xcczach commited on
Commit
a0470f8
·
verified ·
1 Parent(s): 8ebebcd

Upload model

Browse files
Files changed (27) hide show
  1. README.md +199 -0
  2. activation.py +428 -0
  3. attentions.py +709 -0
  4. cleaner.py +59 -0
  5. commons.py +189 -0
  6. config.json +387 -0
  7. configuration_gpt_sovits.py +25 -0
  8. core_vq.py +383 -0
  9. embedding.py +81 -0
  10. lr_schedulers.py +82 -0
  11. mel_processing.py +142 -0
  12. model_utils.py +228 -0
  13. modeling_gpt_sovits.py +648 -0
  14. models.py +991 -0
  15. modules.py +923 -0
  16. mrte_model.py +192 -0
  17. my_utils.py +21 -0
  18. optim.py +622 -0
  19. patched_mha_with_cache.py +465 -0
  20. pytorch_model.bin +3 -0
  21. quantize.py +118 -0
  22. scaling.py +332 -0
  23. symbols.py +412 -0
  24. t2s_lightning_module.py +140 -0
  25. t2s_model.py +445 -0
  26. transformer.py +378 -0
  27. transforms.py +209 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
activation.py ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ import torch
5
+ from torch import Tensor
6
+ from torch.nn import Linear
7
+ from torch.nn import Module
8
+ from torch.nn.init import constant_
9
+ from torch.nn.init import xavier_normal_
10
+ from torch.nn.init import xavier_uniform_
11
+ from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
12
+ from torch.nn.parameter import Parameter
13
+
14
+ from torch.nn import functional as F
15
+ from .patched_mha_with_cache import multi_head_attention_forward_patched
16
+
17
+ F.multi_head_attention_forward = multi_head_attention_forward_patched
18
+
19
+
20
+ class MultiheadAttention(Module):
21
+ r"""Allows the model to jointly attend to information
22
+ from different representation subspaces as described in the paper:
23
+ `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
24
+
25
+ Multi-Head Attention is defined as:
26
+
27
+ .. math::
28
+ \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
29
+
30
+ where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
31
+
32
+ ``forward()`` will use a special optimized implementation if all of the following
33
+ conditions are met:
34
+
35
+ - self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
36
+ restriction will be loosened in the future.)
37
+ - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
38
+ - training is disabled (using ``.eval()``)
39
+ - dropout is 0
40
+ - ``add_bias_kv`` is ``False``
41
+ - ``add_zero_attn`` is ``False``
42
+ - ``batch_first`` is ``True`` and the input is batched
43
+ - ``kdim`` and ``vdim`` are equal to ``embed_dim``
44
+ - at most one of ``key_padding_mask`` or ``attn_mask`` is passed
45
+ - if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
46
+ nor ``attn_mask`` is passed
47
+
48
+ If the optimized implementation is in use, a
49
+ `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
50
+ ``query``/``key``/``value`` to represent padding more efficiently than using a
51
+ padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
52
+ will be returned, and an additional speedup proportional to the fraction of the input
53
+ that is padding can be expected.
54
+
55
+ Args:
56
+ embed_dim: Total dimension of the model.
57
+ num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
58
+ across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
59
+ dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
60
+ bias: If specified, adds bias to input / output projection layers. Default: ``True``.
61
+ add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
62
+ add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
63
+ Default: ``False``.
64
+ kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
65
+ vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
66
+ batch_first: If ``True``, then the input and output tensors are provided
67
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
68
+
69
+ Examples::
70
+
71
+ >>> # xdoctest: +SKIP
72
+ >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
73
+ >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
74
+
75
+ """
76
+ __constants__ = ["batch_first"]
77
+ bias_k: Optional[torch.Tensor]
78
+ bias_v: Optional[torch.Tensor]
79
+
80
+ def __init__(
81
+ self,
82
+ embed_dim,
83
+ num_heads,
84
+ dropout=0.0,
85
+ bias=True,
86
+ add_bias_kv=False,
87
+ add_zero_attn=False,
88
+ kdim=None,
89
+ vdim=None,
90
+ batch_first=False,
91
+ linear1_cls=Linear,
92
+ linear2_cls=Linear,
93
+ device=None,
94
+ dtype=None,
95
+ ) -> None:
96
+ factory_kwargs = {"device": device, "dtype": dtype}
97
+ super(MultiheadAttention, self).__init__()
98
+ self.embed_dim = embed_dim
99
+ self.kdim = kdim if kdim is not None else embed_dim
100
+ self.vdim = vdim if vdim is not None else embed_dim
101
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
102
+
103
+ self.num_heads = num_heads
104
+ self.dropout = dropout
105
+ self.batch_first = batch_first
106
+ self.head_dim = embed_dim // num_heads
107
+ assert (
108
+ self.head_dim * num_heads == self.embed_dim
109
+ ), "embed_dim must be divisible by num_heads"
110
+
111
+ if add_bias_kv:
112
+ self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
113
+ self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
114
+ else:
115
+ self.bias_k = self.bias_v = None
116
+
117
+ if linear1_cls == Linear:
118
+ if not self._qkv_same_embed_dim:
119
+ self.q_proj_weight = Parameter(
120
+ torch.empty((embed_dim, embed_dim), **factory_kwargs)
121
+ )
122
+ self.k_proj_weight = Parameter(
123
+ torch.empty((embed_dim, self.kdim), **factory_kwargs)
124
+ )
125
+ self.v_proj_weight = Parameter(
126
+ torch.empty((embed_dim, self.vdim), **factory_kwargs)
127
+ )
128
+ self.register_parameter("in_proj_weight", None)
129
+ else:
130
+ self.in_proj_weight = Parameter(
131
+ torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
132
+ )
133
+ self.register_parameter("q_proj_weight", None)
134
+ self.register_parameter("k_proj_weight", None)
135
+ self.register_parameter("v_proj_weight", None)
136
+
137
+ if bias:
138
+ self.in_proj_bias = Parameter(
139
+ torch.empty(3 * embed_dim, **factory_kwargs)
140
+ )
141
+ else:
142
+ self.register_parameter("in_proj_bias", None)
143
+ self.out_proj = NonDynamicallyQuantizableLinear(
144
+ embed_dim, embed_dim, bias=bias, **factory_kwargs
145
+ )
146
+
147
+ self._reset_parameters()
148
+ else:
149
+ if not self._qkv_same_embed_dim:
150
+ raise NotImplementedError
151
+ else:
152
+ self.in_proj_linear = linear1_cls(
153
+ embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
154
+ )
155
+ self.in_proj_weight = self.in_proj_linear.weight
156
+
157
+ self.register_parameter("q_proj_weight", None)
158
+ self.register_parameter("k_proj_weight", None)
159
+ self.register_parameter("v_proj_weight", None)
160
+
161
+ if bias:
162
+ self.in_proj_bias = self.in_proj_linear.bias
163
+ else:
164
+ self.register_parameter("in_proj_bias", None)
165
+
166
+ self.out_proj = linear2_cls(
167
+ embed_dim, embed_dim, bias=bias, **factory_kwargs
168
+ )
169
+
170
+ if self.bias_k is not None:
171
+ xavier_normal_(self.bias_k)
172
+ if self.bias_v is not None:
173
+ xavier_normal_(self.bias_v)
174
+
175
+ self.add_zero_attn = add_zero_attn
176
+
177
+ def _reset_parameters(self):
178
+ if self._qkv_same_embed_dim:
179
+ xavier_uniform_(self.in_proj_weight)
180
+ else:
181
+ xavier_uniform_(self.q_proj_weight)
182
+ xavier_uniform_(self.k_proj_weight)
183
+ xavier_uniform_(self.v_proj_weight)
184
+
185
+ if self.in_proj_bias is not None:
186
+ constant_(self.in_proj_bias, 0.0)
187
+ constant_(self.out_proj.bias, 0.0)
188
+
189
+ if self.bias_k is not None:
190
+ xavier_normal_(self.bias_k)
191
+ if self.bias_v is not None:
192
+ xavier_normal_(self.bias_v)
193
+
194
+ def __setstate__(self, state):
195
+ # Support loading old MultiheadAttention checkpoints generated by v1.1.0
196
+ if "_qkv_same_embed_dim" not in state:
197
+ state["_qkv_same_embed_dim"] = True
198
+
199
+ super(MultiheadAttention, self).__setstate__(state)
200
+
201
+ def forward(
202
+ self,
203
+ query: Tensor,
204
+ key: Tensor,
205
+ value: Tensor,
206
+ key_padding_mask: Optional[Tensor] = None,
207
+ need_weights: bool = True,
208
+ attn_mask: Optional[Tensor] = None,
209
+ average_attn_weights: bool = True,
210
+ cache=None,
211
+ ) -> Tuple[Tensor, Optional[Tensor]]:
212
+ r"""
213
+ Args:
214
+ query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
215
+ or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
216
+ :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
217
+ Queries are compared against key-value pairs to produce the output.
