWWVkOOYECUhpRSlGgVTegDaBZHQIR84Lsrupl1fZQoaAZoCWgPQwj/snvysHRcQJSGlFKUaBVN6ANoFkdAhHziq6vq1XV9lChoBmgJaA9DCLYsX5fhNWvAlIaUUpRoFU2DAWgWR0CEf8vnr6cidX2UKGgGaAloD0MIg6Pk1TncXECUhpRSlGgVTegDaBZHQISCilxffGd1fZQoaAZoCWgPQwhehCnKpY1dQJSGlFKUaBVN6ANoFkdAhIMr9deIEnV9lChoBmgJaA9DCARZT62+ijbAlIaUUpRoFUv+aBZHQISFh06o2n91fZQoaAZoCWgPQwie6pCb4Q9YQJSGlFKUaBVN6ANoFkdAhJSfoaDPGHV9lChoBmgJaA9DCNds5SX/tznAlIaUUpRoFUviaBZHQISbHrfLs8h1fZQoaAZoCWgPQwj8x0J0iBJmQJSGlFKUaBVN6ANoFkdAhJ8r9ETg23V9lChoBmgJaA9DCEonEkw1O0DAlIaUUpRoFU0HAWgWR0CEoj8lXzUadX2UKGgGaAloD0MIQUmBBTBYXECUhpRSlGgVTegDaBZHQISnTGipNsZ1fZQoaAZoCWgPQwgIILWJkxBZQJSGlFKUaBVN6ANoFkdAhLqPZZjhDXV9lChoBmgJaA9DCBx+N92ye2JAlIaUUpRoFU3oA2gWR0CEvCrWiDdydX2UKGgGaAloD0MIGeJYF7frU0CUhpRSlGgVTegDaBZHQIS9Wskpqh11fZQoaAZoCWgPQwhATwMGSYs6QJSGlFKUaBVNBgFoFkdAhL4KcmShanV9lChoBmgJaA9DCJ1M3CqI7WJAlIaUUpRoFU3oA2gWR0CEyrOqNp/PdX2UKGgGaAloD0MIy/W2mQorVECUhpRSlGgVTegDaBZHQITdScbzbvh1fZQoaAZoCWgPQwgSTgte9OBZQJSGlFKUaBVN6ANoFkdAhOADIaLn93V9lChoBmgJaA9DCLnCu1zEKVpAlIaUUpRoFU3oA2gWR0CFCmpHZsbedX2UKGgGaAloD0MIpwLuef6cTMCUhpRSlGgVTVQBaBZHQIUK5r1uivh1fZQoaAZoCWgPQwgOTdnpB304wJSGlFKUaBVNRAFoFkdAhQul3hXKbXV9lChoBmgJaA9DCA4tsp3vwF5AlIaUUpRoFU3oA2gWR0CFGEgXdj5LdX2UKGgGaAloD0MI+Q/pt6/iV0CUhpRSlGgVTegDaBZHQIUYSL61stV1fZQoaAZoCWgPQwgWNZiG4btaQJSGlFKUaBVN6ANoFkdAhRs83++/QHV9lChoBmgJaA9DCL6ECg4vImVAlIaUUpRoFU3oA2gWR0CFHc+6iCardX2UKGgGaAloD0MIY0UNpmFYYUCUhpRSlGgVTegDaBZHQIUz2f29L6F1fZQoaAZoCWgPQwgt6L0xBE9rQJSGlFKUaBVNrAFoFkdAhTh+HaewtHV9lChoBmgJaA9DCLfUQV4P2WBAlIaUUpRoFU3oA2gWR0CFO6/KQq7RdX2UKGgGaAloD0MIsyRATS0rMMCUhpRSlGgVTRABaBZHQIVAtNL127p1fZQoaAZoCWgPQwg5J/bQPoZWQJSGlFKUaBVN6ANoFkdAhUPwEZBLPHV9lChoBmgJaA9DCLMMcayLZWNAlIaUUpRoFU3oA2gWR0CFS7KvFFUidX2UKGgGaAloD0MI7s9FQ8Z+YkCUhpRSlGgVTegDaBZHQIVoYD5j6N51fZQoaAZoCWgPQwjOVfMckQBiQJSGlFKUaBVN6ANoFkdAhWqHHNorWnV9lChoBmgJaA9DCGjqdYvAFlxAlIaUUpRoFU3oA2gWR