Upload 3 files
Browse files- efficientNetV2.pth +3 -0
- model.py +377 -0
- script.py +90 -0
efficientNetV2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1013db4ed47636273955a4c81242df3318315688754e30720e2e54be29a2347e
|
3 |
+
size 90752533
|
model.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from functools import partial
|
3 |
+
from typing import Callable, Optional
|
4 |
+
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch
|
7 |
+
from torch import Tensor
|
8 |
+
|
9 |
+
|
10 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
11 |
+
"""
|
12 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
13 |
+
"Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
|
14 |
+
|
15 |
+
This function is taken from the rwightman.
|
16 |
+
It can be seen here:
|
17 |
+
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py#L140
|
18 |
+
"""
|
19 |
+
if drop_prob == 0. or not training:
|
20 |
+
return x
|
21 |
+
keep_prob = 1 - drop_prob
|
22 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
23 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
24 |
+
random_tensor.floor_() # binarize
|
25 |
+
output = x.div(keep_prob) * random_tensor
|
26 |
+
return output
|
27 |
+
|
28 |
+
|
29 |
+
class DropPath(nn.Module):
|
30 |
+
"""
|
31 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
32 |
+
"Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
|
33 |
+
"""
|
34 |
+
def __init__(self, drop_prob=None):
|
35 |
+
super(DropPath, self).__init__()
|
36 |
+
self.drop_prob = drop_prob
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
return drop_path(x, self.drop_prob, self.training)
|
40 |
+
|
41 |
+
|
42 |
+
class ConvBNAct(nn.Module):
|
43 |
+
def __init__(self,
|
44 |
+
in_planes: int,
|
45 |
+
out_planes: int,
|
46 |
+
kernel_size: int = 3,
|
47 |
+
stride: int = 1,
|
48 |
+
groups: int = 1,
|
49 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
50 |
+
activation_layer: Optional[Callable[..., nn.Module]] = None):
|
51 |
+
super(ConvBNAct, self).__init__()
|
52 |
+
|
53 |
+
padding = (kernel_size - 1) // 2
|
54 |
+
if norm_layer is None:
|
55 |
+
norm_layer = nn.BatchNorm2d
|
56 |
+
if activation_layer is None:
|
57 |
+
activation_layer = nn.SiLU # alias Swish (torch>=1.7)
|
58 |
+
|
59 |
+
self.conv = nn.Conv2d(in_channels=in_planes,
|
60 |
+
out_channels=out_planes,
|
61 |
+
kernel_size=kernel_size,
|
62 |
+
stride=stride,
|
63 |
+
padding=padding,
|
64 |
+
groups=groups,
|
65 |
+
bias=False)
|
66 |
+
|
67 |
+
self.bn = norm_layer(out_planes)
|
68 |
+
self.act = activation_layer()
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
result = self.conv(x)
|
72 |
+
result = self.bn(result)
|
73 |
+
result = self.act(result)
|
74 |
+
|
75 |
+
return result
|
76 |
+
|
77 |
+
|
78 |
+
class SqueezeExcite(nn.Module):
|
79 |
+
def __init__(self,
|
80 |
+
input_c: int, # block input channel
|
81 |
+
expand_c: int, # block expand channel
|
82 |
+
se_ratio: float = 0.25):
|
83 |
+
super(SqueezeExcite, self).__init__()
|
84 |
+
squeeze_c = int(input_c * se_ratio)
|
85 |
+
self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1)
|
86 |
+
self.act1 = nn.SiLU() # alias Swish
|
87 |
+
self.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1)
|
88 |
+
self.act2 = nn.Sigmoid()
|
89 |
+
|
90 |
+
def forward(self, x: Tensor) -> Tensor:
|
91 |
+
scale = x.mean((2, 3), keepdim=True)
|
92 |
+
scale = self.conv_reduce(scale)
|
93 |
+
scale = self.act1(scale)
|
94 |
+
scale = self.conv_expand(scale)
|
95 |
+
scale = self.act2(scale)
|
96 |
+
return scale * x
|
97 |
+
|
98 |
+
|
99 |
+
class MBConv(nn.Module):
|
100 |
+
def __init__(self,
|
101 |
+
kernel_size: int,
|
102 |
+
input_c: int,
|
103 |
+
out_c: int,
|
104 |
+
expand_ratio: int,
|
105 |
+
stride: int,
|
106 |
+
se_ratio: float,
|
107 |
+
drop_rate: float,
|
108 |
+
norm_layer: Callable[..., nn.Module]):
|
109 |
+
super(MBConv, self).__init__()
|
110 |
+
|
111 |
+
if stride not in [1, 2]:
|
112 |
+
raise ValueError("illegal stride value.")
