xekri commited on
Commit
8b54d62
·
1 Parent(s): cc4a90b

Adds README stuff, scripts, train config

Browse files
Files changed (4) hide show
  1. README.md +41 -9
  2. infer.py +108 -0
  3. run_speech_recognition_ctc.py +1157 -0
  4. train.json +46 -0
README.md CHANGED
@@ -17,7 +17,7 @@ model-index:
17
  name: Automatic Speech Recognition
18
  type: automatic-speech-recognition
19
  dataset:
20
- name: MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO
21
  type: common_voice_13_0
22
  config: eo
23
  split: validation
@@ -26,33 +26,64 @@ model-index:
26
  - name: Wer
27
  type: wer
28
  value: 0.05342994850125446
 
 
 
29
  ---
30
 
31
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
- should probably proofread and complete it, then remove this comment. -->
33
 
34
- # wav2vec2-common_voice_13_0-eo-10_1
35
-
36
- This model is a fine-tuned version of [xekri/wav2vec2-common_voice_13_0-eo-10](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10) on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO dataset.
37
  It achieves the following results on the evaluation set:
38
  - Loss: 0.0391
39
  - Cer: 0.0098
40
  - Wer: 0.0534
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ## Model description
43
 
44
- More information needed
45
 
46
  ## Intended uses & limitations
47
 
48
- More information needed
 
 
49
 
50
  ## Training and evaluation data
51
 
52
- More information needed
53
 
54
  ## Training procedure
55
 
 
 
 
 
 
 
 
 
 
56
  ### Training hyperparameters
57
 
58
  The following hyperparameters were used during training:
@@ -62,6 +93,7 @@ The following hyperparameters were used during training:
62
  - seed: 42
63
  - gradient_accumulation_steps: 2
64
  - total_train_batch_size: 32
 
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
  - lr_scheduler_warmup_steps: 500
 
17
  name: Automatic Speech Recognition
18
  type: automatic-speech-recognition
19
  dataset:
20
+ name: mozilla-foundation/common_voice_13_0
21
  type: common_voice_13_0
22
  config: eo
23
  split: validation
 
26
  - name: Wer
27
  type: wer
28
  value: 0.05342994850125446
29
+ - name: CER
30
+ type: cer
31
+ value: 0.0098
32
  ---
33
 
34
+ # wav2vec2-common_voice_13_0-eo-10_1, an Esperanto speech recognizer
 
35
 
36
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [mozilla-foundation/common_voice_13_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) Esperanto dataset.
 
 
37
  It achieves the following results on the evaluation set:
38
  - Loss: 0.0391
39
  - Cer: 0.0098
40
  - Wer: 0.0534
41
 
42
+ The first 10 examples in the evaluation set:
43
+
44
+ | Actual<br>Predicted | CER |
45
+ |:--------------------|:----|
46
+ | `la orienta parto apud benino kaj niĝerio estis nomita sklavmarbordo`<br>`la orienta parto apud benino kaj niĝerio estis nomita sklafmarbordo` | 0.014925373134328358 |
47
+ | `en la sekva jaro li ricevis premion`<br>`en la sekva jaro li ricevis premion` | 0.0 |
48
+ | `ŝi studis historion ĉe la universitato de brita kolumbio`<br>`ŝi studis historion ĉe la universitato de brita kolumbio` | 0.0 |
49
+ | `larĝaj ŝtupoj kuras al la fasado`<br>`larĝaj ŝtupoj kuras al la fasado` | 0.0 |
50
+ | `la municipo ĝuas duan epokon de etendo kaj disvolviĝo`<br>`la municipo ĝuas duan epokon de etendo kaj disvolviĝo` | 0.0 |
51
+ | `li estis ankaŭ katedrestro kaj dekano`<br>`li estis ankaŭ katedresto kaj dekano` | 0.02702702702702703 |
52
+ | `librovendejo apartenas al la muzeo`<br>`librovendejo apartenas al l muzeo` | 0.029411764705882353 |
53
+ | `ĝi estas kutime malfacile videbla kaj troviĝas en subkreskaĵaro de arbaroj`<br>`ĝi estas kutime malfacile videbla kaj troviĝas en subkreskaĵo de arbaroj` | 0.02702702702702703 |
54
+ | `unue ili estas ruĝaj poste brunaj`<br>`unue ili estas ruĝaj poste brunaj` | 0.0 |
55
+ | `la loĝantaro laboras en la proksima ĉefurbo`<br>`la loĝantaro laboras en la proksima ĉefurbo` | 0.0 |
56
+
57
+ The differences in results for the above compared to the previous model ([xekri/wav2vec2-common_voice_13_0-eo-10](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10)) are:
58
+ * eepokon -> epokon
59
+ * katedristo -> katedresto
60
+ * al la muzeo -> al l muzeo
61
+
62
  ## Model description
63
 
64
+ See [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53). This model is a version of [xekri/wav2vec2-common_voice_13_0-eo-10](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10) trained for 5 more epochs.
65
 
66
  ## Intended uses & limitations
67
 
68
+ Speech recognition for Esperanto. The base model was pretrained and finetuned on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16KHz.
69
+
70
+ The output is all lowercase, no punctuation.
71
 
72
  ## Training and evaluation data
73
 
74
+ The training split was set to `train` while the eval split was set to `validation`. Some files were filtered out of the train and validation dataset due to bad data; see [xekri/wav2vec2-common_voice_13_0-eo-3](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-3) for a detailed discussion. In summary, I used `xekri/wav2vec2-common_voice_13_0-eo-3` as a detector to detect bad files, then hardcoded those files into the trainer code to be filtered out.
75
 
76
  ## Training procedure
77
 
78
+ I used a modified version of [`run_speech_recognition_ctc.py`](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) for training. See [`run_speech_recognition_ctc.py`](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10/blob/main/run_speech_recognition_ctc.py) in this repo.
79
+
80
+ The parameters to the trainer are in [train.json](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10/blob/main/train.json) in this repo.
81
+
82
+ The key changes between this training run and `xekri/wav2vec2-common_voice_13_0-eo-3`, aside from the filtering and use of the full training and validation sets are:
83
+
84
+ * Layer drop probability is 20%
85
+ * Train only for 5 epochs
86
+
87
  ### Training hyperparameters
88
 