0CFeLbrTpgUdX2UKGgGaAloD0MIYRxcOmbLZkCUhpRSlGgVTVcCaBZHQIWMSBNEgGN1fZQoaAZoCWgPQwiOIQA49jRgQJSGlFKUaBVN6ANoFkdAhZAmbCrLhnV9lChoBmgJaA9DCFq3Qe23NkLAlIaUUpRoFU0dAWgWR0CFkhwnYxtYdX2UKGgGaAloD0MIZRpNLsZNXECUhpRSlGgVTegDaBZHQIWVQYYR/Vl1fZQoaAZoCWgPQwg2yY/4FWFRQJSGlFKUaBVN6ANoFkdAhZW81n/T9nV9lChoBmgJaA9DCLtIoSz8N2BAlIaUUpRoFU3oA2gWR0CFlmynDR+jdX2UKGgGaAloD0MI8X7cfvmBWkCUhpRSlGgVTegDaBZHQIXIR19v0iB1fZQoaAZoCWgPQwirQgOxbHJUQJSGlFKUaBVN6ANoFkdAhchIZhrnDHV9lChoBmgJaA9DCPKZ7J8nk2RAlIaUUpRoFU3oA2gWR0CFyxfKISDidX2UKGgGaAloD0MIeJlho6z6UkCUhpRSlGgVTegDaBZHQIXpo2hqTKV1fZQoaAZoCWgPQwjUnSees8hgQJSGlFKUaBVN6ANoFkdAhe0Tkhib2HV9lChoBmgJaA9DCAa7YduiLCLAlIaUUpRoFU0mAWgWR0CF7yQSSNfgdX2UKGgGaAloD0MIh8PSwI8sWUCUhpRSlGgVTegDaBZHQIXyz4WUKRd1fZQoaAZoCWgPQwiTAgtgytpYQJSGlFKUaBVN6ANoFkdAhfW9itq59XV9lChoBmgJaA9DCFpmEYotYGBAlIaUUpRoFU3oA2gWR0CF+4cTakAQdX2UKGgGaAloD0MILdFZZpH5YkCUhpRSlGgVTXcCaBZHQIYDXGhmGud1fZQoaAZoCWgPQwjFceDVco1OwJSGlFKUaBVNAQFoFkdAhgrIVVPva3V9lChoBmgJaA9DCAXdXtIYjFBAlIaUUpRoFU3oA2gWR0CGEPAIIF/ydX2UKGgGaAloD0MIxD4BFCNHRsCUhpRSlGgVTTcBaBZHQIYUiaG5+Yt1fZQoaAZoCWgPQwgLC+4HPDFcQJSGlFKUaBVN6ANoFkdAhiAt+kP+XXV9lChoBmgJaA9DCBMLfEW3tiDAlIaUUpRoFU00AWgWR0CGKqYVIqb0dX2UKGgGaAloD0MIaQBvgQR9WkCUhpRSlGgVTegDaBZHQIY3IOOKfnR1fZQoaAZoCWgPQwjdJXFWRIFkQJSGlFKUaBVN6ANoFkdAhjkh19v0iHV9lChoBmgJaA9DCCzy64fYRFtAlIaUUpRoFU3oA2gWR0CGPCmZVn27dX2UKGgGaAloD0MICtl5G5uOXECUhpRSlGgVTegDaBZHQIY8pUkv9Lp1fZQoaAZoCWgPQwjWdD3RdclGQJSGlFKUaBVN6ANoFkdAhj1IkAxSHnV9lChoBmgJaA9DCHQkl/+QvkvAlIaUUpRoFU03AWgWR0CGPfz3AVO9dX2UKGgGaAloD0MI1NLcCmEXYkCUhpRSlGgVTegDaBZHQIZuMbkwN9Z1fZQoaAZoCWgPQwhS1m8mplhcQJSGlFKUaBVN6ANoFkdAhnDL0SRKYnV9lChoBmgJaA9DCFa3ek56vy7AlIaUUpRoFU07AWgWR0CGh7pfx+a0dX2UKGgGaAloD0MI9z5VhYacYUCUhpRSlGgVTegDaBZHQIaS5emelKt1fZQoaAZoCWgPQwhSYtf29h9gQJSGlFKUaBVN6ANoFkdAhpav73wkPnV9lChoBmgJaA9DCEYJ+gu9AGFAlIaUUpRoFU3oA2gWR0CGmc5aNdZ8dX2UKGgGaAloD