218
+ See "Attention Is All You Need" for more details.
219
+ key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
220
+ or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
221
+ :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
222
+ See "Attention Is All You Need" for more details.
223
+ value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
224
+ ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
225
+ sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
226
+ See "Attention Is All You Need" for more details.
227
+ key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
228
+ to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
229
+ Binary and byte masks are supported.
230
+ For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
231
+ the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
232
+ need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
233
+ Default: ``True``.
234
+ attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
235
+ :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
236
+ :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
237
+ broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
238
+ Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
239
+ corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
240
+ corresponding position is not allowed to attend. For a float mask, the mask values will be added to
241
+ the attention weight.
242
+ average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
243
+ heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
244
+ effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
245
+
246
+ Outputs:
247
+ - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
248
+ :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
249
+ where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
250
+ embedding dimension ``embed_dim``.
251
+ - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
252
+ returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
253
+ :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
254
+ :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
255
+ head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
256
+
257
+ .. note::
258
+ `batch_first` argument is ignored for unbatched inputs.
259
+ """
260
+ is_batched = query.dim() == 3
261
+ if key_padding_mask is not None:
262
+ _kpm_dtype = key_padding_mask.dtype
263
+ if _kpm_dtype != torch.bool and not torch.is_floating_point(
264
+ key_padding_mask
265
+ ):
266
+ raise AssertionError(
267
+ "only bool and floating types of key_padding_mask are supported"
268
+ )
269
+ why_not_fast_path = ""
270
+ if not is_batched:
271
+ why_not_fast_path = (
272
+ f"input not batched; expected query.dim() of 3 but got {query.dim()}"
273
+ )
274
+ elif query is not key or key is not value:
275
+ # When lifting this restriction, don't forget to either
276
+ # enforce that the dtypes all match or test cases where
277
+ # they don't!
278
+ why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
279
+ elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
280
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
281
+ elif (
282
+ self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
283
+ ):
284
+ # this case will fail anyway, but at least they'll get a useful error message.
285
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
286
+ elif self.training:
287
+ why_not_fast_path = "training is enabled"
288
+ elif not self.batch_first:
289
+ why_not_fast_path = "batch_first was not True"
290
+ elif self.bias_k is not None:
291
+ why_not_fast_path = "self.bias_k was not None"
292
+ elif self.bias_v is not None:
293
+ why_not_fast_path = "self.bias_v was not None"
294
+ elif self.dropout:
295
+ why_not_fast_path = f"dropout was {self.dropout}, required zero"
296
+ elif self.add_zero_attn:
297
+ why_not_fast_path = "add_zero_attn was enabled"
298
+ elif not self._qkv_same_embed_dim:
299
+ why_not_fast_path = "_qkv_same_embed_dim was not True"
300
+ elif attn_mask is not None:
301
+ why_not_fast_path = "attn_mask was not None"
302
+ elif query.is_nested and key_padding_mask is not None:
303
+ why_not_fast_path = (
304
+ "key_padding_mask is not supported with NestedTensor input"
305
+ )
306
+ elif self.num_heads % 2 == 1:
307
+ why_not_fast_path = "num_heads is odd"
308
+ elif torch.is_autocast_enabled():
309
+ why_not_fast_path = "autocast is enabled"
310
+
311
+ if not why_not_fast_path:
312
+ tensor_args = (
313
+ query,
314
+ key,
315
+ value,
316
+ self.in_proj_weight,
317
+ self.in_proj_bias,
318
+ self.out_proj.weight,
319
+ self.out_proj.bias,
320
+ )
321
+ # We have to use list comprehensions below because TorchScript does not support
322
+ # generator expressions.