|
113 |
+
|
114 |
+
self.has_shortcut = (stride == 1 and input_c == out_c)
|
115 |
+
|
116 |
+
activation_layer = nn.SiLU # alias Swish
|
117 |
+
expanded_c = input_c * expand_ratio
|
118 |
+
|
119 |
+
# 在EfficientNetV2中,MBConv中不存在expansion=1的情况所以conv_pw肯定存在
|
120 |
+
assert expand_ratio != 1
|
121 |
+
# Point-wise expansion
|
122 |
+
self.expand_conv = ConvBNAct(input_c,
|
123 |
+
expanded_c,
|
124 |
+
kernel_size=1,
|
125 |
+
norm_layer=norm_layer,
|
126 |
+
activation_layer=activation_layer)
|
127 |
+
|
128 |
+
# Depth-wise convolution
|
129 |
+
self.dwconv = ConvBNAct(expanded_c,
|
130 |
+
expanded_c,
|
131 |
+
kernel_size=kernel_size,
|
132 |
+
stride=stride,
|
133 |
+
groups=expanded_c,
|
134 |
+
norm_layer=norm_layer,
|
135 |
+
activation_layer=activation_layer)
|
136 |
+
|
137 |
+
self.se = SqueezeExcite(input_c, expanded_c, se_ratio) if se_ratio > 0 else nn.Identity()
|
138 |
+
|
139 |
+
# Point-wise linear projection
|
140 |
+
self.project_conv = ConvBNAct(expanded_c,
|
141 |
+
out_planes=out_c,
|
142 |
+
kernel_size=1,
|
143 |
+
norm_layer=norm_layer,
|
144 |
+
activation_layer=nn.Identity) # 注意这里没有激活函数,所有传入Identity
|
145 |
+
|
146 |
+
self.out_channels = out_c
|
147 |
+
|
148 |
+
# 只有在使用shortcut连接时才使用dropout层
|
149 |
+
self.drop_rate = drop_rate
|
150 |
+
if self.has_shortcut and drop_rate > 0:
|
151 |
+
self.dropout = DropPath(drop_rate)
|
152 |
+
|
153 |
+
def forward(self, x: Tensor) -> Tensor:
|
154 |
+
result = self.expand_conv(x)
|
155 |
+
result = self.dwconv(result)
|
156 |
+
result = self.se(result)
|
157 |
+
result = self.project_conv(result)
|
158 |
+
|
159 |
+
if self.has_shortcut:
|
160 |
+
if self.drop_rate > 0:
|
161 |
+
result = self.dropout(result)
|
162 |
+
result += x
|
163 |
+
|
164 |
+
return result
|
165 |
+
|
166 |
+
|
167 |
+
class FusedMBConv(nn.Module):
|
168 |
+
def __init__(self,
|
169 |
+
kernel_size: int,
|
170 |
+
input_c: int,
|
171 |
+
out_c: int,
|
172 |
+
expand_ratio: int,
|
173 |
+
stride: int,
|
174 |
+
se_ratio: float,
|
175 |
+
drop_rate: float,
|
176 |
+
norm_layer: Callable[..., nn.Module]):
|
177 |
+
super(FusedMBConv, self).__init__()
|
178 |
+
|
179 |
+
assert stride in [1, 2]
|
180 |
+
assert se_ratio == 0
|
181 |
+
|
182 |
+
self.has_shortcut = stride == 1 and input_c == out_c
|
183 |
+
self.drop_rate = drop_rate
|
184 |
+
|
185 |
+
self.has_expansion = expand_ratio != 1
|
186 |
+
|
187 |
+
activation_layer = nn.SiLU # alias Swish
|
188 |
+
expanded_c = input_c * expand_ratio
|
189 |
+
|
190 |
+
# 只有当expand ratio不等于1时才有expand conv
|
191 |
+
if self.has_expansion:
|
192 |
+
# Expansion convolution
|
193 |
+
self.expand_conv = ConvBNAct(input_c,
|
194 |
+
expanded_c,
|
195 |
+
kernel_size=kernel_size,
|
196 |
+
stride=stride,
|
197 |
+
norm_layer=norm_layer,
|
198 |
+
activation_layer=activation_layer)
|
199 |
+
|
200 |
+
self.project_conv = ConvBNAct(expanded_c,
|
201 |
+
out_c,
|
202 |
+
kernel_size=1,
|
203 |
+
norm_layer=norm_layer,
|
204 |
+