89
  The following hyperparameters were used during training:
 
93
  - seed: 42
94
  - gradient_accumulation_steps: 2
95
  - total_train_batch_size: 32
96
+ - layerdrop: 0.2
97
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
98
  - lr_scheduler_type: linear
99
  - lr_scheduler_warmup_steps: 500
infer.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ import os
3
+ import os.path
4
+ import re
5
+
6
+ from datasets import load_dataset
7
+ from datasets import Audio
8
+ import jiwer
9
+ import torch
10
+ from transformers import AutoProcessor, Wav2Vec2ForCTC
11
+ from transformers.models.wav2vec2.processing_wav2vec2 import Wav2Vec2Processor
12
+
13
+ MODEL = "xekri/wav2vec2-common_voice_13_0-eo-10_1"
14
+ DATA = "validation[:10]"
15
+
16
+ chars_to_ignore_regex = "[-!\"'(),.:;=?_`¨«¸»ʼ‑–—‘’“”„…‹›♫?]"
17
+ chars_to_substitute = {
18
+ "przy": "pŝe",
19
+ "byn": "bin",
20
+ "cx": "ĉ",
21
+ "sx": "ŝ",
22
+ "fi": "fi",
23
+ "fl": "fl",
24
+ "ǔ": "ŭ",
25
+ "ñ": "nj",
26
+ "á": "a",
27
+ "é": "e",
28
+ "ü": "ŭ",
29
+ "y": "j",
30
+ "qu": "ku",
31
+ }
32
+
33
+
34
+ def remove_special_characters(text: str) -> str:
35
+ text = re.sub(chars_to_ignore_regex, "", text)
36
+ text = text.lower()
37
+ return text
38
+
39
+
40
+ def substitute_characters(text: str) -> str:
41
+ for k, v in chars_to_substitute.items():
42
+ text.replace(k, v)
43
+ text = text.lower()
44
+ return text
45
+
46
+
47
+ @dataclasses.dataclass
48
+ class EvalResult:
49
+ filename: str
50
+ cer: float
51
+ loss: float
52
+ actual: str
53
+ predicted: str
54
+
55
+ def print(self) -> None:
56
+ print(f"FILE {self.filename}")
57
+ print(f"CERR {self.cer}")
58
+ print(f"LOSS {self.loss}")
59
+ print(f"ACTU {self.actual}")
60
+ print(f"PRED {self.predicted}")
61
+
62
+
63
+ def evaluate(processor: Wav2Vec2Processor, model, example) -> EvalResult:
64
+ """Evaluates a single example."""
65
+ audio_file = example["path"]
66
+ d, n = os.path.split(audio_file)
67
+ f = os.listdir(d)[0]
68
+ audio_file = os.path.join(d, f, n)
69
+
70
+ inputs = processor(
71
+ audio=example["audio"]["array"], sampling_rate=16000, return_tensors="pt"
72
+ )
73
+
74
+ with torch.no_grad():
75
+ logits = model(**inputs).logits
76
+ predicted_ids = logits.argmax(dim=-1)
77
+ predict = processor.batch_decode(predicted_ids)[0]
78
+
79
+ actual = example["sentence"]
80
+ actual = substitute_characters(remove_special_characters(actual))
81
+ inputs["labels"] = processor(text=actual, return_tensors="pt").input_ids
82
+ loss = model(**inputs).loss
83
+ cer = jiwer.cer(actual, predict)
84
+
85
+ return EvalResult(os.path.basename(audio_file), cer, loss, actual, predict)
86
+
87
+
88
+ def run() -> None:
89
+ cv13 = load_dataset(
90
+ "mozilla-foundation/common_voice_13_0",
91
+ "eo",
92
+ split=DATA,
93
+ )
94
+ cv13 = cv13.cast_column("audio", Audio(sampling_rate=16000))
95
+
96
+ processor: Wav2Vec2Processor = AutoProcessor.from_pretrained(MODEL)
97
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL)
98
+
99
+ print("| Actual<br>Predicted | CER |")
100
+ print("|:--------------------|:----|")
101
+
102
+ for i, example in enumerate(cv13):
103
+ results = evaluate(processor, model, example)
104
+ print(f"| `{results.actual}`<br>`{results.predicted}` | {results.cer} |")
105
+
106
+
107
+ if __name__ == "__main__":
108
+ run()
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,1157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
18
+
19
+ import functools
20
+ import json
21
+ import logging
22
+ import os
23
+ import re
24
+ import sys
25
+ import warnings
26
+ from dataclasses import dataclass, field
27
+ from typing import Any, Dict, List, Optional, Union
28
+
29
+ import datasets
30
+ import evaluate
31
+ import numpy as np
32
+ import torch
33
+ from datasets import DatasetDict, load_dataset
34
+
35
+ import transformers
36
+ from transformers import (
37
+ AutoConfig,
38
+ AutoFeatureExtractor,
39
+ AutoModelForCTC,
40
+ AutoProcessor,
41
+ AutoTokenizer,
42
+ HfArgumentParser,
43
+ Trainer,
44
+ TrainingArguments,
45
+ Wav2Vec2Processor,
46
+ set_seed,
47
+ )
48
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
49
+ from transformers.utils import check_min_version, send_example_telemetry
50
+ from transformers.utils.versions import require_version
51
+
52
+
53
+ _BAD_TEST_FILES = [
54
+ "common_voice_eo_25214319.mp3",
55
+ "common_voice_eo_25006596.mp3",
56
+ "common_voice_eo_27472721.mp3",
57
+ "common_voice_eo_27715088.mp3",
58
+ "common_voice_eo_27715091.mp3",
59
+ "common_voice_eo_26677019.mp3",
60
+ "common_voice_eo_26677023.mp3",
61
+ "common_voice_eo_20555291.mp3",
62
+ "common_voice_eo_25001942.mp3",
63
+ "common_voice_eo_25457354.mp3",
64
+ "common_voice_eo_25457355.mp3",
65
+ "common_voice_eo_25457365.mp3",
66
+ "common_voice_eo_25457373.mp3",
67
+ "common_voice_eo_25457396.mp3",
68
+ "common_voice_eo_25457397.mp3",
69
+ "common_voice_eo_25457409.mp3",
70
+ "common_voice_eo_25457410.mp3",
71
+ "common_voice_eo_25457412.mp3",
72
+ "common_voice_eo_25457442.mp3",
73
+ "common_voice_eo_25457444.mp3",
74
+ "common_voice_eo_25457445.mp3",
75
+ "common_voice_eo_25457577.mp3",
76
+ "common_voice_eo_25457578.mp3",
77
+ "common_voice_eo_28064453.mp3",
78
+ "common_voice_eo_25047803.mp3",
79
+ "common_voice_eo_25048418.mp3",
80
+ "common_voice_eo_25048419.mp3",
81
+ "common_voice_eo_25048421.mp3",
82
+ "common_voice_eo_25048423.mp3",
83
+ "common_voice_eo_25048428.mp3",
84
+ "common_voice_eo_25048574.mp3",
85
+ "common_voice_eo_25885643.mp3",
86
+ "common_voice_eo_25885645.mp3",
87
+ "common_voice_eo_26794882.mp3",
88
+ "common_voice_eo_27356529.mp3",
89
+ "common_voice_eo_25012640.mp3",
90
+ "common_voice_eo_25303457.mp3",
91
+ "common_voice_eo_18153931.mp3",
92
+ "common_voice_eo_18776206.mp3",
93
+ "common_voice_eo_18776208.mp3",
94
+ "common_voice_eo_18776219.mp3",
95
+ "common_voice_eo_18776220.mp3",
96
+ "common_voice_eo_18776222.mp3",
97
+ "common_voice_eo_18776223.mp3",
98
+ "common_voice_eo_18776236.mp3",
99
+ "common_voice_eo_18776238.mp3",
100
+ "common_voice_eo_18776244.mp3",
101
+ "common_voice_eo_18776248.mp3",
102
+ "common_voice_eo_18776285.mp3",
103
+ "common_voice_eo_18776287.mp3",
104
+ "common_voice_eo_18776297.mp3",
105
+ "common_voice_eo_18776298.mp3",
106
+ "common_voice_eo_25047998.mp3",
107