323
+ if torch.overrides.has_torch_function(tensor_args):
324
+ why_not_fast_path = "some Tensor argument has_torch_function"
325
+ elif not all(
326
+ [
327
+ (x is None or x.is_cuda or "cpu" in str(x.device))
328
+ for x in tensor_args
329
+ ]
330
+ ):
331
+ why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
332
+ elif torch.is_grad_enabled() and any(
333
+ [x is not None and x.requires_grad for x in tensor_args]
334
+ ):
335
+ why_not_fast_path = (
336
+ "grad is enabled and at least one of query or the "
337
+ "input/output projection weights or biases requires_grad"
338
+ )
339
+ if not why_not_fast_path:
340
+ return torch._native_multi_head_attention(
341
+ query,
342
+ key,
343
+ value,
344
+ self.embed_dim,
345
+ self.num_heads,
346
+ self.in_proj_weight,
347
+ self.in_proj_bias,
348
+ self.out_proj.weight,
349
+ self.out_proj.bias,
350
+ key_padding_mask if key_padding_mask is not None else attn_mask,
351
+ need_weights,
352
+ average_attn_weights,
353
+ 1
354
+ if key_padding_mask is not None
355
+ else 0
356
+ if attn_mask is not None
357
+ else None,
358
+ )
359
+
360
+ any_nested = query.is_nested or key.is_nested or value.is_nested
361
+ assert not any_nested, (
362
+ "MultiheadAttention does not support NestedTensor outside of its fast path. "
363
+ + f"The fast path was not hit because {why_not_fast_path}"
364
+ )
365
+
366
+ if self.batch_first and is_batched:
367
+ # make sure that the transpose op does not affect the "is" property
368
+ if key is value:
369
+ if query is key:
370
+ query = key = value = query.transpose(1, 0)
371
+ else:
372
+ query, key = [x.transpose(1, 0) for x in (query, key)]
373
+ value = key
374
+ else:
375
+ query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
376
+
377
+ if not self._qkv_same_embed_dim:
378
+ attn_output, attn_output_weights = F.multi_head_attention_forward(
379
+ query,
380
+ key,
381
+ value,
382
+ self.embed_dim,
383
+ self.num_heads,
384
+ self.in_proj_weight,
385
+ self.in_proj_bias,
386
+ self.bias_k,
387
+ self.bias_v,
388
+ self.add_zero_attn,
389
+ self.dropout,
390
+ self.out_proj.weight,
391
+ self.out_proj.bias,
392
+ training=self.training,
393
+ key_padding_mask=key_padding_mask,
394
+ need_weights=need_weights,
395
+ attn_mask=attn_mask,
396
+ use_separate_proj_weight=True,
397
+ q_proj_weight=self.q_proj_weight,
398
+ k_proj_weight=self.k_proj_weight,
399
+ v_proj_weight=self.v_proj_weight,
400
+ average_attn_weights=average_attn_weights,
401
+ cache=cache,
402
+ )
403
+ else:
404
+ attn_output, attn_output_weights = F.multi_head_attention_forward(
405
+ query,
406
+ key,
407
+ value,
408
+ self.embed_dim,
409
+ self.num_heads,
410
+ self.in_proj_weight,
411
+ self.in_proj_bias,
412
+ self.bias_k,
413
+ self.bias_v,
414
+ self.add_zero_attn,
415
+ self.dropout,
416
+ self.out_proj.weight,
417
+ self.out_proj.bias,
418
+ training=self.training,
419
+ key_padding_mask=key_padding_mask,
420
+ need_weights=need_weights,
421
+ attn_mask=attn_mask,
422
+ average_attn_weights=average_attn_weights,
423
+ cache=cache,
424
+ )
425
+ if self.batch_first and is_batched:
426
+ return attn_output.transpose(1, 0), attn_output_weights
427
+ else:
428
+ return attn_output, attn_output_weights
attentions.py ADDED
@@ -0,0 +1,709 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from . import commons
7
+ from .modules import LayerNorm
8
+
9
+
10
+ class Encoder(nn.Module):
11
+ def __init__(
12
+ self,
13
+ hidden_channels,
14
+ filter_channels,
15
+ n_heads,
16
+ n_layers,
17
+ kernel_size=1,
18
+ p_dropout=0.0,
19
+ window_size=4,
20
+ isflow=False,
21
+ **kwargs
22
+ ):
23
+ super().__init__()
24
+ self.hidden_channels = hidden_channels
25
+ self.filter_channels = filter_channels
26
+ self.n_heads = n_heads
27
+ self.n_layers = n_layers
28
+ self.kernel_size = kernel_size
29
+ self.p_dropout = p_dropout
30
+ self.window_size = window_size
31
+
32
+ self.drop = nn.Dropout(p_dropout)
33
+ self.attn_layers = nn.ModuleList()
34
+ self.norm_layers_1 = nn.ModuleList()
35
+ self.ffn_layers = nn.ModuleList()
36
+ self.norm_layers_2 = nn.ModuleList()
37
+ for i in range(self.n_layers):
38
+ self.attn_layers.append(
39
+ MultiHeadAttention(
40
+ hidden_channels,
41
+ hidden_channels,
42
+ n_heads,
43
+ p_dropout=p_dropout,
44
+ window_size=window_size,
45
+ )
46
+ )
47
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
48
+ self.ffn_layers.append(
49
+ FFN(
50
+ hidden_channels,
51
+ hidden_channels,
52
+ filter_channels,
53
+ kernel_size,
54
+ p_dropout=p_dropout,
55
+ )
56
+ )
57
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
58
+ if isflow:
59
+ cond_layer = torch.nn.Conv1d(
60
+ kwargs["gin_channels"], 2 * hidden_channels * n_layers, 1
61
+ )
62
+ self.cond_pre = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, 1)
63
+ self.cond_layer = weight_norm_modules(cond_layer, name="weight")
64
+ self.gin_channels = kwargs["gin_channels"]
65
+
66
+ def forward(self, x, x_mask, g=None):
67
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
68
+ x = x * x_mask
69
+ if g is not None:
70
+ g = self.cond_layer(g)
71
+
72
+ for i in range(self.n_layers):
73
+ if g is not None:
74
+ x = self.cond_pre(x)
75
+ cond_offset = i * 2 * self.hidden_channels
76
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
77
+ x = commons.fused_add_tanh_sigmoid_multiply(
78
+ x, g_l, torch.IntTensor([self.hidden_channels])
79
+ )
80
+ y = self.attn_layers[i](x, x, attn_mask)
81
+ y = self.drop(y)
82
+ x = self.norm_layers_1[i](x + y)
83
+
84
+ y = self.ffn_layers[i](x, x_mask)
85
+ y = self.drop(y)
86
+ x = self.norm_layers_2[i](x + y)
87
+ x = x * x_mask
88
+ return x
89
+
90
+
91
+ class Decoder(nn.Module):
92
+ def __init__(
93
+ self,
94
+ hidden_channels,
95
+ filter_channels,
96
+ n_heads,
97
+ n_layers,
98
+ kernel_size=1,
99
+ p_dropout=0.0,
100
+ proximal_bias=False,
101
+ proximal_init=True,
102
+ **kwargs
103
+ ):
104
+ super().__init__()
105
+ self.hidden_channels = hidden_channels
106
+ self.filter_channels = filter_channels
107
+ self.n_heads = n_heads
108
+ self.n_layers = n_layers
109
+ self.kernel_size = kernel_size
110
+ self.p_dropout = p_dropout
111
+ self.proximal_bias = proximal_bias
112
+ self.proximal_init = proximal_init
113
+
114
+ self.drop = nn.Dropout(p_dropout)
115
+ self.self_attn_layers = nn.ModuleList()
116
+ self.norm_layers_0 = nn.ModuleList()
117
+ self.encdec_attn_layers = nn.ModuleList()
118
+ self.norm_layers_1 = nn.ModuleList()
119
+ self.ffn_layers = nn.ModuleList()
120
+ self.norm_layers_2 = nn.ModuleList()
121
+ for i in range(self.n_layers):
122
+ self.self_attn_layers.append(
123
+ MultiHeadAttention(
124
+ hidden_channels,
125
+ hidden_channels,
126
+ n_heads,
127
+ p_dropout=p_dropout,
128
+ proximal_bias=proximal_bias,
129
+ proximal_init=proximal_init,
130
+ )
131
+ )
132
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
133
+ self.encdec_attn_layers.append(
134
+ MultiHeadAttention(
135
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
136
+ )
137
+ )
138
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
139
+ self.ffn_layers.append(
140
+ FFN(
141
+ hidden_channels,
142
+ hidden_channels,
143
+ filter_channels,
144
+ kernel_size,
145
+ p_dropout=p_dropout,
146
+ causal=True,
147
+ )
148
+ )
149
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