activation_layer=nn.Identity) # 注意没有激活函数
|
205 |
+
else:
|
206 |
+
# 当只有project_conv时的情况
|
207 |
+
self.project_conv = ConvBNAct(input_c,
|
208 |
+
out_c,
|
209 |
+
kernel_size=kernel_size,
|
210 |
+
stride=stride,
|
211 |
+
norm_layer=norm_layer,
|
212 |
+
activation_layer=activation_layer) # 注意有激活函数
|
213 |
+
|
214 |
+
self.out_channels = out_c
|
215 |
+
|
216 |
+
# 只有在使用shortcut连接时才使用dropout层
|
217 |
+
self.drop_rate = drop_rate
|
218 |
+
if self.has_shortcut and drop_rate > 0:
|
219 |
+
self.dropout = DropPath(drop_rate)
|
220 |
+
|
221 |
+
def forward(self, x: Tensor) -> Tensor:
|
222 |
+
if self.has_expansion:
|
223 |
+
result = self.expand_conv(x)
|
224 |
+
result = self.project_conv(result)
|
225 |
+
else:
|
226 |
+
result = self.project_conv(x)
|
227 |
+
|
228 |
+
if self.has_shortcut:
|
229 |
+
if self.drop_rate > 0:
|
230 |
+
result = self.dropout(result)
|
231 |
+
|
232 |
+
result += x
|
233 |
+
|
234 |
+
return result
|
235 |
+
|
236 |
+
|
237 |
+
class EfficientNetV2(nn.Module):
|
238 |
+
def __init__(self,
|
239 |
+
model_cnf: list,
|
240 |
+
num_classes: int = 1000,
|
241 |
+
num_features: int = 1280,
|
242 |
+
dropout_rate: float = 0.2,
|
243 |
+
drop_connect_rate: float = 0.2):
|
244 |
+
super(EfficientNetV2, self).__init__()
|
245 |
+
|
246 |
+
for cnf in model_cnf:
|
247 |
+
assert len(cnf) == 8
|
248 |
+
|
249 |
+
norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.1)
|
250 |
+
|
251 |
+
stem_filter_num = model_cnf[0][4]
|
252 |
+
|
253 |
+
self.stem = ConvBNAct(3,
|
254 |
+
stem_filter_num,
|
255 |
+
kernel_size=3,
|
256 |
+
stride=2,
|
257 |
+
norm_layer=norm_layer) # 激活函数默认是SiLU
|
258 |
+
|
259 |
+
total_blocks = sum([i[0] for i in model_cnf])
|
260 |
+
block_id = 0
|
261 |
+
blocks = []
|
262 |
+
for cnf in model_cnf:
|
263 |
+
repeats = cnf[0]
|
264 |
+
op = FusedMBConv if cnf[-2] == 0 else MBConv
|
265 |
+
for i in range(repeats):
|
266 |
+
blocks.append(op(kernel_size=cnf[1],
|
267 |
+
input_c=cnf[4] if i == 0 else cnf[5],
|
268 |
+
out_c=cnf[5],
|
269 |
+
expand_ratio=cnf[3],
|
270 |
+
stride=cnf[2] if i == 0 else 1,
|
271 |
+
se_ratio=cnf[-1],
|
272 |
+
drop_rate=drop_connect_rate * block_id / total_blocks,
|
273 |
+
norm_layer=norm_layer))
|
274 |
+
block_id += 1
|
275 |
+
self.blocks = nn.Sequential(*blocks)
|
276 |
+
|
277 |
+
head_input_c = model_cnf[-1][-3]
|
278 |
+
head = OrderedDict()
|
279 |
+
|
280 |
+
head.update({"project_conv": ConvBNAct(head_input_c,
|
281 |
+
num_features,
|
282 |
+
kernel_size=1,
|
283 |
+
norm_layer=norm_layer)}) # 激活函数默认是SiLU
|
284 |
+
|
285 |
+
head.update({"avgpool": nn.AdaptiveAvgPool2d(1)})
|
286 |
+
head.update({"flatten": nn.Flatten()})
|
287 |
+
|
288 |
+
if dropout_rate > 0:
|
289 |
+
head.update({"dropout": nn.Dropout(p=dropout_rate, inplace=True)})
|
290 |
+
head.update({"classifier": nn.Linear(num_features, num_classes)})
|
291 |
+
|
292 |
+
self.head = nn.Sequential(head)
|
293 |
+
|
294 |
+
# initial weights
|
295 |
+
for m in self.modules():
|
296 |
+