+ "common_voice_eo_25047999.mp3",
108
+ "common_voice_eo_25048000.mp3",
109
+ "common_voice_eo_25048001.mp3",
110
+ "common_voice_eo_25048002.mp3",
111
+ "common_voice_eo_25053113.mp3",
112
+ "common_voice_eo_25068355.mp3",
113
+ "common_voice_eo_25333056.mp3",
114
+ "common_voice_eo_25371639.mp3",
115
+ "common_voice_eo_25371640.mp3",
116
+ "common_voice_eo_25371641.mp3",
117
+ "common_voice_eo_25371642.mp3",
118
+ "common_voice_eo_25371643.mp3",
119
+ "common_voice_eo_22441946.mp3",
120
+ "common_voice_eo_26622121.mp3",
121
+ "common_voice_eo_25167318.mp3",
122
+ "common_voice_eo_25252685.mp3",
123
+ "common_voice_eo_25252698.mp3",
124
+ "common_voice_eo_25518636.mp3",
125
+ ]
126
+
127
+ _BAD_VALIDATION_FILES = [
128
+ "common_voice_eo_25392669.mp3",
129
+ "common_voice_eo_25392674.mp3",
130
+ "common_voice_eo_25392675.mp3",
131
+ "common_voice_eo_25392676.mp3",
132
+ "common_voice_eo_25392678.mp3",
133
+ "common_voice_eo_25392693.mp3",
134
+ "common_voice_eo_25392694.mp3",
135
+ "common_voice_eo_25392695.mp3",
136
+ "common_voice_eo_25392697.mp3",
137
+ "common_voice_eo_25392701.mp3",
138
+ "common_voice_eo_25392702.mp3",
139
+ "common_voice_eo_25392708.mp3",
140
+ "common_voice_eo_25392709.mp3",
141
+ "common_voice_eo_25408881.mp3",
142
+ "common_voice_eo_25408882.mp3",
143
+ "common_voice_eo_25408885.mp3",
144
+ "common_voice_eo_27380623.mp3",
145
+ ]
146
+
147
+ _BAD_TRAIN_FILES = [
148
+ "common_voice_eo_25365027.mp3",
149
+ "common_voice_eo_25365472.mp3",
150
+ "common_voice_eo_25365480.mp3",
151
+ "common_voice_eo_25365532.mp3",
152
+ "common_voice_eo_25365695.mp3",
153
+ "common_voice_eo_25365744.mp3",
154
+ "common_voice_eo_25365804.mp3",
155
+ "common_voice_eo_25365836.mp3",
156
+ "common_voice_eo_25365855.mp3",
157
+ "common_voice_eo_25372587.mp3",
158
+ "common_voice_eo_25401060.mp3",
159
+ "common_voice_eo_25430837.mp3",
160
+ "common_voice_eo_25444509.mp3",
161
+ "common_voice_eo_25240777.mp3",
162
+ "common_voice_eo_24942754.mp3",
163
+ "common_voice_eo_24942755.mp3",
164
+ "common_voice_eo_24990372.mp3",
165
+ "common_voice_eo_24990385.mp3",
166
+ "common_voice_eo_24990390.mp3",
167
+ "common_voice_eo_24990397.mp3",
168
+ "common_voice_eo_24990413.mp3",
169
+ "common_voice_eo_24990427.mp3",
170
+ "common_voice_eo_24990429.mp3",
171
+ "common_voice_eo_24990435.mp3",
172
+ "common_voice_eo_24990441.mp3",
173
+ "common_voice_eo_24990454.mp3",
174
+ "common_voice_eo_24990457.mp3",
175
+ "common_voice_eo_24990459.mp3",
176
+ "common_voice_eo_24990490.mp3",
177
+ "common_voice_eo_25529345.mp3",
178
+ "common_voice_eo_25648750.mp3",
179
+ "common_voice_eo_28670472.mp3",
180
+ "common_voice_eo_27931966.mp3",
181
+ "common_voice_eo_28252265.mp3",
182
+ "common_voice_eo_25454951.mp3",
183
+ "common_voice_eo_25927616.mp3",
184
+ "common_voice_eo_25153203.mp3",
185
+ "common_voice_eo_25238543.mp3",
186
+ "common_voice_eo_25284237.mp3",
187
+ "common_voice_eo_25460131.mp3",
188
+ "common_voice_eo_25460185.mp3",
189
+ "common_voice_eo_25460186.mp3",
190
+ "common_voice_eo_25460188.mp3",
191
+ "common_voice_eo_25460189.mp3",
192
+ "common_voice_eo_25446723.mp3",
193
+ "common_voice_eo_26025150.mp3",
194
+ "common_voice_eo_26640189.mp3",
195
+ "common_voice_eo_26888468.mp3",
196
+ "common_voice_eo_24844824.mp3",
197
+ "common_voice_eo_25022506.mp3",
198
+ "common_voice_eo_25022507.mp3",
199
+ "common_voice_eo_25022516.mp3",
200
+ "common_voice_eo_25032858.mp3",
201
+ "common_voice_eo_25032859.mp3",
202
+ "common_voice_eo_25032865.mp3",
203
+ "common_voice_eo_25243988.mp3",
204
+ "common_voice_eo_25244009.mp3",
205
+ "common_voice_eo_25266094.mp3",
206
+ "common_voice_eo_25266141.mp3",
207
+ "common_voice_eo_25285278.mp3",
208
+ "common_voice_eo_25286768.mp3",
209
+ "common_voice_eo_25457171.mp3",
210
+ "common_voice_eo_25467641.mp3",
211
+ "common_voice_eo_25467723.mp3",
212
+ "common_voice_eo_25467791.mp3",
213
+ "common_voice_eo_25467820.mp3",
214
+ "common_voice_eo_25467943.mp3",
215
+ "common_voice_eo_25478612.mp3",
216
+ "common_voice_eo_25478623.mp3",
217
+ "common_voice_eo_25478631.mp3",
218
+ "common_voice_eo_25478756.mp3",
219
+ "common_voice_eo_25478762.mp3",
220
+ "common_voice_eo_25478768.mp3",
221
+ "common_voice_eo_25478769.mp3",
222
+ "common_voice_eo_25479150.mp3",
223
+ "common_voice_eo_25479203.mp3",
224
+ "common_voice_eo_25479229.mp3",
225
+ "common_voice_eo_25517673.mp3",
226
+ "common_voice_eo_25517677.mp3",
227
+ "common_voice_eo_25527739.mp3",
228
+ "common_voice_eo_25975149.mp3",
229
+ "common_voice_eo_26193748.mp3",
230
+ "common_voice_eo_28401039.mp3",
231
+ "common_voice_eo_28421315.mp3",
232
+ "common_voice_eo_28937347.mp3",
233
+ "common_voice_eo_24890414.mp3",
234
+ "common_voice_eo_25294479.mp3",
235
+ "common_voice_eo_25438966.mp3",
236
+ "common_voice_eo_28855568.mp3",
237
+ "common_voice_eo_29011007.mp3",
238
+ "common_voice_eo_24599888.mp3",
239
+ "common_voice_eo_26964252.mp3",
240
+ "common_voice_eo_26964496.mp3",
241
+ "common_voice_eo_26964510.mp3",
242
+ "common_voice_eo_25432789.mp3",
243
+ "common_voice_eo_26688158.mp3",
244
+ "common_voice_eo_28516354.mp3",
245
+ "common_voice_eo_24790865.mp3",
246
+ "common_voice_eo_24790897.mp3",
247
+ "common_voice_eo_24790898.mp3",
248
+ "common_voice_eo_24790899.mp3",
249
+ "common_voice_eo_24790900.mp3",
250
+ "common_voice_eo_25362713.mp3",
251
+ "common_voice_eo_27585084.mp3",
252
+ "common_voice_eo_24813131.mp3",
253
+ "common_voice_eo_25035262.mp3",
254
+ "common_voice_eo_26000289.mp3",
255
+ "common_voice_eo_26003943.mp3",
256
+ "common_voice_eo_26283983.mp3",
257
+ "common_voice_eo_28708931.mp3",
258
+ "common_voice_eo_28037217.mp3",
259
+ "common_voice_eo_29273106.mp3",
260
+ "common_voice_eo_26006657.mp3",
261
+ "common_voice_eo_25399924.mp3",
262
+ "common_voice_eo_27982431.mp3",
263
+ "common_voice_eo_25893779.mp3",
264
+ "common_voice_eo_27842061.mp3",
265
+ "common_voice_eo_25052385.mp3",
266
+ "common_voice_eo_25807395.mp3",
267
+ "common_voice_eo_25807985.mp3",
268
+ "common_voice_eo_25808039.mp3",
269
+ "common_voice_eo_25808407.mp3",
270
+ "common_voice_eo_25809036.mp3",
271
+ "common_voice_eo_27487795.mp3",
272
+ "common_voice_eo_28460556.mp3",
273
+ "common_voice_eo_28884851.mp3",
274
+ "common_voice_eo_24819719.mp3",
275
+ "common_voice_eo_25153594.mp3",
276