150
+
151
+ def forward(self, x, x_mask, h, h_mask):
152
+ """
153
+ x: decoder input
154
+ h: encoder output
155
+ """
156
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
157
+ device=x.device, dtype=x.dtype
158
+ )
159
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
160
+ x = x * x_mask
161
+ for i in range(self.n_layers):
162
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
163
+ y = self.drop(y)
164
+ x = self.norm_layers_0[i](x + y)
165
+
166
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
167
+ y = self.drop(y)
168
+ x = self.norm_layers_1[i](x + y)
169
+
170
+ y = self.ffn_layers[i](x, x_mask)
171
+ y = self.drop(y)
172
+ x = self.norm_layers_2[i](x + y)
173
+ x = x * x_mask
174
+ return x
175
+
176
+
177
+ class MultiHeadAttention(nn.Module):
178
+ def __init__(
179
+ self,
180
+ channels,
181
+ out_channels,
182
+ n_heads,
183
+ p_dropout=0.0,
184
+ window_size=None,
185
+ heads_share=True,
186
+ block_length=None,
187
+ proximal_bias=False,
188
+ proximal_init=False,
189
+ ):
190
+ super().__init__()
191
+ assert channels % n_heads == 0
192
+
193
+ self.channels = channels
194
+ self.out_channels = out_channels
195
+ self.n_heads = n_heads
196
+ self.p_dropout = p_dropout
197
+ self.window_size = window_size
198
+ self.heads_share = heads_share
199
+ self.block_length = block_length
200
+ self.proximal_bias = proximal_bias
201
+ self.proximal_init = proximal_init
202
+ self.attn = None
203
+
204
+ self.k_channels = channels // n_heads
205
+ self.conv_q = nn.Conv1d(channels, channels, 1)
206
+ self.conv_k = nn.Conv1d(channels, channels, 1)
207
+ self.conv_v = nn.Conv1d(channels, channels, 1)
208
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
209
+ self.drop = nn.Dropout(p_dropout)
210
+
211
+ if window_size is not None:
212
+ n_heads_rel = 1 if heads_share else n_heads
213
+ rel_stddev = self.k_channels**-0.5
214
+ self.emb_rel_k = nn.Parameter(
215
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
216
+ * rel_stddev
217
+ )
218
+ self.emb_rel_v = nn.Parameter(
219
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
220
+ * rel_stddev
221
+ )
222
+
223
+ nn.init.xavier_uniform_(self.conv_q.weight)
224
+ nn.init.xavier_uniform_(self.conv_k.weight)
225
+ nn.init.xavier_uniform_(self.conv_v.weight)
226
+ if proximal_init:
227
+ with torch.no_grad():
228
+ self.conv_k.weight.copy_(self.conv_q.weight)
229
+ self.conv_k.bias.copy_(self.conv_q.bias)
230
+
231
+ def forward(self, x, c, attn_mask=None):
232
+ q = self.conv_q(x)
233
+ k = self.conv_k(c)
234
+ v = self.conv_v(c)
235
+
236
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
237
+
238
+ x = self.conv_o(x)
239
+ return x
240
+
241
+ def attention(self, query, key, value, mask=None):
242
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
243
+ b, d, t_s, t_t = (*key.size(), query.size(2))
244
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
245
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
246
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
247
+
248
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
249
+ if self.window_size is not None:
250
+ assert (
251
+ t_s == t_t
252
+ ), "Relative attention is only available for self-attention."
253
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
254
+ rel_logits = self._matmul_with_relative_keys(
255
+ query / math.sqrt(self.k_channels), key_relative_embeddings
256
+ )
257
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
258
+ scores = scores + scores_local
259
+ if self.proximal_bias:
260
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
261
+ scores = scores + self._attention_bias_proximal(t_s).to(
262
+ device=scores.device, dtype=scores.dtype
263
+ )
264
+ if mask is not None:
265
+ scores = scores.masked_fill(mask == 0, -1e4)
266
+ if self.block_length is not None:
267
+ assert (
268
+ t_s == t_t
269
+ ), "Local attention is only available for self-attention."
270
+ block_mask = (
271
+ torch.ones_like(scores)
272
+ .triu(-self.block_length)
273
+ .tril(self.block_length)
274
+ )
275
+ scores = scores.masked_fill(block_mask == 0, -1e4)
276
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
277
+ p_attn = self.drop(p_attn)
278
+ output = torch.matmul(p_attn, value)
279
+ if self.window_size is not None:
280
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
281
+ value_relative_embeddings = self._get_relative_embeddings(
282
+ self.emb_rel_v, t_s
283
+ )
284
+ output = output + self._matmul_with_relative_values(
285
+ relative_weights, value_relative_embeddings
286
+ )
287
+ output = (
288
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
289
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
290
+ return output, p_attn
291
+
292
+ def _matmul_with_relative_values(self, x, y):
293
+ """
294
+ x: [b, h, l, m]
295
+ y: [h or 1, m, d]
296
+ ret: [b, h, l, d]
297
+ """
298
+ ret = torch.matmul(x, y.unsqueeze(0))
299
+ return ret
300
+
301
+ def _matmul_with_relative_keys(self, x, y):
302
+ """
303
+ x: [b, h, l, d]
304
+ y: [h or 1, m, d]
305
+ ret: [b, h, l, m]
306
+ """
307
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
308
+ return ret
309
+
310
+ def _get_relative_embeddings(self, relative_embeddings, length):
311
+ max_relative_position = 2 * self.window_size + 1
312
+ # Pad first before slice to avoid using cond ops.
313
+ pad_length = max(length - (self.window_size + 1), 0)
314
+ slice_start_position = max((self.window_size + 1) - length, 0)
315
+ slice_end_position = slice_start_position + 2 * length - 1
316
+ if pad_length > 0:
317
+ padded_relative_embeddings = F.pad(
318
+ relative_embeddings,
319
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
320
+ )
321
+ else:
322
+ padded_relative_embeddings = relative_embeddings
323
+ used_relative_embeddings = padded_relative_embeddings[
324
+ :, slice_start_position:slice_end_position
325
+ ]
326
+ return used_relative_embeddings
327
+
328
+ def _relative_position_to_absolute_position(self, x):
329
+ """
330
+ x: [b, h, l, 2*l-1]
331
+ ret: [b, h, l, l]
332
+ """
333
+ batch, heads, length, _ = x.size()
334
+ # Concat columns of pad to shift from relative to absolute indexing.
335
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
336
+
337
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
338
+ x_flat = x.view([batch, heads, length * 2 * length])
339
+ x_flat = F.pad(
340
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
341
+ )
342
+
343
+ # Reshape and slice out the padded elements.
344
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
345
+ :, :, :length, length - 1 :
346
+ ]
347
+ return x_final
348
+
349
+ def _absolute_position_to_relative_position(self, x):
350
+ """
351
+ x: [b, h, l, l]
352
+ ret: [b, h, l, 2*l-1]
353
+ """
354
+ batch, heads, length, _ = x.size()
355
+ # padd along column
356
+ x = F.pad(
357
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
358
+ )
359
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
360
+ # add 0's in the beginning that will skew the elements after reshape
361
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
362
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
363
+ return x_final
364
+
365
+ def _attention_bias_proximal(self, length):
366
+ """Bias for self-attention to encourage attention to close positions.
