0cf1359d1746adb23074cc2027b559d84c71823a194f6d10f9827ab4de94eea1
Browse files
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
README.md
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- pytorch
|
5 |
+
- stable-diffusion
|
6 |
+
- text2Image
|
7 |
+
- stabilityai/stable-diffusion-2-1
|
8 |
+
---
|
9 |
+
|
10 |
+
# This LoRA is trained based on stabilityai/stable-diffusion-2-1.
|
11 |
+
|
12 |
+
## Training code
|
13 |
+
|
14 |
+
```python
|
15 |
+
import torch
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
from datasets import load_dataset
|
20 |
+
|
21 |
+
dataset = load_dataset("xchuan/text2image-fupo",split="train")
|
22 |
+
|
23 |
+
from transformers import CLIPTokenizer
|
24 |
+
from huggingface_hub import login
|
25 |
+
# ========== LoRA 模型库 ==========
|
26 |
+
from peft import LoraConfig, get_peft_model, PeftModel
|
27 |
+
|
28 |
+
|
29 |
+
login(token="替换为你自己的",add_to_git_credential=True)
|
30 |
+
|
31 |
+
weight_dtype = torch.bfloat16
|
32 |
+
train_batch_size = 2
|
33 |
+
snr_gamma = 5 # SNR 参数,用于信噪比加权损失的调节系数
|
34 |
+
# 设置随机数种子以确保可重复性
|
35 |
+
seed = 1126 # 随机数种子
|
36 |
+
torch.manual_seed(seed)
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
torch.cuda.manual_seed_all(seed)
|
39 |
+
|
40 |
+
# 优化器参数
|
41 |
+
unet_learning_rate = 1e-4 # UNet 的学习率,控制 UNet 参数更新的步长
|
42 |
+
text_encoder_learning_rate = 1e-4 # 文本编码器的学习率,控制文本嵌入层的参数更新步长
|
43 |
+
|
44 |
+
# 学习率调度器参数
|
45 |
+
lr_scheduler_name = "cosine_with_restarts" # 设置学习率调度器为 Cosine annealing with restarts,逐渐减少学习率并定期重启
|
46 |
+
lr_warmup_steps = 100 # 学习率预热步数,在最初的 100 步中逐渐增加学习率到最大值
|
47 |
+
max_train_steps = 1000 # 总训练步数,决定了整个训练过程的迭代次数
|
48 |
+
num_cycles = 3 # Cosine 调度器的周期数量,在训练期间会重复 3 次学习率周期性递减并重启
|
49 |
+
|
50 |
+
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2-1"
|
51 |
+
|
52 |
+
# LoRA 配置
|
53 |
+
lora_config = LoraConfig(
|
54 |
+
r=32, # LoRA 的秩,即低秩矩阵的维度,决定了参数调整的自由度
|
55 |
+
lora_alpha=16, # 缩放系数,控制 LoRA 权重对模型的影响
|
56 |
+
target_modules=[
|
57 |
+
# "q_proj", "v_proj", "k_proj", "out_proj", # 指定 Text encoder 的 LoRA 应用对象(用于调整注意力机制中的投影矩阵)
|
58 |
+
"to_k", "to_q", "to_v", "to_out.0" # 指定 UNet 的 LoRA 应用对象(用于调整 UNet 中的注意力机制)
|
59 |
+
],
|
60 |
+
lora_dropout=0 # LoRA dropout 概率,0 表示不使用 dropout
|
61 |
+
)
|
62 |
+
|
63 |
+
from torchvision import transforms
|
64 |
+
from torch.utils.data import DataLoader
|
65 |
+
|
66 |
+
resolution = 512
|
67 |
+
|
68 |
+
|
69 |
+
train_transform = transforms.Compose([
|
70 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR), # 调整图像大小
|
71 |
+
transforms.CenterCrop(resolution), # 中心裁剪图像
|
72 |
+
transforms.RandomHorizontalFlip(), # 随机水平翻转
|
73 |
+
transforms.ToTensor(), # 将图像转换为张量
|
74 |
+
])
|
75 |
+
|
76 |
+
def collate_fn(examples):
|
77 |
+
pixel_values = []
|
78 |
+
input_ids = []
|
79 |
+
|
80 |
+
for example in examples:
|
81 |
+
image_tensor = train_transform(example["image"])
|
82 |
+
if not isinstance(image_tensor, torch.Tensor):
|
83 |
+
print(f"Expected Tensor, got {type(image_tensor)} instead.")