+ "common_voice_eo_25234585.mp3",
277
+ "common_voice_eo_25245164.mp3",
278
+ "common_voice_eo_27538877.mp3",
279
+ "common_voice_eo_24862771.mp3",
280
+ "common_voice_eo_25070167.mp3",
281
+ "common_voice_eo_26381720.mp3",
282
+ "common_voice_eo_28110376.mp3",
283
+ ]
284
+
285
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
286
+ # check_min_version("4.29.0.dev0")
287
+
288
+ require_version(
289
+ "datasets>=1.18.0",
290
+ "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt",
291
+ )
292
+
293
+
294
+ logger = logging.getLogger(__name__)
295
+
296
+
297
+ def list_field(default=None, metadata=None):
298
+ return field(default_factory=lambda: default, metadata=metadata)
299
+
300
+
301
+ def dict_field(default=None, metadata=None):
302
+ return field(default_factory=lambda: default, metadata=metadata)
303
+
304
+
305
+ @dataclass
306
+ class ModelArguments:
307
+ """
308
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
309
+ """
310
+
311
+ model_name_or_path: str = field(
312
+ metadata={
313
+ "help": "Path to pretrained model or model identifier from huggingface.co/models"
314
+ }
315
+ )
316
+ tokenizer_name_or_path: Optional[str] = field(
317
+ default=None,
318
+ metadata={
319
+ "help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"
320
+ },
321
+ )
322
+ cache_dir: Optional[str] = field(
323
+ default=None,
324
+ metadata={
325
+ "help": "Where do you want to store the pretrained models downloaded from huggingface.co"
326
+ },
327
+ )
328
+ freeze_feature_encoder: bool = field(
329
+ default=True,
330
+ metadata={"help": "Whether to freeze the feature encoder layers of the model."},
331
+ )
332
+ attention_dropout: float = field(
333
+ default=0.0,
334
+ metadata={"help": "The dropout ratio for the attention probabilities."},
335
+ )
336
+ activation_dropout: float = field(
337
+ default=0.0,
338
+ metadata={
339
+ "help": "The dropout ratio for activations inside the fully connected layer."
340
+ },
341
+ )
342
+ feat_proj_dropout: float = field(
343
+ default=0.0, metadata={"help": "The dropout ratio for the projected features."}
344
+ )
345
+ hidden_dropout: float = field(
346
+ default=0.0,
347
+ metadata={
348
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
349
+ },
350
+ )
351
+ final_dropout: float = field(
352
+ default=0.0,
353
+ metadata={"help": "The dropout probability for the final projection layer."},
354
+ )
355
+ mask_time_prob: float = field(
356
+ default=0.05,
357
+ metadata={
358
+ "help": (
359
+ "Probability of each feature vector along the time axis to be chosen as the start of the vector"
360
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
361
+ "vectors will be masked along the time axis."
362
+ )
363
+ },
364
+ )
365
+ mask_time_length: int = field(
366
+ default=10,
367
+ metadata={"help": "Length of vector span to mask along the time axis."},
368
+ )
369
+ mask_feature_prob: float = field(
370
+ default=0.0,
371
+ metadata={
372
+ "help": (
373
+ "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
374
+ " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
375
+ " bins will be masked along the time axis."
376
+ )
377
+ },
378
+ )
379
+ mask_feature_length: int = field(
380
+ default=10,
381
+ metadata={"help": "Length of vector span to mask along the feature axis."},
382
+ )
383
+ layerdrop: float = field(
384
+ default=0.0, metadata={"help": "The LayerDrop probability."}
385
+ )
386
+ ctc_loss_reduction: Optional[str] = field(
387
+ default="mean",
388
+ metadata={
389
+ "help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."
390
+ },
391
+ )
392
+
393
+
394
+ @dataclass
395
+ class DataTrainingArguments:
396
+ """
397
+ Arguments pertaining to what data we are going to input our model for training and eval.
398
+
399
+ Using `HfArgumentParser` we can turn this class
400
+ into argparse arguments to be able to specify them on
401
+ the command line.
402
+ """
403
+
404
+ dataset_name: str = field(
405
+ metadata={
406
+ "help": "The configuration name of the dataset to use (via the datasets library)."
407
+ }
408
+ )
409
+ dataset_config_name: str = field(
410
+ default=None,
411
+ metadata={
412
+ "help": "The configuration name of the dataset to use (via the datasets library)."
413
+ },
414
+ )
415
+ train_split_name: str = field(
416
+ default="train+validation",
417
+ metadata={
418
+ "help": (
419
+ "The name of the training data set split to use (via the datasets library). Defaults to "
420
+ "'train+validation'"
421
+ )
422
+ },
423
+ )
424
+ eval_split_name: str = field(
425
+ default="test",
426
+ metadata={
427
+ "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
428
+ },
429
+ )
430
+ audio_column_name: str = field(
431
+ default="audio",
432
+ metadata={
433
+ "help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
434
+ },
435
+ )
436
+ text_column_name: str = field(
437
+ default="text",
438
+ metadata={
439
+ "help": "The name of the dataset column containing the text data. Defaults to 'text'"
440
+ },
441
+ )
442
+ overwrite_cache: bool = field(
443
+ default=False,
444
+ metadata={"help": "Overwrite the cached preprocessed datasets or not."},
445
+ )
446
+ preprocessing_num_workers: Optional[int] = field(
447
+ default=None,
448
+ metadata={"help": "The number of processes to use for the preprocessing."},
449
+ )
450
+ max_train_samples: Optional[int] = field(
451
+ default=None,
452
+ metadata={
453
+ "help": (
454
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
455
+ "value if set."
456
+ )
457
+ },
458
+ )
459
+ max_eval_samples: Optional[int] = field(
460
+ default=None,
461
+ metadata={
462
+ "help": (
463
+ "For debugging purposes or quicker training, truncate the number of validation examples to this "
464
+ "value if set."
465
+ )
466
+ },
467
+ )
468
+ chars_to_ignore: Optional[List[str]] = list_field(
469
+ default=None,
470
+ metadata={"help": "A list of characters to remove from the transcripts."},
471
+ )
472
+ chars_to_substitute: Optional[Dict[str, str]] = dict_field(
473
+ default=None,
474
+ metadata={"help": "A dict of characters to replace."},
475
+ )
476
+ eval_metrics: List[str] = list_field(
477
+ default=["wer"],
478
+ metadata={
479
+ "help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"
480
+ },
481
+ )
482
+ max_duration_in_seconds: float = field(