367
+ Args:
368
+ length: an integer scalar.
369
+ Returns:
370
+ a Tensor with shape [1, 1, length, length]
371
+ """
372
+ r = torch.arange(length, dtype=torch.float32)
373
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
374
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
375
+
376
+
377
+ class FFN(nn.Module):
378
+ def __init__(
379
+ self,
380
+ in_channels,
381
+ out_channels,
382
+ filter_channels,
383
+ kernel_size,
384
+ p_dropout=0.0,
385
+ activation=None,
386
+ causal=False,
387
+ ):
388
+ super().__init__()
389
+ self.in_channels = in_channels
390
+ self.out_channels = out_channels
391
+ self.filter_channels = filter_channels
392
+ self.kernel_size = kernel_size
393
+ self.p_dropout = p_dropout
394
+ self.activation = activation
395
+ self.causal = causal
396
+
397
+ if causal:
398
+ self.padding = self._causal_padding
399
+ else:
400
+ self.padding = self._same_padding
401
+
402
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
403
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
404
+ self.drop = nn.Dropout(p_dropout)
405
+
406
+ def forward(self, x, x_mask):
407
+ x = self.conv_1(self.padding(x * x_mask))
408
+ if self.activation == "gelu":
409
+ x = x * torch.sigmoid(1.702 * x)
410
+ else:
411
+ x = torch.relu(x)
412
+ x = self.drop(x)
413
+ x = self.conv_2(self.padding(x * x_mask))
414
+ return x * x_mask
415
+
416
+ def _causal_padding(self, x):
417
+ if self.kernel_size == 1:
418
+ return x
419
+ pad_l = self.kernel_size - 1
420
+ pad_r = 0
421
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
422
+ x = F.pad(x, commons.convert_pad_shape(padding))
423
+ return x
424
+
425
+ def _same_padding(self, x):
426
+ if self.kernel_size == 1:
427
+ return x
428
+ pad_l = (self.kernel_size - 1) // 2
429
+ pad_r = self.kernel_size // 2
430
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
431
+ x = F.pad(x, commons.convert_pad_shape(padding))
432
+ return x
433
+
434
+
435
+ import torch.nn as nn
436
+ from torch.nn.utils import remove_weight_norm, weight_norm
437
+
438
+
439
+ class Depthwise_Separable_Conv1D(nn.Module):
440
+ def __init__(
441
+ self,
442
+ in_channels,
443
+ out_channels,
444
+ kernel_size,
445
+ stride=1,
446
+ padding=0,
447
+ dilation=1,
448
+ bias=True,
449
+ padding_mode="zeros", # TODO: refine this type
450
+ device=None,
451
+ dtype=None,
452
+ ):
453
+ super().__init__()
454
+ self.depth_conv = nn.Conv1d(
455
+ in_channels=in_channels,
456
+ out_channels=in_channels,
457
+ kernel_size=kernel_size,
458
+ groups=in_channels,
459
+ stride=stride,
460
+ padding=padding,
461
+ dilation=dilation,
462
+ bias=bias,
463
+ padding_mode=padding_mode,
464
+ device=device,
465
+ dtype=dtype,
466
+ )
467
+ self.point_conv = nn.Conv1d(
468
+ in_channels=in_channels,
469
+ out_channels=out_channels,
470
+ kernel_size=1,
471
+ bias=bias,
472
+ device=device,
473
+ dtype=dtype,
474
+ )
475
+
476
+ def forward(self, input):
477
+ return self.point_conv(self.depth_conv(input))
478
+
479
+ def weight_norm(self):
480
+ self.depth_conv = weight_norm(self.depth_conv, name="weight")
481
+ self.point_conv = weight_norm(self.point_conv, name="weight")
482
+
483
+ def remove_weight_norm(self):
484
+ self.depth_conv = remove_weight_norm(self.depth_conv, name="weight")
485
+ self.point_conv = remove_weight_norm(self.point_conv, name="weight")
486
+
487
+
488
+ class Depthwise_Separable_TransposeConv1D(nn.Module):
489
+ def __init__(
490
+ self,
491
+ in_channels,
492
+ out_channels,
493
+ kernel_size,
494
+ stride=1,
495
+ padding=0,
496
+ output_padding=0,
497
+ bias=True,
498
+ dilation=1,
499
+ padding_mode="zeros", # TODO: refine this type
500
+ device=None,
501
+ dtype=None,
502
+ ):
503
+ super().__init__()
504
+ self.depth_conv = nn.ConvTranspose1d(
505
+ in_channels=in_channels,
506
+ out_channels=in_channels,
507
+ kernel_size=kernel_size,
508
+ groups=in_channels,
509
+ stride=stride,
510
+ output_padding=output_padding,
511
+ padding=padding,
512
+ dilation=dilation,
513
+ bias=bias,
514
+ padding_mode=padding_mode,
515
+ device=device,
516
+ dtype=dtype,
517
+ )
518
+ self.point_conv = nn.Conv1d(
519
+ in_channels=in_channels,
520
+ out_channels=out_channels,
521
+ kernel_size=1,
522
+ bias=bias,
523
+ device=device,
524
+ dtype=dtype,
525
+ )
526
+
527
+ def forward(self, input):
528
+ return self.point_conv(self.depth_conv(input))
529
+
530
+ def weight_norm(self):
531
+ self.depth_conv = weight_norm(self.depth_conv, name="weight")
532
+ self.point_conv = weight_norm(self.point_conv, name="weight")
533
+
534
+ def remove_weight_norm(self):
535
+ remove_weight_norm(self.depth_conv, name="weight")
536
+ remove_weight_norm(self.point_conv, name="weight")
537
+
538
+
539
+ def weight_norm_modules(module, name="weight", dim=0):
540
+ if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(
541
+ module, Depthwise_Separable_TransposeConv1D
542
+ ):
543
+ module.weight_norm()
544
+ return module
545
+ else:
546
+ return weight_norm(module, name, dim)
547
+
548
+
549
+ def remove_weight_norm_modules(module, name="weight"):
550
+ if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(
551
+ module, Depthwise_Separable_TransposeConv1D
552
+ ):
553
+ module.remove_weight_norm()
554
+ else:
555
+ remove_weight_norm(module, name)
556
+
557
+
558
+ class FFT(nn.Module):
559
+ def __init__(
560
+ self,
561
+ hidden_channels,
562
+ filter_channels,
563
+ n_heads,
564
+ n_layers=1,
565
+ kernel_size=1,
566
+ p_dropout=0.0,
567
+ proximal_bias=False,
568
+ proximal_init=True,
569
+ isflow=False,
570
+ **kwargs
571
+ ):
572