if isinstance(m, nn.Conv2d):
|
297 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
298 |
+
if m.bias is not None:
|
299 |
+
nn.init.zeros_(m.bias)
|
300 |
+
elif isinstance(m, nn.BatchNorm2d):
|
301 |
+
nn.init.ones_(m.weight)
|
302 |
+
nn.init.zeros_(m.bias)
|
303 |
+
elif isinstance(m, nn.Linear):
|
304 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
305 |
+
nn.init.zeros_(m.bias)
|
306 |
+
|
307 |
+
def forward(self, x: Tensor) -> Tensor:
|
308 |
+
x = self.stem(x)
|
309 |
+
x = self.blocks(x)
|
310 |
+
x = self.head(x)
|
311 |
+
|
312 |
+
return x
|
313 |
+
|
314 |
+
|
315 |
+
def efficientnetv2_s(num_classes: int = 1000):
|
316 |
+
"""
|
317 |
+
EfficientNetV2
|
318 |
+
https://arxiv.org/abs/2104.00298
|
319 |
+
"""
|
320 |
+
# train_size: 300, eval_size: 384
|
321 |
+
|
322 |
+
# repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
|
323 |
+
model_config = [[2, 3, 1, 1, 24, 24, 0, 0],
|
324 |
+
[4, 3, 2, 4, 24, 48, 0, 0],
|
325 |
+
[4, 3, 2, 4, 48, 64, 0, 0],
|
326 |
+
[6, 3, 2, 4, 64, 128, 1, 0.25],
|
327 |
+
[9, 3, 1, 6, 128, 160, 1, 0.25],
|
328 |
+
[15, 3, 2, 6, 160, 256, 1, 0.25]]
|
329 |
+
|
330 |
+
model = EfficientNetV2(model_cnf=model_config,
|
331 |
+
num_classes=num_classes,
|
332 |
+
dropout_rate=0.2)
|
333 |
+
return model
|
334 |
+
|
335 |
+
|
336 |
+
def efficientnetv2_m(num_classes: int = 1000):
|
337 |
+
"""
|
338 |
+
EfficientNetV2
|
339 |
+
https://arxiv.org/abs/2104.00298
|
340 |
+
"""
|
341 |
+
# train_size: 384, eval_size: 480
|
342 |
+
|
343 |
+
# repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
|
344 |
+
model_config = [[3, 3, 1, 1, 24, 24, 0, 0],
|
345 |
+
[5, 3, 2, 4, 24, 48, 0, 0],
|
346 |
+
[5, 3, 2, 4, 48, 80, 0, 0],
|
347 |
+
[7, 3, 2, 4, 80, 160, 1, 0.25],
|
348 |
+
[14, 3, 1, 6, 160, 176, 1, 0.25],
|
349 |
+
[18, 3, 2, 6, 176, 304, 1, 0.25],
|
350 |
+
[5, 3, 1, 6, 304, 512, 1, 0.25]]
|
351 |
+
|
352 |
+
model = EfficientNetV2(model_cnf=model_config,
|
353 |
+
num_classes=num_classes,
|
354 |
+
dropout_rate=0.3)
|
355 |
+
return model
|
356 |
+
|
357 |
+
|
358 |
+
def efficientnetv2_l(num_classes: int = 1000):
|
359 |
+
"""
|
360 |
+
EfficientNetV2
|
361 |
+
https://arxiv.org/abs/2104.00298
|
362 |
+
"""
|
363 |
+
# train_size: 384, eval_size: 480
|
364 |
+
|
365 |
+
# repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
|
366 |
+
model_config = [[4, 3, 1, 1, 32, 32, 0, 0],
|
367 |
+
[7, 3, 2, 4, 32, 64, 0, 0],
|
368 |
+
[7, 3, 2, 4, 64, 96, 0, 0],
|
369 |
+
[10, 3, 2, 4, 96, 192, 1, 0.25],
|
370 |
+
[19, 3, 1, 6, 192, 224, 1, 0.25],
|
371 |
+
[25, 3, 2, 6, 224, 384, 1, 0.25],
|
372 |
+
[7, 3, 1, 6, 384, 640, 1, 0.25]]
|
373 |
+
|
374 |
+
model = EfficientNetV2(model_cnf=model_config,
|
375 |
+
num_classes=num_classes,
|
376 |
+
dropout_rate=0.4)
|
377 |
+
return model
|
script.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision import transforms
|
6 |
+
|
7 |
+
from model import efficientnetv2_s as create_model
|
8 |
+
|
9 |
+
|
10 |
+