483
+ default=20.0,
484
+ metadata={
485
+ "help": (
486
+ "Filter audio files that are longer than `max_duration_in_seconds` seconds to"
487
+ " 'max_duration_in_seconds`"
488
+ )
489
+ },
490
+ )
491
+ min_duration_in_seconds: float = field(
492
+ default=0.0,
493
+ metadata={
494
+ "help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
495
+ },
496
+ )
497
+ preprocessing_only: bool = field(
498
+ default=False,
499
+ metadata={
500
+ "help": (
501
+ "Whether to only do data preprocessing and skip training. This is especially useful when data"
502
+ " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
503
+ " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
504
+ " can consequently be loaded in distributed training"
505
+ )
506
+ },
507
+ )
508
+ use_auth_token: bool = field(
509
+ default=False,
510
+ metadata={
511
+ "help": (
512
+ "If :obj:`True`, will use the token generated when running"
513
+ ":obj:`huggingface-cli login` as HTTP bearer authorization for remote files."
514
+ )
515
+ },
516
+ )
517
+ unk_token: str = field(
518
+ default="[UNK]",
519
+ metadata={"help": "The unk token for the tokenizer"},
520
+ )
521
+ pad_token: str = field(
522
+ default="[PAD]",
523
+ metadata={"help": "The padding token for the tokenizer"},
524
+ )
525
+ word_delimiter_token: str = field(
526
+ default="|",
527
+ metadata={"help": "The word delimiter token for the tokenizer"},
528
+ )
529
+ phoneme_language: Optional[str] = field(
530
+ default=None,
531
+ metadata={
532
+ "help": (
533
+ "The target language that should be used be"
534
+ " passed to the tokenizer for tokenization. Note that"
535
+ " this is only relevant if the model classifies the"
536
+ " input audio to a sequence of phoneme sequences."
537
+ )
538
+ },
539
+ )
540
+
541
+
542
+ @dataclass
543
+ class DataCollatorCTCWithPadding:
544
+ """
545
+ Data collator that will dynamically pad the inputs received.
546
+ Args:
547
+ processor (:class:`~transformers.AutoProcessor`)
548
+ The processor used for proccessing the data.
549
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
550
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
551
+ among:
552
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
553
+ sequence if provided).
554
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
555
+ maximum acceptable input length for the model if that argument is not provided.
556
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
557
+ different lengths).
558
+ max_length (:obj:`int`, `optional`):
559
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
560
+ max_length_labels (:obj:`int`, `optional`):
561
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
562
+ pad_to_multiple_of (:obj:`int`, `optional`):
563
+ If set will pad the sequence to a multiple of the provided value.
564
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
565
+ 7.5 (Volta).
566
+ """
567
+
568
+ processor: Wav2Vec2Processor
569
+ padding: Union[bool, str] = "longest"
570
+ pad_to_multiple_of: Optional[int] = None
571
+ pad_to_multiple_of_labels: Optional[int] = None
572
+
573
+ def __call__(
574
+ self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
575
+ ) -> Dict[str, torch.Tensor]:
576
+ # split inputs and labels since they have to be of different lenghts and need
577
+ # different padding methods
578
+ input_features = [
579
+ {"input_values": feature["input_values"]} for feature in features
580
+ ]
581
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
582
+
583
+ batch = self.processor.pad(
584
+ input_features,
585
+ padding=self.padding,
586
+ pad_to_multiple_of=self.pad_to_multiple_of,
587
+ return_tensors="pt",
588
+ )
589
+
590
+ labels_batch = self.processor.pad(
591
+ labels=label_features,
592
+ padding=self.padding,
593
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
594
+ return_tensors="pt",
595
+ )
596
+
597
+ # replace padding with -100 to ignore loss correctly
598
+ labels = labels_batch["input_ids"].masked_fill(
599
+ labels_batch.attention_mask.ne(1), -100
600
+ )
601
+
602
+ batch["labels"] = labels
603
+ if "attention_mask" in batch:
604
+ batch["attention_mask"] = batch["attention_mask"].to(torch.long)
605
+
606
+ return batch
607
+
608
+
609
+ def create_vocabulary_from_data(
610
+ vocab_datasets: DatasetDict,
611
+ word_delimiter_token: Optional[str] = None,
612
+ unk_token: Optional[str] = None,
613
+ pad_token: Optional[str] = None,
614
+ ):
615
+ # Given training and test labels create vocabulary
616
+ def extract_all_chars(batch):
617
+ all_text = " ".join(batch["target_text"])
618
+ vocab = list(set(all_text))
619
+ return {"vocab": [vocab], "all_text": [all_text]}
620
+
621
+ vocabs = vocab_datasets.map(
622
+ extract_all_chars,
623
+ batched=True,
624
+ batch_size=-1,
625
+ keep_in_memory=True,
626
+ remove_columns=vocab_datasets["train"].column_names,
627
+ )
628
+
629
+ # take union of all unique characters in each dataset
630
+ vocab_set = functools.reduce(
631
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]),
632
+ vocabs.values(),
633
+ )
634
+
635
+ vocab_dict = {v: k for k, v in enumerate(sorted(vocab_set))}
636
+
637
+ # replace white space with delimiter token
638
+ if word_delimiter_token is not None:
639
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
640
+ del vocab_dict[" "]
641
+
642
+ # add unk and pad token
643
+ if unk_token is not None:
644
+ vocab_dict[unk_token] = len(vocab_dict)
645
+
646
+ if pad_token is not None:
647
+ vocab_dict[pad_token] = len(vocab_dict)
648
+
649
+ return vocab_dict
650
+
651
+
652
+ def main():
653
+ # See all possible arguments in src/transformers/training_args.py
654
+ # or by passing the --help flag to this script.
655
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
656
+
657
+ parser = HfArgumentParser(
658
+ (ModelArguments, DataTrainingArguments, TrainingArguments)
659
+ )
660
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
661
+ # If we pass only one argument to the script and it's the path to a json file,
662
+ # let's parse it to get our arguments.
663
+ model_args, data_args, training_args = parser.parse_json_file(
664
+ json_file=os.path.abspath(sys.argv[1])
665
+ )
666
+ else:
667
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
668
+
669
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