|
84 |
+
continue
|
85 |
+
pixel_values.append(image_tensor)
|
86 |
+
|
87 |
+
input_text = "fupo:" + example["text"]
|
88 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
89 |
+
encode_text = tokenizer(input_text, return_tensors="pt",padding="max_length",truncation=True)
|
90 |
+
inputs_id = encode_text["input_ids"].squeeze(0)
|
91 |
+
input_ids.append(inputs_id)
|
92 |
+
|
93 |
+
# 如果没有有效的图像,则返回空的字典
|
94 |
+
if len(pixel_values) == 0:
|
95 |
+
return {"pixel_values": torch.empty(0), "input_ids": torch.empty(0)}
|
96 |
+
|
97 |
+
pixel_values = torch.stack(pixel_values, dim=0).float()
|
98 |
+
input_ids = torch.stack(input_ids, dim=0)
|
99 |
+
return {"pixel_values": pixel_values, "input_ids": input_ids}
|
100 |
+
|
101 |
+
|
102 |
+
train_dataloader = DataLoader(dataset, shuffle=True, collate_fn=collate_fn, batch_size=train_batch_size)
|
103 |
+
|
104 |
+
from diffusers import SD3Transformer2DModel
|
105 |
+
|
106 |
+
def prepare_lora_model(lora_config, pretrained_model_name_or_path, model_path=None, resume=False, merge_lora=False):
|
107 |
+
"""
|
108 |
+
(1) 目标:
|
109 |
+
- 加载完整的 Stable Diffusion 模型,包括 LoRA 层,并根据需要合并 LoRA 权重。这包括 Tokenizer、噪声调度器、UNet、VAE 和文本编码器。
|
110 |
+
|
111 |
+
(2) 参数:
|
112 |
+
- lora_config: LoraConfig, LoRA 的配置对象
|
113 |
+
- pretrained_model_name_or_path: str, Hugging Face 上的模型名称或路径
|
114 |
+
- model_path: str, 预训练模型的路径
|
115 |
+
- resume: bool, 是否从上一次训练中恢复
|
116 |
+
- merge_lora: bool, 是否在推理时合并 LoRA 权重
|
117 |
+
|
118 |
+
(3) 返回:
|
119 |
+
- tokenizer: CLIPTokenizer
|
120 |
+
- noise_scheduler: DDPMScheduler
|
121 |
+
- unet: UNet2DConditionModel
|
122 |
+
- vae: AutoencoderKL
|
123 |
+
- text_encoder: CLIPTextModel
|
124 |
+
"""
|
125 |
+
# 加载噪声调度器,用于控制扩散模型的噪声添加和移除过程
|
126 |
+
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
|
127 |
+
|
128 |
+
# 加载 Tokenizer,用于将文本��注转换为 tokens
|
129 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
130 |
+
pretrained_model_name_or_path,
|
131 |
+
subfolder="tokenizer"
|
132 |
+
)
|
133 |
+
|
134 |
+
# 加载 CLIP 文本编码器,用于将文本标注转换为特征向量
|
135 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
136 |
+
pretrained_model_name_or_path,
|
137 |
+
torch_dtype=weight_dtype,
|
138 |
+
subfolder="text_encoder"
|
139 |
+
)
|
140 |
+
|
141 |
+
# 加载 VAE 模型,用于在扩散模型中处理图像的潜在表示
|
142 |
+
vae = AutoencoderKL.from_pretrained(
|
143 |
+
pretrained_model_name_or_path,
|
144 |
+
subfolder="vae"
|
145 |
+
)
|
146 |
+
|
147 |
+
# 加载 UNet 模型,负责处理扩散模型中的图像生成和推理过程
|
148 |
+
unet = UNet2DConditionModel.from_pretrained(
|
149 |
+
pretrained_model_name_or_path,
|
150 |
+
torch_dtype=weight_dtype,
|
151 |
+
subfolder="unet"
|
152 |
+
)
|
153 |
+
|
154 |
+
# 如果设置为继续训练,则加载上一次的模型权重
|
155 |
+
if resume:
|
156 |
+
if model_path is None or not os.path.exists(model_path):