0MIHQOy17uqX0CUhpRSlGgVTegDaBZHQIagCP8yeqd1fZQoaAZoCWgPQwgicvp6vqhaQJSGlFKUaBVN6ANoFkdAhrGuuJUHZHV9lChoBmgJaA9DCJC/tKhPMF1AlIaUUpRoFU3oA2gWR0CGuJNqxkd4dX2UKGgGaAloD0MI22rWGV+YYUCUhpRSlGgVTegDaBZHQIbLEt9QXRB1fZQoaAZoCWgPQwg+ITtvY49dQJSGlFKUaBVN6ANoFkdAhtdo7vG6w3V9lChoBmgJaA9DCOVfyyvXwV5AlIaUUpRoFU3oA2gWR0CG5UV1wHZ9dX2UKGgGaAloD0MIA7UYPEwhYkCUhpRSlGgVTegDaBZHQIbnoFcIJJJ1fZQoaAZoCWgPQwgfLjnulNVZQJSGlFKUaBVN6ANoFkdAhutEVN5+pnV9lChoBmgJaA9DCEuxo3EosWFAlIaUUpRoFU3oA2gWR0CG69FOO802dX2UKGgGaAloD0MIn1inyvf7XECUhpRSlGgVTegDaBZHQIbsj8YQ8Ol1fZQoaAZoCWgPQwiemPViKFJcQJSGlFKUaBVN6ANoFkdAhx/TGYKIBXV9lChoBmgJaA9DCO2CwTX3dWFAlIaUUpRoFU3oA2gWR0CHIwtjCpFTdX2UKGgGaAloD0MIRpc3h2sVMMCUhpRSlGgVTT4BaBZHQIc1tMh5gPV1fZQoaAZoCWgPQwieJjPeVt9cQJSGlFKUaBVN6ANoFkdAhzzQKKHfuXV9lChoBmgJaA9DCCU+d4L971VAlIaUUpRoFU3oA2gWR0CHR032mHgxdX2UKGgGaAloD0MIi90+q8x9XkCUhpRSlGgVTegDaBZHQIdKqRyOrAB1fZQoaAZoCWgPQwi2K/TBMg5cQJSGlFKUaBVN6ANoFkdAh01VzhgmZ3V9lChoBmgJaA9DCFpj0AmhS2JAlIaUUpRoFU3oA2gWR0CHUqGSIP9UdX2UKGgGaAloD0MIHH433TKhZECUhpRSlGgVTegDaBZHQIdiXRXwLE11fZQoaAZoCWgPQwiKq8q+K7ZjQJSGlFKUaBVN6ANoFkdAh2jEhJRO13V9lChoBmgJaA9DCI+mejL/E1hAlIaUUpRoFU3oA2gWR0CHeiUh3aBadX2UKGgGaAloD0MI7j1cctxZWkCUhpRSlGgVTegDaBZHQIeFcHryDqZ1fZQoaAZoCWgPQwiCAu/kUyVkQJSGlFKUaBVN6ANoFkdAh5PnqFAVwnV9lChoBmgJaA9DCITx07g3r11AlIaUUpRoFU3oA2gWR0CHl0y4Wk8BdX2UKGgGaAloD0MIVz1gHjJyX0CUhpRSlGgVTegDaBZHQIeX0abWmP51fZQoaAZoCWgPQwgdIm5OJUtgQJSGlFKUaBVN6ANoFkdAh5iTLns9jnV9lChoBmgJaA9DCE1lUdjFjmlAlIaUUpRoFU1EAmgWR0CHmS189fTkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cfd57ca3a21823e96611533f5e7993429513c4e412cae2738dd323fb4349fd1
|
3 |
+
size 147150