+ super().__init__()
573
+ self.hidden_channels = hidden_channels
574
+ self.filter_channels = filter_channels
575
+ self.n_heads = n_heads
576
+ self.n_layers = n_layers
577
+ self.kernel_size = kernel_size
578
+ self.p_dropout = p_dropout
579
+ self.proximal_bias = proximal_bias
580
+ self.proximal_init = proximal_init
581
+ if isflow:
582
+ cond_layer = torch.nn.Conv1d(
583
+ kwargs["gin_channels"], 2 * hidden_channels * n_layers, 1
584
+ )
585
+ self.cond_pre = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, 1)
586
+ self.cond_layer = weight_norm_modules(cond_layer, name="weight")
587
+ self.gin_channels = kwargs["gin_channels"]
588
+ self.drop = nn.Dropout(p_dropout)
589
+ self.self_attn_layers = nn.ModuleList()
590
+ self.norm_layers_0 = nn.ModuleList()
591
+ self.ffn_layers = nn.ModuleList()
592
+ self.norm_layers_1 = nn.ModuleList()
593
+ for i in range(self.n_layers):
594
+ self.self_attn_layers.append(
595
+ MultiHeadAttention(
596
+ hidden_channels,
597
+ hidden_channels,
598
+ n_heads,
599
+ p_dropout=p_dropout,
600
+ proximal_bias=proximal_bias,
601
+ proximal_init=proximal_init,
602
+ )
603
+ )
604
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
605
+ self.ffn_layers.append(
606
+ FFN(
607
+ hidden_channels,
608
+ hidden_channels,
609
+ filter_channels,
610
+ kernel_size,
611
+ p_dropout=p_dropout,
612
+ causal=True,
613
+ )
614
+ )
615
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
616
+
617
+ def forward(self, x, x_mask, g=None):
618
+ """
619
+ x: decoder input
620
+ h: encoder output
621
+ """
622
+ if g is not None:
623
+ g = self.cond_layer(g)
624
+
625
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
626
+ device=x.device, dtype=x.dtype
627
+ )
628
+ x = x * x_mask
629
+ for i in range(self.n_layers):
630
+ if g is not None:
631
+ x = self.cond_pre(x)
632
+ cond_offset = i * 2 * self.hidden_channels
633
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
634
+ x = commons.fused_add_tanh_sigmoid_multiply(
635
+ x, g_l, torch.IntTensor([self.hidden_channels])
636
+ )
637
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
638
+ y = self.drop(y)
639
+ x = self.norm_layers_0[i](x + y)
640
+
641
+ y = self.ffn_layers[i](x, x_mask)
642
+ y = self.drop(y)
643
+ x = self.norm_layers_1[i](x + y)
644
+ x = x * x_mask
645
+ return x
646
+
647
+
648
+ class TransformerCouplingLayer(nn.Module):
649
+ def __init__(
650
+ self,
651
+ channels,
652
+ hidden_channels,
653
+ kernel_size,
654
+ n_layers,
655
+ n_heads,
656
+ p_dropout=0,
657
+ filter_channels=0,
658
+ mean_only=False,
659
+ wn_sharing_parameter=None,
660
+ gin_channels=0,
661
+ ):
662
+ assert channels % 2 == 0, "channels should be divisible by 2"
663
+ super().__init__()
664
+ self.channels = channels
665
+ self.hidden_channels = hidden_channels
666
+ self.kernel_size = kernel_size
667
+ self.n_layers = n_layers
668
+ self.half_channels = channels // 2
669
+ self.mean_only = mean_only
670
+
671
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
672
+ self.enc = (
673
+ Encoder(
674
+ hidden_channels,
675
+ filter_channels,
676
+ n_heads,
677
+ n_layers,
678
+ kernel_size,
679
+ p_dropout,
680
+ isflow=True,
681
+ gin_channels=gin_channels,
682
+ )
683
+ if wn_sharing_parameter is None
684
+ else wn_sharing_parameter
685
+ )
686
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
687
+ self.post.weight.data.zero_()
688
+ self.post.bias.data.zero_()
689
+
690
+ def forward(self, x, x_mask, g=None, reverse=False):
691
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
692
+ h = self.pre(x0) * x_mask
693
+ h = self.enc(h, x_mask, g=g)
694
+ stats = self.post(h) * x_mask
695
+ if not self.mean_only:
696
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
697
+ else:
698
+ m = stats
699
+ logs = torch.zeros_like(m)
700
+
701
+ if not reverse:
702
+ x1 = m + x1 * torch.exp(logs) * x_mask
703
+ x = torch.cat([x0, x1], 1)
704
+ logdet = torch.sum(logs, [1, 2])
705
+ return x, logdet
706
+ else:
707
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
708
+ x = torch.cat([x0, x1], 1)
709
+ return x
cleaner.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from . import chinese, japanese, symbols, english
2
+ from .symbols import cleaned_text_to_sequence
3
+
4
+ language_module_map = {"zh": chinese, "ja": japanese, "en": english}
5
+ special = [
6
+ # ("%", "zh", "SP"),
7
+ ("¥", "zh", "SP2"),
8
+ ("^", "zh", "SP3"),
9
+ # ('@', 'zh', "SP4")#不搞鬼畜了,和第二版保持一致吧
10
+ ]
11
+
12
+
13
+ def clean_text(text, language):
14
+ if(language not in language_module_map):
15
+ language="en"
16
+ text=" "
17
+ for special_s, special_l, target_symbol in special:
18
+ if special_s in text and language == special_l:
19
+ return clean_special(text, language, special_s, target_symbol)
20
+ language_module = language_module_map[language]
21
+ norm_text = language_module.text_normalize(text)
22
+ if language == "zh":
23
+ phones, word2ph = language_module.g2p(norm_text)
24
+ assert len(phones) == sum(word2ph)
25
+ assert len(norm_text) == len(word2ph)
26
+ else:
27
+ phones = language_module.g2p(norm_text)
28
+ word2ph = None
29
+
30
+ for ph in phones:
31
+ assert ph in symbols.symbols
32
+ return phones, word2ph, norm_text
33
+
34
+
35
+ def clean_special(text, language, special_s, target_symbol):
36
+ """
37
+ 特殊静音段sp符号处理
38
+ """
39
+ text = text.replace(special_s, ",")
40
+ language_module = language_module_map[language]
41
+ norm_text = language_module.text_normalize(text)
42
+ phones = language_module.g2p(norm_text)
43
+ new_ph = []
44
+ for ph in phones[0]:
45
+ assert ph in symbols
46