|
157 |
+
raise ValueError("当 resume 设置为 True 时,必须提供有效的 model_path")
|
158 |
+
# 使用 PEFT 的 from_pretrained 方法加载 LoRA 模型
|
159 |
+
text_encoder = PeftModel.from_pretrained(text_encoder, os.path.join(model_path, "text_encoder"))
|
160 |
+
unet = PeftModel.from_pretrained(unet, os.path.join(model_path, "unet"))
|
161 |
+
|
162 |
+
# 确保 UNet 的可训练参数的 requires_grad 为 True
|
163 |
+
for param in unet.parameters():
|
164 |
+
if param.requires_grad is False:
|
165 |
+
param.requires_grad = True
|
166 |
+
|
167 |
+
# 确保文本编码器的可训练参数的 requires_grad 为 True
|
168 |
+
for param in text_encoder.parameters():
|
169 |
+
if param.requires_grad is False:
|
170 |
+
param.requires_grad = True
|
171 |
+
|
172 |
+
print(f"✅ 已从 {model_path} 恢复模型权重")
|
173 |
+
|
174 |
+
else:
|
175 |
+
# 将 LoRA 配置应用到 text_encoder 和 unet
|
176 |
+
# text_encoder = get_peft_model(text_encoder, lora_config)
|
177 |
+
unet = get_peft_model(unet, lora_config)
|
178 |
+
|
179 |
+
# 打印可训练参数数量
|
180 |
+
# print("📊 Text Encoder 可训练参数:")
|
181 |
+
# text_encoder.print_trainable_parameters()
|
182 |
+
print("📊 UNet 可训练参数:")
|
183 |
+
unet.print_trainable_parameters()
|
184 |
+
|
185 |
+
if merge_lora:
|
186 |
+
# 合并 LoRA 权重到基础模型,仅在推理时调用
|
187 |
+
text_encoder = text_encoder.merge_and_unload()
|
188 |
+
unet = unet.merge_and_unload()
|
189 |
+
|
190 |
+
# 切换为评估模式
|
191 |
+
text_encoder.eval()
|
192 |
+
unet.eval()
|
193 |
+
|
194 |
+
# 冻结 VAE 参数
|
195 |
+
vae.requires_grad_(False)
|
196 |
+
text_encoder.requires_grad_(False)
|
197 |
+
|
198 |
+
# 将模型移动到 GPU 上并设置权重的数据类型
|
199 |
+
unet.to(device, dtype=weight_dtype)
|
200 |
+
vae.to(device, dtype=weight_dtype)
|
201 |
+
text_encoder.to(device, dtype=weight_dtype)
|
202 |
+
|
203 |
+
return tokenizer, noise_scheduler, unet, vae, text_encoder
|
204 |
+
|
205 |
+
def prepare_optimizer(unet, text_encoder, unet_learning_rate=5e-4, text_encoder_learning_rate=1e-4):
|
206 |
+
# 筛选出 UNet 中需要训练的 Lora 层参数
|
207 |
+
unet_lora_layers = [p for p in unet.parameters() if p.requires_grad]
|
208 |
+
|
209 |
+
# 筛选出文本编码器中需要训练的 Lora 层参数
|
210 |
+
text_encoder_lora_layers = [p for p in text_encoder.parameters() if p.requires_grad]
|
211 |
+
|
212 |
+
# 将需要训练的参数分组并设置不同的学习率
|
213 |
+
trainable_params = [
|
214 |
+
{"params": unet_lora_layers, "lr": unet_learning_rate},
|
215 |
+
{"params": text_encoder_lora_layers, "lr": text_encoder_learning_rate}
|
216 |
+
]
|
217 |
+
|
218 |
+
# 使用 AdamW 优化器
|
219 |
+
optimizer = torch.optim.AdamW(trainable_params)
|
220 |
+
|
221 |
+
return optimizer
|
222 |
+
|
223 |
+
import os
|
224 |
+
from diffusers.optimization import get_scheduler
|
225 |
+
from diffusers.training_utils import compute_snr
|
226 |
+
from diffusers import DDPMScheduler,AutoencoderKL,UNet2DConditionModel