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f08fb8e18c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08fb8e1950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08fb8e19e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08fb8e1a70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f08fb8e1b00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f08fb8e1b90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08fb8e1c20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f08fb8e1cb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08fb8e1d40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08fb8e1dd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08fb8e1e60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f08fb93b0f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1666116041032926082,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACA2P74pLmM7ckTcOudKLLjYFRe9W3f+uQAAgD8AAIA/Rn6sviYgiT9aJUi+PcmnvhMeC757BuE9AAAAAAAAAAAI2bi+wHJVP6qXpb4/HIe+bNtsvgdME74AAAAAAAAAAKaRhD3DEUu6kDocul654LRwXJG6U0UzOQAAgD8AAIA/Ro2Xvkbuez8Ia5y+dBLWvl1N4L2eAVI7AAAAAAAAAACgRiu+0gf+u5523buBkdW5Ny9cPZUFsToAAIA/AACAP01D0b1cTy+6Xyg4OrP9YTXWXuu6es9TuQAAgD8AAIA/zXS7PcPVC7rfwDo6YHWgtf/lBrubIFu5AACAPwAAgD/mXck9QfyNPn6shT1A5Je9ZHryO2XB170AAAAAAAAAAOJpxb7x4zk/qQ2bvfevpL41qca9r7yAvAAAAAAAAAAAjTmMvVx/CLplEdK7X0bxOMfIgrud2dY5AACAPwAAgD8tB3o+iOhuP5XHFb6Py3G+h+DHPQztCL4AAAAAAAAAAFPMYb73oQW9/sPDu63UYbq5v3U+nDIoOwAAgD8AAIA/ZjatPfakFrr+IO67YSwctTSSCTqdjo80AACAPwAAgD+gggq+pCUxu3NVmD1anKa9chwAvWhLTb4AAIA/AACAP5o9TD1c91C6vp7CuUuE57V/Mek6q/3iOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+N9Kdmx1UsCUhpRSlIwBbJRNwwGMAXSUR0CEKuXokiUxdX2UKGgGaAloD0MIEarU7IGnVkCUhpRSlGgVTegDaBZHQIQv7QJHAh11fZQoaAZoCWgPQwjUD+oihf42QJSGlFKUaBVL8WgWR0CEQOGXXyy2dX2UKGgGaAloD0MIHRzsTQylWkCUhpRSlGgVTegDaBZHQIRBRU96kZd1fZQoaAZoCWgPQwg5Qgby7EBRwJSGlFKUaBVNBQFoFkdAhEPNAcDKYHV9lChoBmgJaA9DCDjAzHfwNlpAlIaUUpRoFU3oA2gWR0CEbl18stkGdX2UKGgGaAloD0MIiuWWVkOOYECUhpRSlGgVTegDaBZHQIR84Lsrupl1fZQoaAZoCWgPQwj/snvysHRcQJSGlFKUaBVN6ANoFkdAhHziq6vq1XV9lChoBmgJaA9DCLYsX5