def predict(test_metadata, root_path='/tmp/data/private_testset', output_csv_path='./submission.csv'):
|
11 |
+
|
12 |
+
img_size = {"s": [384, 384], # train_size, val_size
|
13 |
+
"m": [384, 480],
|
14 |
+
"l": [384, 480]}
|
15 |
+
num_model = "s"
|
16 |
+
|
17 |
+
data_transform = transforms.Compose(
|
18 |
+
[transforms.Resize(img_size[num_model][1]),
|
19 |
+
transforms.CenterCrop(img_size[num_model][1]),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
22 |
+
|
23 |
+
id_list = test_metadata['observation_id'].tolist()
|
24 |
+
img_name_list = test_metadata['filename'].tolist()
|
25 |
+
print(os.path.abspath(os.path.dirname(__file__)))
|
26 |
+
|
27 |
+
id2classId = dict()
|
28 |
+
id2prob = dict()
|
29 |
+
prob_list = list()
|
30 |
+
classId_list = list()
|
31 |
+
|
32 |
+
for img_name in img_name_list:
|
33 |
+
img_path = os.path.join(root_path, img_name)
|
34 |
+
assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
|
35 |
+
img = Image.open(img_path).convert('RGB')
|
36 |
+
img = data_transform(img)
|
37 |
+
img = torch.unsqueeze(img, dim=0)
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
# predict class
|
41 |
+
output = model(img.to(device)).cpu()
|
42 |
+
predict = torch.softmax(output, dim=1)
|
43 |
+
probs, classesId = torch.max(predict, dim=1)
|
44 |
+
prob = probs.data.numpy().tolist()[0]
|
45 |
+
classesId = classesId.data.numpy().tolist()[0]
|
46 |
+
prob_list.append(prob)
|
47 |
+
classId_list.append(classesId)
|
48 |
+
|
49 |
+
for i, id in enumerate(id_list):
|
50 |
+
if id not in id2classId.keys():
|
51 |
+
id2classId[id] = classId_list[i]
|
52 |
+
id2prob[id] = prob_list[i]
|
53 |
+
else:
|
54 |
+
if prob_list[i] > id2prob[id]:
|
55 |
+
id2classId[id] = classId_list[i]
|
56 |
+
id2prob[id] = prob_list[i]
|
57 |
+
classes = list()
|
58 |
+
for id in id_list:
|
59 |
+
classes.append(str(id2classId[id]))
|
60 |
+
test_metadata["class_id"] = classes
|
61 |
+
|
62 |
+
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
|
63 |
+
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == '__main__':
|
67 |
+
import zipfile
|
68 |
+
|
69 |
+
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
|
70 |
+
zip_ref.extractall("/tmp/data")
|
71 |
+
root_path = '/tmp/data/private_testset'
|
72 |
+
|
73 |
+
# root_path = "../../data_set/flower_data/val/n1"
|
74 |
+
|
75 |
+
# json_file = open(json_path, "r")
|
76 |
+
# index2class = json.load(json_file)
|
77 |
+
|
78 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
79 |
+
# create model
|
80 |
+
model = create_model(num_classes=1784).to(device)
|
81 |
+
|
82 |
+
# load model weights
|
83 |
+
model_weight_path = "./efficientNetV2.pth"
|
84 |
+
model.load_state_dict(torch.load(model_weight_path, map_location=device))
|
85 |
+
model.eval()
|
86 |
+
|
87 |
+
metadata_file_path = "./SnakeCLEF2024_TestMetadata.csv"
|
88 |
+
# metadata_file_path = "./test1.csv"
|
89 |
+
test_metadata = pd.read_csv(metadata_file_path)
|
90 |
+
predict(test_metadata, root_path)
|