|
227 |
+
from transformers import CLIPTextModel
|
228 |
+
|
229 |
+
project_name = "fupo"
|
230 |
+
dataset_name = "fupo"
|
231 |
+
# 根目录和主要目录
|
232 |
+
root_dir = "./" # 当前目录
|
233 |
+
main_dir = os.path.join(root_dir, "SD-2-2") # 主目录
|
234 |
+
# 项目目录
|
235 |
+
project_dir = os.path.join(main_dir, project_name)
|
236 |
+
model_path = os.path.join(project_dir, "logs", "checkpoint-last")
|
237 |
+
|
238 |
+
# 项目目录
|
239 |
+
project_dir = os.path.join(main_dir, project_name)
|
240 |
+
model_path = os.path.join(project_dir, "logs", "checkpoint-last")
|
241 |
+
|
242 |
+
# 准备模型
|
243 |
+
tokenizer, noise_scheduler, unet, vae, text_encoder = prepare_lora_model(
|
244 |
+
lora_config,
|
245 |
+
pretrained_model_name_or_path,
|
246 |
+
model_path,
|
247 |
+
resume=False,
|
248 |
+
merge_lora=False
|
249 |
+
)
|
250 |
+
|
251 |
+
# 准备优化器
|
252 |
+
optimizer = prepare_optimizer(
|
253 |
+
unet,
|
254 |
+
text_encoder,
|
255 |
+
unet_learning_rate=unet_learning_rate,
|
256 |
+
text_encoder_learning_rate=text_encoder_learning_rate
|
257 |
+
)
|
258 |
+
|
259 |
+
# 设置学习率调度器
|
260 |
+
lr_scheduler = get_scheduler(
|
261 |
+
lr_scheduler_name,
|
262 |
+
optimizer=optimizer,
|
263 |
+
num_warmup_steps=lr_warmup_steps,
|
264 |
+
num_training_steps=max_train_steps,
|
265 |
+
num_cycles=num_cycles
|
266 |
+
)
|
267 |
+
|
268 |
+
print("✅ 模型和优化器准备完成!可以开始训练。")
|
269 |
+
|
270 |
+
import math
|
271 |
+
from huggingface_hub import HfApi, Repository
|
272 |
+
from tqdm.auto import tqdm
|
273 |
+
import torch.nn.functional as F
|
274 |
+
|
275 |
+
output_folder = os.path.join(project_dir, "logs")
|
276 |
+
# 禁用并行化,避免警告
|
277 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
278 |
+
|
279 |
+
# 初始化
|
280 |
+
global_step = 0
|
281 |
+
best_face_score = float("inf") # 初始化为正无穷大,存储最佳面部相似度分数
|
282 |
+
|
283 |
+
# 进度条显示训练进度
|
284 |
+
progress_bar = tqdm(
|
285 |
+
range(max_train_steps), # 根据 num_training_steps 设置
|
286 |
+
desc="训练步骤",
|
287 |
+
)
|
288 |
+
|
289 |
+
# 训练循环
|
290 |
+
for epoch in range(math.ceil(max_train_steps / len(train_dataloader))):
|
291 |
+
# 如果你想在训练中增加评估,那在循环中增加 train() 是有必要的
|
292 |
+
unet.train()
|
293 |
+
text_encoder.train()
|
294 |
+
|
295 |
+
for step, batch in enumerate(train_dataloader):
|
296 |
+
if global_step >= max_train_steps:
|
297 |
+
break
|
298 |
+
|
299 |
+
# 编码图像为潜在表示(latent)
|
300 |
+
latents = vae.encode(batch["pixel_values"].to(device, dtype=weight_dtype)).latent_dist.sample()
|
301 |
+
latents = latents * vae.config.scaling_factor # 根据 VAE 的缩放因子调整潜在空间
|
302 |
+
|
303 |
+
# 为潜在表示添加噪声,生成带噪声的图像
|
304 |
+
noise = torch.randn_like(latents) # 生成与潜在表示相同形状的随机噪声
|
305 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (latents.shape[0],), device=device).long()