fhNWvAlIaUUpRoFU2DAWgWR0CEf8vnr6cidX2UKGgGaAloD0MIg6Pk1TncXECUhpRSlGgVTegDaBZHQISCilxffGd1fZQoaAZoCWgPQwhehCnKpY1dQJSGlFKUaBVN6ANoFkdAhIMr9deIEnV9lChoBmgJaA9DCARZT62+ijbAlIaUUpRoFUv+aBZHQISFh06o2n91fZQoaAZoCWgPQwie6pCb4Q9YQJSGlFKUaBVN6ANoFkdAhJSfoaDPGHV9lChoBmgJaA9DCNds5SX/tznAlIaUUpRoFUviaBZHQISbHrfLs8h1fZQoaAZoCWgPQwj8x0J0iBJmQJSGlFKUaBVN6ANoFkdAhJ8r9ETg23V9lChoBmgJaA9DCEonEkw1O0DAlIaUUpRoFU0HAWgWR0CEoj8lXzUadX2UKGgGaAloD0MIQUmBBTBYXECUhpRSlGgVTegDaBZHQISnTGipNsZ1fZQoaAZoCWgPQwgIILWJkxBZQJSGlFKUaBVN6ANoFkdAhLqPZZjhDXV9lChoBmgJaA9DCBx+N92ye2JAlIaUUpRoFU3oA2gWR0CEvCrWiDdydX2UKGgGaAloD0MIGeJYF7frU0CUhpRSlGgVTegDaBZHQIS9Wskpqh11fZQoaAZoCWgPQwhATwMGSYs6QJSGlFKUaBVNBgFoFkdAhL4KcmShanV9lChoBmgJaA9DCJ1M3CqI7WJAlIaUUpRoFU3oA2gWR0CEyrOqNp/PdX2UKGgGaAloD0MIy/W2mQorVECUhpRSlGgVTegDaBZHQITdScbzbvh1fZQoaAZoCWgPQwgSTgte9OBZQJSGlFKUaBVN6ANoFkdAhOADIaLn93V9lChoBmgJaA9DCLnCu1zEKVpAlIaUUpRoFU3oA2gWR0CFCmpHZsbedX2UKGgGaAloD0MIpwLuef6cTMCUhpRSlGgVTVQBaBZHQIUK5r1uivh1fZQoaAZoCWgPQwgOTdnpB304wJSGlFKUaBVNRAFoFkdAhQul3hXKbXV9lChoBmgJaA9DCA4tsp3vwF5AlIaUUpRoFU3oA2gWR0CFGEgXdj5LdX2UKGgGaAloD0MI+Q/pt6/iV0CUhpRSlGgVTegDaBZHQIUYSL61stV1fZQoaAZoCWgPQwgWNZiG4btaQJSGlFKUaBVN6ANoFkdAhRs83++/QHV9lChoBmgJaA9DCL6ECg4vImVAlIaUUpRoFU3oA2gWR0CFHc+6iCardX2UKGgGaAloD0MIY0UNpmFYYUCUhpRSlGgVTegDaBZHQIUz2f29L6F1fZQoaAZoCWgPQwgt6L0xBE9rQJSGlFKUaBVNrAFoFkdAhTh+HaewtHV9lChoBmgJaA9DCLfUQV4P2WBAlIaUUpRoFU3oA2gWR0CFO6/KQq7RdX2UKGgGaAloD0MIsyRATS0rMMCUhpRSlGgVTRABaBZHQIVAtNL127p1fZQoaAZoCWgPQwg5J/bQPoZWQJSGlFKUaBVN6ANoFkdAhUPwEZBLPHV9lChoBmgJaA9DCLMMcayLZWNAlIaUUpRoFU3oA2gWR0CFS7KvFFUidX2UKGgGaAloD0MI7s9FQ8Z+YkCUhpRSlGgVTegDaBZHQIVoYD5j6N51fZQoaAZoCWgPQwjOVfMckQBiQJSGlFKUaBVN6ANoFkdAhWqHHNorWnV9lChoBmgJaA9DCGjqdYvAFlxAlIaUUpRoFU3oA2gWR0CFeLbrTpgUdX2UKGgGaAloD0MIYRxcOmbLZkCUhpRSlGgVTVcCaBZHQIWMSBNEgGN1fZQoaAZoCWgPQwiOIQA49jRgQJSGlFKUaBVN6ANoFkdAhZAmbCrLhnV9lChoBmgJaA9DCFq3Qe23NkLAlIaUUpRoFU0dAWgWR0CFkhwnYxtYdX2UKGgGaAloD0MIZRpNLsZNXECUhpRSlGgVTegDaBZHQIWVQYYR/Vl1fZQoaAZoCWgPQwg2yY/4FWFRQJSGlFKUaBVN6ANoFkdAhZW81n/T9nV9lChoBmgJaA9DCLtIoSz8N2BAlIaUUpRoFU3oA2gWR0CFlmynDR+jdX2UKGgGaAloD0MI8X7cfvmBWkCUhpRSlGgVTegDaBZHQIXIR19v0iB1fZQoaAZoCWgPQwirQgOxbHJUQJSGlFKUaBVN6ANoFkdAhchIZhrnDHV9lChoBmgJaA9DCPKZ7J8nk2RAlIaUUpRoFU3oA2gWR0CFyxfKISDidX2UKGgGaAloD0MIeJlho6z6UkCUhpRSlGgVTegDaBZHQIXpo2hqTKV1fZQoaAZoCWgPQwjUnSees8hgQJSGlFKUaBVN6ANoFkdAhe0Tkhib2HV9lChoBmgJaA9DCAa7YduiLCLAlIaUUpRoFU0mAWgWR0CF7yQSSNfgdX2UKGgGaAloD0MIh8PSwI8sWUCUhpRSlGgVTegDaBZHQIXyz4WUKRd1fZQoaAZoCWgPQwiTAgtgytpYQJSGlFKUaBVN6ANoFkdAhfW9itq59XV9lChoBmgJaA9DCFpmEYotYGBAlIaUUpRoFU3oA2gWR0CF+4cTakAQdX2UKGgGaAloD0MILdFZZpH5YkCUhpRSlGgVTXcCaBZHQIYDXGhmGud1fZQoaAZoCWgPQwjFceDVco1OwJSGlFKUaBVNAQFoFkdAhgrIVVPva3V9lChoBmgJaA9DCAXdXtIYjFBAlIaUUpRoFU3oA2gWR0CGEPAIIF/ydX2UKGgGaAloD0MIxD4BFCNHRsCUhpRSlGgVTTcBaBZHQIYUiaG5+Yt1fZQoaAZoCWgPQwgLC+4HPDFcQJSGlFKUaBVN6ANoFkdAhiAt+kP+XXV9lChoBmgJaA9DCBMLfEW3tiDAlIaUUpRoFU00AWgWR0CGKqYVIqb0dX2UKGgGaAloD0MIaQBvgQR9WkCUhpRSlGgVTegDaBZHQIY3IOOKfnR1fZQoaAZoCWgPQwjdJXFWRIFkQJSGlFKUaBVN6ANoFkdAhjkh19v0iHV9lChoBmgJaA9DCCzy64fYRFtAlIaUUpRoFU3oA2gWR0CGPCmZVn27dX2UKGgGaAloD0MICtl5G5uOXECUhpRSlGgVTegDaBZHQIY8pUkv9Lp1fZQoaAZoCWgPQwjWdD3RdclGQJSGlFKUaBVN6ANoFkdAhj1IkAxSHnV9lChoBmgJaA9DCHQkl/+QvkvAlIaUUpRoFU03AWgWR0CGPfz3AVO9dX2UKGgGaAloD0MI1NLcCmEXYkCUhpRSlGgVTegDaBZHQIZuMbkwN9Z1fZQoaAZoCWgPQwhS1m8mplhcQJSGlFKUaBVN6ANoFkdAhnDL0SRKYnV9lChoBmgJaA9DCFa3ek56vy7AlIaUUpRoFU07AWgWR0CGh7pfx+a0dX2UKGgGaAloD0MI9z5VhYacYUCUhpRSlGgVTegDaBZHQIaS5emelKt1fZQoaAZoCWgPQwhSYtf29h9gQJSGlFKUaBVN6ANoFkdAhpav73wkPnV9lChoBmgJaA9DCEYJ+gu9AGFAlIaUUpRoFU3oA2gWR0CGmc5aNdZ8dX2UKGgGaAloD0MIHQOy17uqX0CUhpRSlGgVTegDaBZHQIagCP8yeqd1fZQoaAZoCWgPQwgicvp6vqhaQJSGlFKUaBVN6ANoFkdAhrGuuJUHZHV9lChoBmgJaA9DCJC/tKhPMF1AlIaUUpRoFU3oA2gWR0CGuJNqxkd4dX2UKGgGaAloD0MI22rWGV+YYUCUhpRSlGgVTegDaBZHQIbLEt9QXRB1fZQoaAZoCWgPQwg+ITtvY49dQJSGlFKUaBVN6ANoFkdAhtdo7vG6w3V9lChoBmgJaA9DCOVfyyvXwV5AlIaUUpRoFU3oA2gWR0CG5UV1wHZ9dX2UKGgGaAloD0MIA7UYPEwhYkCUhpRSlGgVTegDaBZHQIbnoFcIJJJ1fZQoaAZoCWgPQwgfLjnulNVZQJSGlFKUaBVN6ANoFkdAhutEVN5+pnV9lChoBmgJaA9DCEuxo3EosWFAlIaUUpRoFU3oA2gWR0CG69FOO802dX2UKGgGaAloD0MIn1inyvf7XECUhpRSlGgVTegDaBZHQIbsj8YQ8Ol1fZQoaAZoCWgPQwiemPViKFJcQJSGlFKUaBVN6ANoFkdAhx/TGYKIBXV9lChoBmgJaA9DCO2CwTX3dWFAlIaUUpRoFU3oA2gWR0CHIwtjCpFTdX2UKGgGaAloD0MIRpc3h2sVMMCUhpRSlGgVTT4BaBZHQIc1tMh5gPV1fZQoaAZoCWgPQwieJjPeVt9cQJSGlFKUaBVN6ANoFkdAhzzQKKHfuXV9lChoBmgJaA9DCCU+d4L971VAlIaUUpRoFU3oA2gWR0CHR032mHgxdX2UKGgGaAloD0MIi90+q8x9XkCUhpRSlGgVTegDaBZHQIdKqRyOrAB1fZQoaAZoCWgPQwi2K/TBMg5cQJSGlFKUaBVN6ANoFkdAh01VzhgmZ3V9lChoBmgJaA9DCFpj0AmhS2JAlIaUUpRoFU3oA2gWR0CHUqGSIP9UdX2UKGgGaAloD0MIHH433TKhZECUhpRSlGgVTegDaBZHQIdiXRXwLE11fZQoaAZoCWgPQwiKq8q+K7ZjQJSGlFKUaBVN6ANoFkdAh2jEhJRO13V9lChoBmgJaA9DCI+mejL/E1hAlIaUUpRoFU3oA2gWR0CHeiUh3aBadX2UKGgGaAloD0MI7j1cctxZWkCUhpRSlGgVTegDaBZHQIeFcHryDqZ1fZQoaAZoCWgPQwiCAu/kUyVkQJSGlFKUaBVN6ANoFkdAh5PnqFAVwnV9lChoBmgJaA9DCITx07g3r11AlIaUUpRoFU3oA2gWR0CHl0y4Wk8BdX2UKGgGaAloD0MIVz1gHjJyX0CUhpRSlGgVTegDaBZHQIeX0abWmP51fZQoaAZoCWgPQwgdIm5OJUtgQJSGlFKUaBVN6ANoFkdAh5iTLns9jnV9lChoBmgJaA9DCE1lUdjFjmlAlIaUUpRoFU1EAmgWR0CHmS189fTkdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63dcb8c051d29859f0c1e51139a24ed1ad375a735659d2712005f1d57e94c269
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d519d9ab715acf6b82cda54cfdeb83728327e1271a58ba1516b979599258151
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (249 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 170.8666135562498, "std_reward": 38.439328590299645, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-18T18:15:39.115272"}
|