670
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
671
+ send_example_telemetry("run_speech_recognition_ctc", model_args, data_args)
672
+
673
+ # Setup logging
674
+ logging.basicConfig(
675
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
676
+ datefmt="%m/%d/%Y %H:%M:%S",
677
+ handlers=[logging.StreamHandler(sys.stdout)],
678
+ )
679
+ logger.setLevel(
680
+ logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
681
+ )
682
+
683
+ # Detecting last checkpoint.
684
+ last_checkpoint = None
685
+ if (
686
+ os.path.isdir(training_args.output_dir)
687
+ and training_args.do_train
688
+ and not training_args.overwrite_output_dir
689
+ ):
690
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
691
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
692
+ raise ValueError(
693
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
694
+ "Use --overwrite_output_dir to overcome."
695
+ )
696
+ elif last_checkpoint is not None:
697
+ logger.info(
698
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
699
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
700
+ )
701
+
702
+ # Log on each process the small summary:
703
+ logger.warning(
704
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
705
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
706
+ )
707
+ # Set the verbosity to info of the Transformers logger (on main process only):
708
+ if is_main_process(training_args.local_rank):
709
+ transformers.utils.logging.set_verbosity_info()
710
+ logger.info("Training/evaluation parameters %s", training_args)
711
+
712
+ # Set seed before initializing model.
713
+ set_seed(training_args.seed)
714
+
715
+ # 1. First, let's load the dataset
716
+ print("======== STEP 1: load dataset")
717
+ raw_datasets = DatasetDict()
718
+
719
+ if training_args.do_train:
720
+ raw_datasets["train"] = load_dataset(
721
+ data_args.dataset_name,
722
+ data_args.dataset_config_name,
723
+ split=data_args.train_split_name,
724
+ use_auth_token=data_args.use_auth_token,
725
+ )
726
+
727
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
728
+ raise ValueError(
729
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
730
+ " Make sure to set `--audio_column_name` to the correct audio column - one of"
731
+ f" {', '.join(raw_datasets['train'].column_names)}."
732
+ )
733
+
734
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
735
+ raise ValueError(
736
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
737
+ "Make sure to set `--text_column_name` to the correct text column - one of "
738
+ f"{', '.join(raw_datasets['train'].column_names)}."
739
+ )
740
+
741
+ if data_args.max_train_samples is not None:
742
+ raw_datasets["train"] = raw_datasets["train"].select(
743
+ range(data_args.max_train_samples)
744
+ )
745
+
746
+ if training_args.do_eval:
747
+ raw_datasets["eval"] = load_dataset(
748
+ data_args.dataset_name,
749
+ data_args.dataset_config_name,
750
+ split=data_args.eval_split_name,
751
+ use_auth_token=data_args.use_auth_token,
752
+ )
753
+
754
+ if data_args.max_eval_samples is not None:
755
+ raw_datasets["eval"] = raw_datasets["eval"].select(
756
+ range(data_args.max_eval_samples)
757
+ )
758
+
759
+ # 2. We remove some special characters from the datasets
760
+ # that make training complicated and do not help in transcribing the speech
761
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
762
+ # that could be easily picked up by the model
763
+ print("======== STEP 2: Massage characters")
764
+ chars_to_ignore_regex = (
765
+ f'[{"".join(data_args.chars_to_ignore)}]'
766
+ if data_args.chars_to_ignore is not None
767
+ else None
768
+ )
769
+ text_column_name = data_args.text_column_name
770
+
771
+ def remove_special_characters(batch):
772
+ text = batch[text_column_name]
773
+ if chars_to_ignore_regex is not None:
774
+ text = re.sub(chars_to_ignore_regex, "", batch[text_column_name])
775
+ batch["target_text"] = text.lower() + " "
776
+ return batch
777
+
778
+ def substitute_characters(batch):
779
+ text: str = batch["target_text"]
780
+ if data_args.chars_to_substitute is not None:
781
+ for k, v in data_args.chars_to_substitute.items():
782
+ text.replace(k, v)
783
+ batch["target_text"] = text.lower()
784
+ return batch
785
+
786
+ with training_args.main_process_first(
787
+ desc="dataset map special characters removal"
788
+ ):
789
+ raw_datasets = raw_datasets.map(
790
+ remove_special_characters,
791
+ remove_columns=[text_column_name],
792
+ desc="remove special characters from datasets",
793
+ )
794
+
795
+ with training_args.main_process_first(
796
+ desc="dataset map special characters substitute"
797
+ ):
798
+ raw_datasets = raw_datasets.map(
799
+ substitute_characters,
800
+ desc="substitute special characters in datasets",
801
+ )
802
+
803
+ # save special tokens for tokenizer
804
+ word_delimiter_token = data_args.word_delimiter_token
805
+ unk_token = data_args.unk_token
806
+ pad_token = data_args.pad_token
807
+
808
+ with training_args.main_process_first(
809
+ desc="filter out bad data"
810
+ ):
811
+ def is_good_quality(path: str) -> bool:
812
+ filename = os.path.basename(path)
813
+ if filename in _BAD_TEST_FILES:
814
+ return False
815
+ if filename in _BAD_VALIDATION_FILES:
816
+ return False
817
+ if filename in _BAD_TRAIN_FILES:
818
+ return False
819
+ return True
820
+
821
+ # filter data that sucks
822
+ raw_datasets = raw_datasets.filter(
823
+ function=is_good_quality,
824
+ num_proc=data_args.preprocessing_num_workers,
825
+ input_columns=["path"]
826
+ )
827
+
828
+ # 3. Next, let's load the config as we might need it to create
829
+ # the tokenizer
830
+ # load config
831
+ print("======== STEP 3: load config")
832
+ config = AutoConfig.from_pretrained(
833
+ model_args.model_name_or_path,
834
+ cache_dir=model_args.cache_dir,
835
+ use_auth_token=data_args.use_auth_token,
836
+ )
837
+
838
+ # 4. Next, if no tokenizer file is defined,
839
+ # we create the vocabulary of the model by extracting all unique characters from
840
+ # the training and evaluation datasets
841
+ # We need to make sure that only first rank saves vocabulary
842
+ # make sure all processes wait until vocab is created
843
+ print("======== STEP 4: maybe create vocabulary")
844