|
306 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
307 |
+
|
308 |
+
# 获取文本的嵌入表示
|
309 |
+
encoder_hidden_states = text_encoder(batch["input_ids"].to(device))[0]
|
310 |
+
assert encoder_hidden_states is not None, "Encoder hidden states should not be None"
|
311 |
+
|
312 |
+
# 计算目标值
|
313 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
314 |
+
target = noise # 预测噪声
|
315 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
316 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps) # 预测速度向量
|
317 |
+
|
318 |
+
# UNet 模型预测
|
319 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states)[0]
|
320 |
+
assert model_pred is not None, "Model prediction should not be None"
|
321 |
+
|
322 |
+
# 计算损失
|
323 |
+
if not snr_gamma:
|
324 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
325 |
+
else:
|
326 |
+
# 计算信噪比 (SNR) 并根据 SNR 加权 MSE 损失
|
327 |
+
snr = compute_snr(noise_scheduler, timesteps)
|
328 |
+
mse_loss_weights = torch.stack([snr, snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0]
|
329 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
330 |
+
mse_loss_weights = mse_loss_weights / snr
|
331 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
332 |
+
mse_loss_weights = mse_loss_weights / (snr + 1)
|
333 |
+
|
334 |
+
# 计算加权的 MSE 损失
|
335 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
336 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
337 |
+
loss = loss.mean()
|
338 |
+
|
339 |
+
# 反向传播
|
340 |
+
loss.backward()
|
341 |
+
optimizer.step()
|
342 |
+
lr_scheduler.step()
|
343 |
+
optimizer.zero_grad()
|
344 |
+
progress_bar.update(1)
|
345 |
+
global_step += 1
|
346 |
+
|
347 |
+
# 打印训练损失
|
348 |
+
if global_step % 100 == 0 or global_step == max_train_steps:
|
349 |
+
print(f"🔥 步骤 {global_step}, 损失: {loss.item()}")
|
350 |
+
|
351 |
+
# 保存中间检查点,当前简单设置为每 500 步保存一次
|
352 |
+
if global_step % 500 == 0:
|
353 |
+
save_path = os.path.join(output_folder, f"checkpoint-{global_step}")
|
354 |
+
os.makedirs(save_path, exist_ok=True)
|
355 |
+
|
356 |
+
# 使用 save_pretrained 保存 PeftModel
|
357 |
+
unet.save_pretrained(os.path.join(save_path, "unet"))
|
358 |
+
text_encoder.save_pretrained(os.path.join(save_path, "text_encoder"))
|
359 |
+
print(f"💾 已保存中间模型到 {save_path}")
|
360 |
+
|
361 |
+
# 保存最终模型到 checkpoint-last
|
362 |
+
save_path = os.path.join(output_folder, "checkpoint-last")
|
363 |
+
os.makedirs(save_path, exist_ok=True)
|
364 |
+
unet.save_pretrained(os.path.join(save_path, "unet"))
|
365 |
+
# text_encoder.save_lora_weights(os.path.join(save_path, "text_encoder"))
|
366 |
+
print(f"💾 已保存最终模型到 {save_path}")
|
367 |
+
|
368 |
+
print("🎉 微调完成!")
|
369 |
+
|
370 |
+
# 上传到 Hugging Face Hub
|
371 |
+
|
372 |
+
```
|