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
845
+ tokenizer_kwargs = {}
846
+ if tokenizer_name_or_path is None:
847
+ # save vocab in training output dir
848
+ tokenizer_name_or_path = training_args.output_dir
849
+
850
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
851
+ print(f"==== Saving tokenizer vocab to {vocab_file}")
852
+
853
+ with training_args.main_process_first():
854
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
855
+ try:
856
+ os.remove(vocab_file)
857
+ print("Removed vocab_file")
858
+ except OSError:
859
+ # in shared file-systems it might be the case that
860
+ # two processes try to delete the vocab file at the some time
861
+ pass
862
+
863
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
864
+ if not os.path.isfile(vocab_file):
865
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
866
+ vocab_dict = create_vocabulary_from_data(
867
+ raw_datasets,
868
+ word_delimiter_token=word_delimiter_token,
869
+ unk_token=unk_token,
870
+ pad_token=pad_token,
871
+ )
872
+
873
+ # save vocab dict to be loaded into tokenizer
874
+ with open(vocab_file, "w") as file:
875
+ json.dump(vocab_dict, file)
876
+ print("Wrote vocab_file")
877
+
878
+ # if tokenizer has just been created
879
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
880
+ tokenizer_kwargs = {
881
+ "config": config if config.tokenizer_class is not None else None,
882
+ "tokenizer_type": config.model_type
883
+ if config.tokenizer_class is None
884
+ else None,
885
+ "unk_token": unk_token,
886
+ "pad_token": pad_token,
887
+ "word_delimiter_token": word_delimiter_token,
888
+ }
889
+
890
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
891
+ # Note for distributed training, the .from_pretrained methods guarantee that only
892
+ # one local process can concurrently download model & vocab.
893
+
894
+ # load feature_extractor and tokenizer
895
+ print("======== STEP 5: instantiate things")
896
+ tokenizer = AutoTokenizer.from_pretrained(
897
+ tokenizer_name_or_path,
898
+ use_auth_token=data_args.use_auth_token,
899
+ **tokenizer_kwargs,
900
+ )
901
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
902
+ model_args.model_name_or_path,
903
+ cache_dir=model_args.cache_dir,
904
+ use_auth_token=data_args.use_auth_token,
905
+ )
906
+
907
+ # adapt config
908
+ config.update(
909
+ {
910
+ "feat_proj_dropout": model_args.feat_proj_dropout,
911
+ "attention_dropout": model_args.attention_dropout,
912
+ "hidden_dropout": model_args.hidden_dropout,
913
+ "final_dropout": model_args.final_dropout,
914
+ "mask_time_prob": model_args.mask_time_prob,
915
+ "mask_time_length": model_args.mask_time_length,
916
+ "mask_feature_prob": model_args.mask_feature_prob,
917
+ "mask_feature_length": model_args.mask_feature_length,
918
+ "gradient_checkpointing": training_args.gradient_checkpointing,
919
+ "layerdrop": model_args.layerdrop,
920
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
921
+ "pad_token_id": tokenizer.pad_token_id,
922
+ "vocab_size": len(tokenizer),
923
+ "activation_dropout": model_args.activation_dropout,
924
+ }
925
+ )
926
+
927
+ # create model
928
+ model = AutoModelForCTC.from_pretrained(
929
+ model_args.model_name_or_path,
930
+ cache_dir=model_args.cache_dir,
931
+ config=config,
932
+ use_auth_token=data_args.use_auth_token,
933
+ )
934
+
935
+ # freeze encoder
936
+ if model_args.freeze_feature_encoder:
937
+ model.freeze_feature_encoder()
938
+
939
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
940
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
941
+ # so that we just need to set the correct target sampling rate and normalize the input
942
+ # via the `feature_extractor`
943
+ print("======== STEP 6: preprocess datasets")
944
+
945
+ # make sure that dataset decodes audio with correct sampling rate
946
+ dataset_sampling_rate = (
947
+ next(iter(raw_datasets.values()))
948
+ .features[data_args.audio_column_name]
949
+ .sampling_rate
950
+ )
951
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
952
+ raw_datasets = raw_datasets.cast_column(
953
+ data_args.audio_column_name,
954
+ datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
955
+ )
956
+
957
+ # derive max & min input length for sample rate & max duration
958
+ max_input_length = (
959
+ data_args.max_duration_in_seconds * feature_extractor.sampling_rate
960
+ )
961
+ min_input_length = (
962
+ data_args.min_duration_in_seconds * feature_extractor.sampling_rate
963
+ )
964
+ audio_column_name = data_args.audio_column_name
965
+ num_workers = data_args.preprocessing_num_workers
966
+
967
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
968
+ phoneme_language = data_args.phoneme_language
969
+
970
+ # Preprocessing the datasets.
971
+ # We need to read the audio files as arrays and tokenize the targets.
972
+ def prepare_dataset(batch):
973
+ # load audio
974
+ sample = batch[audio_column_name]
975
+
976
+ inputs = feature_extractor(
977
+ sample["array"], sampling_rate=sample["sampling_rate"]
978
+ )
979
+ batch["input_values"] = inputs.input_values[0]
980
+ batch["input_length"] = len(batch["input_values"])
981
+
982
+ # encode targets
983
+ additional_kwargs = {}
984
+ if phoneme_language is not None:
985
+ additional_kwargs["phonemizer_lang"] = phoneme_language
986
+
987
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
988
+ return batch
989
+
990
+ with training_args.main_process_first(desc="dataset map preprocessing"):
991
+ vectorized_datasets = raw_datasets.map(
992
+ prepare_dataset,
993
+ remove_columns=next(iter(raw_datasets.values())).column_names,
994
+ num_proc=num_workers,
995
+ desc="preprocess datasets",
996
+ )
997
+
998
+ def is_audio_in_length_range(length):
999
+ return length > min_input_length and length < max_input_length
1000
+
1001
+ # filter data that is shorter than min_input_length
1002
+ vectorized_datasets = vectorized_datasets.filter(
1003
+ is_audio_in_length_range,
1004
+ num_proc=num_workers,
1005
+ input_columns=["input_length"],
1006
+ )
1007
+
1008
+ # 7. Next, we can prepare the training.
1009
+ # Let's use word error rate (WER) as our evaluation metric,
1010
+ # instantiate a data collator and the trainer
1011
+ print("======== STEP 7: prepare training")
1012
+
1013
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
1014
+ eval_metrics = {metric: evaluate.load(metric) for metric in data_args.eval_metrics}
1015
+
1016
+ # for large datasets it is advised to run the preprocessing on a
1017
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
1018
+ # be a timeout when running the script in distributed mode.
1019
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
1020
+ # cached dataset
1021
+ if data_args.preprocessing_only:
1022
+ logger.info(
1023
+ f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
1024
+ )
1025
+ return
1026
+
1027
+ def compute_metrics(pred):
1028
+ pred_logits = pred.predictions
1029
+ pred_ids = np.argmax(pred_logits, axis=-1)
1030
+
1031
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
1032
+
1033
+ pred_str = tokenizer.batch_decode(pred_ids)
1034
+ # we do not want to group tokens when computing the metrics
1035
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
1036
+
1037
+ metrics = {
1038
+ k: v.compute(predictions=pred_str, references=label_str)
1039
+ for k, v in eval_metrics.items()
1040
+ }
1041
+
1042
+ return metrics
1043
+
1044
+ # Now save everything to be able to create a single processor later
1045
+ # make sure all processes wait until data is saved
1046
+ with training_args.main_process_first():
1047
+ # only the main process saves them
1048
+ if is_main_process(training_args.local_rank):
1049
+ # save feature extractor, tokenizer and config
1050
+ feature_extractor.save_pretrained(training_args.output_dir)
1051
+ tokenizer.save_pretrained(training_args.output_dir)
1052
+ config.save_pretrained(training_args.output_dir)
1053
+
1054
+ try:
1055
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
1056
+ except (OSError, KeyError):
1057
+ warnings.warn(
1058
+ "Loading a processor from a feature extractor config that does not"
1059
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
1060
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
1061
+ " `'processor_class': 'Wav2Vec2Processor'`",
1062
+ FutureWarning,
1063
+ )
1064
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
1065
+
1066
+ # Instantiate custom data collator
1067
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
1068
+
1069
+ # Initialize Trainer
1070
+ trainer = Trainer(
1071
+ model=model,
1072
+ data_collator=data_collator,
1073
+ args=training_args,
1074
+ compute_metrics=compute_metrics,
1075
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
1076
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
1077
+ tokenizer=processor,
1078
+ )
1079
+
1080
+ # 8. Finally, we can start training
1081
+ print("======== STEP 8: train")
1082
+
1083
+ # Training
1084
+ if training_args.do_train:
1085
+ # use last checkpoint if exist
1086
+ if last_checkpoint is not None:
1087
+ checkpoint = last_checkpoint
1088
+ elif os.path.isdir(model_args.model_name_or_path):
1089
+ checkpoint = model_args.model_name_or_path
1090
+ else:
1091
+ checkpoint = None
1092
+
1093
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
1094
+ trainer.save_model()
1095
+
1096
+ metrics = train_result.metrics
1097
+ max_train_samples = (
1098
+ data_args.max_train_samples
1099
+ if data_args.max_train_samples is not None
1100
+ else len(vectorized_datasets["train"])
1101
+ )
1102
+ metrics["train_samples"] = min(
1103
+ max_train_samples, len(vectorized_datasets["train"])
1104
+ )
1105
+
1106
+ trainer.log_metrics("train", metrics)
1107
+ trainer.save_metrics("train", metrics)
1108
+ trainer.save_state()
1109
+
1110
+ # Evaluation
1111
+ print("======== STEP 9: eval")
1112
+ results = {}
1113
+ if training_args.do_eval:
1114
+ logger.info("*** Evaluate ***")
1115
+ metrics = trainer.evaluate()
1116
+ max_eval_samples = (
1117
+ data_args.max_eval_samples
1118
+ if data_args.max_eval_samples is not None
1119
+ else len(vectorized_datasets["eval"])
1120
+ )
1121
+ metrics["eval_samples"] = min(
1122
+ max_eval_samples, len(vectorized_datasets["eval"])
1123
+ )
1124
+
1125
+ trainer.log_metrics("eval", metrics)
1126
+ trainer.save_metrics("eval", metrics)
1127
+
1128
+ # Write model card and (optionally) push to hub
1129
+ print("======== STEP 10: write model card, push to hub")
1130
+
1131
+ config_name = (
1132
+ data_args.dataset_config_name
1133
+ if data_args.dataset_config_name is not None
1134
+ else "na"
1135
+ )
1136
+ kwargs = {
1137
+ "finetuned_from": model_args.model_name_or_path,
1138
+ "tasks": "automatic-speech-recognition",
1139
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
1140
+ "dataset_args": (
1141
+ f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
1142
+ f" {data_args.eval_split_name}"
1143
+ ),
1144
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
1145
+ }
1146
+ if "common_voice" in data_args.dataset_name:
1147
+ kwargs["language"] = config_name
1148
+
1149
+ if training_args.push_to_hub:
1150
+ trainer.create_model_card(**kwargs)
1151
+ trainer.push_to_hub(**kwargs)
1152
+
1153
+ return results
1154
+
1155
+
1156
+ if __name__ == "__main__":
1157
+ main()
train.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "mozilla-foundation/common_voice_13_0",
3
+ "model_name_or_path": "facebook/wav2vec2-large-xlsr-53",
4
+ "dataset_config_name": "eo",
5
+ "output_dir": "./wav2vec2-common_voice_13_0-eo-10",
6
+ "train_split_name": "train",
7
+ "eval_split_name": "validation",
8
+ "eval_metrics": ["cer", "wer"],
9
+ "overwrite_output_dir": false,
10
+ "preprocessing_num_workers": 1,
11
+ "num_train_epochs": 5,
12
+ "per_device_train_batch_size": 16,
13
+ "gradient_accumulation_steps": 2,
14
+ "gradient_checkpointing": true,
15
+ "learning_rate": 3e-5,
16
+ "warmup_steps": 500,
17
+ "evaluation_strategy": "steps",
18
+ "text_column_name": "sentence",
19
+ "length_column_name": "input_length",
20
+ "save_steps": 1000,
21
+ "eval_steps": 1000,
22
+ "layerdrop": 0.2,
23
+ "save_total_limit": 3,
24
+ "freeze_feature_encoder": true,
25
+ "chars_to_ignore": "-!\"'(),.:;=?_`¨«¸»ʼ‑–—‘’“”„…‹›♫?",
26
+ "chars_to_substitute": {
27
+ "przy": "pŝe",
28
+ "byn": "bin",
29
+ "cx": "ĉ",
30
+ "sx": "ŝ",
31
+ "fi": "fi",
32
+ "fl": "fl",
33
+ "ǔ": "ŭ",
34
+ "ñ": "nj",
35
+ "á": "a",
36
+ "é": "e",
37
+ "ü": "ŭ",
38
+ "y": "j",
39
+ "qu": "ku"
40
+ },
41
+ "fp16": true,
42
+ "group_by_length": true,
43
+ "push_to_hub": true,
44
+ "do_train": true,
45
+ "do_eval": true
46
+ }