+ if ph == ",":
47
+ new_ph.append(target_symbol)
48
+ else:
49
+ new_ph.append(ph)
50
+ return new_ph, phones[1], norm_text
51
+
52
+
53
+ def text_to_sequence(text, language):
54
+ phones = clean_text(text)
55
+ return cleaned_text_to_sequence(phones)
56
+
57
+
58
+ if __name__ == "__main__":
59
+ print(clean_text("你好%啊啊啊额、还是到付红四方。", "zh"))
commons.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+
6
+ def init_weights(m, mean=0.0, std=0.01):
7
+ classname = m.__class__.__name__
8
+ if classname.find("Conv") != -1:
9
+ m.weight.data.normal_(mean, std)
10
+
11
+
12
+ def get_padding(kernel_size, dilation=1):
13
+ return int((kernel_size * dilation - dilation) / 2)
14
+
15
+
16
+ def convert_pad_shape(pad_shape):
17
+ l = pad_shape[::-1]
18
+ pad_shape = [item for sublist in l for item in sublist]
19
+ return pad_shape
20
+
21
+
22
+ def intersperse(lst, item):
23
+ result = [item] * (len(lst) * 2 + 1)
24
+ result[1::2] = lst
25
+ return result
26
+
27
+
28
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
29
+ """KL(P||Q)"""
30
+ kl = (logs_q - logs_p) - 0.5
31
+ kl += (
32
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
33
+ )
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
68
+ position = torch.arange(length, dtype=torch.float)
69
+ num_timescales = channels // 2
70
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
71
+ num_timescales - 1
72
+ )
73
+ inv_timescales = min_timescale * torch.exp(
74
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
75
+ )
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2, 3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1.0 / norm_type)
161
+ return total_norm
162
+
163
+
164
+ def squeeze(x, x_mask=None, n_sqz=2):
165
+ b, c, t = x.size()
166
+
167
+ t = (t // n_sqz) * n_sqz
168
+ x = x[:, :, :t]
169
+ x_sqz = x.view(b, c, t // n_sqz, n_sqz)
170
+ x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
171
+
172
+ if x_mask is not None:
173
+ x_mask = x_mask[:, :, n_sqz - 1 :: n_sqz]
174
+ else:
175
+ x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
176
+ return x_sqz * x_mask, x_mask
177
+
178
+
179
+ def unsqueeze(x, x_mask=None, n_sqz=2):
180
+ b, c, t = x.size()
181
+
182
+ x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
183
+ x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
184
+
185
+ if x_mask is not None:
186
+ x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
187
+ else:
188
+ x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
189
+ return x_unsqz * x_mask, x_mask
config.json ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_bert_config_dict": {
3
+ "_name_or_path": "./ckpts/chinese-roberta-wwm-ext-large",
4
+ "add_cross_attention": false,
5
+ "architectures": [
6
+ "BertForMaskedLM"
7
+ ],
8
+ "attention_probs_dropout_prob": 0.1,
9
+ "attn_implementation": null,
10
+ "bad_words_ids": null,
11
+ "begin_suppress_tokens": null,
12
+ "bos_token_id": 0,
13
+ "chunk_size_feed_forward": 0,
14
+ "classifier_dropout": null,
15
+ "cross_attention_hidden_size": null,
16
+ "decoder_start_token_id": null,
17
+ "directionality": "bidi",
18
+ "diversity_penalty": 0.0,
19
+ "do_sample": false,
20
+ "early_stopping": false,
21
+ "encoder_no_repeat_ngram_size": 0,
22
+ "eos_token_id": 2,
23
+ "exponential_decay_length_penalty": null,
24
+ "finetuning_task": null,
25
+ "forced_bos_token_id": null,
26
+ "forced_eos_token_id": null,
27
+ "hidden_act": "gelu",
28
+ "hidden_dropout_prob": 0.1,
29
+ "hidden_size": 1024,
30
+ "id2label": {
31
+ "0": "LABEL_0",
32
+ "1": "LABEL_1"
33
+ },
34
+ "initializer_range": 0.02,
35
+ "intermediate_size": 4096,
36
+ "is_decoder": false,
37
+ "is_encoder_decoder": false,
38
+ "label2id": {
39
+ "LABEL_0": 0,
40
+ "LABEL_1": 1
41
+ },
42
+ "layer_norm_eps": 1e-12,
43
+ "length_penalty": 1.0,
44
+ "max_length": 20,
45
+ "max_position_embeddings": 512,
46
+ "min_length": 0,
47
+ "model_type": "bert",
48
+ "no_repeat_ngram_size": 0,
49
+ "num_attention_heads": 16,
50
+ "num_beam_groups": 1,
51
+ "num_beams": 1,
52
+ "num_hidden_layers": 24,
53
+ "num_return_sequences": 1,
54
+ "output_attentions": false,
55
+ "output_hidden_states": false,
56
+ "output_past": true,
57
+ "output_scores": false,
58
+ "pad_token_id": 0,
59
+ "pooler_fc_size": 768,
60
+ "pooler_num_attention_heads": 12,
61
+ "pooler_num_fc_layers": 3,
62
+ "pooler_size_per_head": 128,
63
+ "pooler_type": "first_token_transform",
64
+ "position_embedding_type": "absolute",
65
+ "prefix": null,
66
+ "problem_type": null,
67
+ "pruned_heads": {},
68
+ "remove_invalid_values": false,
69
+ "repetition_penalty": 1.0,
70
+ "return_dict": true,
71
+ "return_dict_in_generate": false,
72
+ "sep_token_id": null,
73
+ "suppress_tokens": null,
74
+ "task_specific_params": null,
75
+ "temperature": 1.0,
76
+ "tf_legacy_loss": false,
77
+ "tie_encoder_decoder": false,
78
+ "tie_word_embeddings": true,
79
+ "tokenizer_class": null,
80
+ "top_k": 50,
81
+ "top_p": 1.0,
82
+ "torch_dtype": "float16",
83
+ "torchscript": false,
84
+ "transformers_version": "4.37.2",
85
+ "type_vocab_size": 2,
86
+ "typical_p": 1.0,
87
+ "use_bfloat16": false,
88
+ "use_cache": true,
89
+ "vocab_size": 21128
90
+ },
91
+ "_gpt_config_dict": {
92
+ "data": {
93
+ "max_eval_sample": 8,
94
+ "max_sec": 54,
95
+ "num_workers": 4,
96
+ "pad_val": 1024
97
+ },
98
+ "inference": {
99
+ "top_k": 5
100
+ },
101
+ "model": {
102
+ "EOS": 1024,
103
+ "dropout": 0,
104
+ "embedding_dim": 512,
105
+ "head": 16,
106
+ "hidden_dim": 512,
107
+ "linear_units": 2048,
108
+ "n_layer": 24,
109
+ "phoneme_vocab_size": 512,
110
+ "random_bert": 0,
111
+ "vocab_size": 1025
112
+ },
113
+ "optimizer": {
114
+ "decay_steps": 40000,
115
+ "lr": 0.01,
116
+ "lr_end": 0.0001,
117
+ "lr_init": 1e-05,
118
+ "warmup_steps": 2000
119
+ },
120
+ "output_dir": "logs/Lumi_294_dpo/logs_s1",
121
+ "pretrained_s1": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
122
+ "train": {
123
+ "batch_size": 1,
124
+ "epochs": 15,
125
+ "exp_name": "Lumi_294_dpo",
126
+ "gradient_clip": 1.0,
127
+ "half_weights_save_dir": "GPT_weights",
128
+ "if_dpo": true,
129
+ "if_save_every_weights": true,
130
+ "if_save_latest": true,
131
+ "precision": "16-mixed",
132
+ "save_every_n_epoch": 5,
133
+ "seed": 1234
134
+ },
135
+ "train_phoneme_path": "logs/Lumi_294_dpo/2-name2text.txt",
136
+ "train_semantic_path": "logs/Lumi_294_dpo/6-name2semantic.tsv"
137
+ },
138
+ "_hps_dict": {
139
+ "content_module": "cnhubert",
140
+ "data": {
141
+ "add_blank": true,
142
+ "cleaned_text": true,
143
+ "exp_dir": "logs/Lumi_294_dpo",
144
+ "filter_length": 2048,
145
+ "hop_length": 640,
146
+ "max_wav_value": 32768.0,
147
+ "mel_fmax": null,
148
+ "mel_fmin": 0.0,
149
+ "n_mel_channels": 128,
150
+ "n_speakers": 300,
151
+ "sampling_rate": 32000,
152
+ "win_length": 2048
153
+ },
154
+ "model": {
155
+ "filter_channels": 768,
156
+ "freeze_quantizer": true,
157
+ "gin_channels": 512,
158
+ "hidden_channels": 192,
159
+ "inter_channels": 192,
160
+ "kernel_size": 3,
161
+ "n_heads": 2,
162
+ "n_layers": 6,
163
+ "n_layers_q": 3,
164
+ "p_dropout": 0.1,
165
+ "resblock": "1",
166
+ "resblock_dilation_sizes": [
167
+ [
168
+ 1,
169
+ 3,
170
+ 5
171
+ ],
172
+ [
173
+ 1,
174
+ 3,
175
+ 5
176
+ ],
177
+ [
178
+ 1,
179
+ 3,
180
+ 5
181
+ ]
182
+ ],
183
+ "resblock_kernel_sizes": [
184
+ 3,
185
+ 7,
186
+ 11
187
+ ],
188
+ "semantic_frame_rate": "25hz",
189
+ "upsample_initial_channel": 512,
190
+ "upsample_kernel_sizes": [
191
+ 16,
192
+ 16,
193
+ 8,
194
+ 2,
195
+ 2
196
+ ],
197
+ "upsample_rates": [
198
+ 10,
199
+ 8,
200
+ 2,
201
+ 2,
202
+ 2
203
+ ],
204
+ "use_spectral_norm": false
205
+ },
206
+ "name": "Lumi_294_dpo",
207
+ "pretrain": null,
208
+ "resume_step": null,
209
+ "s2_ckpt_dir": "logs/Lumi_294_dpo",
210
+ "save_weight_dir": "SoVITS_weights",
211
+ "train": {
212
+ "batch_size": 5,
213
+ "betas": [
214
+ 0.8,
215
+ 0.99
216
+ ],
217
+ "c_kl": 1.0,
218
+ "c_mel": 45,
219
+ "epochs": 16,
220
+ "eps": 1e-09,
221
+ "eval_interval": 500,
222
+ "fp16_run": true,
223
+ "gpu_numbers": "0",
224
+ "if_save_every_weights": true,
225
+ "if_save_latest": true,
226
+ "init_lr_ratio": 1,
227
+ "learning_rate": 0.0001,
228
+ "log_interval": 100,
229
+ "lr_decay": 0.999875,
230
+ "pretrained_s2D": "GPT_SoVITS/pretrained_models/s2D488k.pth",
231
+ "pretrained_s2G": "GPT_SoVITS/pretrained_models/s2G488k.pth",
232
+ "save_every_epoch": 4,
233
+ "seed": 1234,
234
+ "segment_size": 20480,
235
+ "text_low_lr_rate": 0.4,
236
+ "warmup_epochs": 0
237
+ }
238
+ },
239
+ "_hubert_config_dict": {
240
+ "_name_or_path": "./ckpts/chinese-hubert-base",
241
+ "activation_dropout": 0.1,
242
+ "add_cross_attention": false,
243
+ "apply_spec_augment": true,
244
+ "architectures": [
245
+ "HubertModel"
246
+ ],
247
+ "attention_dropout": 0.1,
248
+ "attn_implementation": null,
249
+ "bad_words_ids": null,
250
+ "begin_suppress_tokens": null,
251
+ "bos_token_id": 1,
252
+ "chunk_size_feed_forward": 0,
253
+ "classifier_proj_size": 256,
254
+ "conv_bias": false,
255
+ "conv_dim": [
256
+ 512,
257
+ 512,
258
+ 512,
259
+ 512,
260
+ 512,
261
+ 512,
262
+ 512
263
+ ],
264
+ "conv_kernel": [
265
+ 10,
266
+ 3,
267
+ 3,
268
+ 3,
269
+ 3,
270
+ 2,
271
+ 2
272
+ ],
273
+ "conv_stride": [
274
+ 5,
275
+ 2,
276
+ 2,
277
+ 2,
278
+ 2,
279
+ 2,
280
+ 2
281
+ ],
282
+ "cross_attention_hidden_size": null,
283
+ "ctc_loss_reduction": "sum",
284
+ "ctc_zero_infinity": false,
285
+ "decoder_start_token_id": null,
286
+ "diversity_penalty": 0.0,
287
+ "do_sample": false,
288
+ "do_stable_layer_norm": false,
289
+ "early_stopping": false,
290
+ "encoder_no_repeat_ngram_size": 0,
291
+ "eos_token_id": 2,
292
+ "exponential_decay_length_penalty": null,
293
+ "feat_extract_activation": "gelu",
294
+ "feat_extract_norm": "group",
295
+ "feat_proj_dropout": 0.0,
296
+ "feat_proj_layer_norm": true,
297
+ "final_dropout": 0.1,
298
+ "finetuning_task": null,
299
+ "forced_bos_token_id": null,
300
+ "forced_eos_token_id": null,
301
+ "hidden_act": "gelu",
302
+ "hidden_dropout": 0.1,
303
+ "hidden_size": 768,
304
+ "id2label": {
305
+ "0": "LABEL_0",
306
+ "1": "LABEL_1"
307
+ },
308
+ "initializer_range": 0.02,
309
+ "intermediate_size": 3072,
310
+ "is_decoder": false,
311
+ "is_encoder_decoder": false,
312
+ "label2id": {
313
+ "LABEL_0": 0,
314
+ "LABEL_1": 1
315
+ },
316
+ "layer_norm_eps": 1e-05,
317
+ "layerdrop": 0.1,
318
+ "length_penalty": 1.0,
319
+ "mask_feature_length": 10,
320
+ "mask_feature_min_masks": 0,
321
+ "mask_feature_prob": 0.0,
322
+ "mask_time_length": 10,
323
+ "mask_time_min_masks": 2,
324
+ "mask_time_prob": 0.05,
325
+ "max_length": 20,
326
+ "min_length": 0,
327
+ "model_type": "hubert",
328
+ "no_repeat_ngram_size": 0,
329
+ "num_attention_heads": 12,
330
+ "num_beam_groups": 1,
331
+ "num_beams": 1,
332
+ "num_conv_pos_embedding_groups": 16,
333
+ "num_conv_pos_embeddings": 128,
334
+ "num_feat_extract_layers": 7,
335
+ "num_hidden_layers": 12,
336
+ "num_return_sequences": 1,
337
+ "output_attentions": false,
338
+ "output_hidden_states": false,
339
+ "output_scores": false,
340
+ "pad_token_id": 0,
341
+ "prefix": null,
342
+ "problem_type": null,
343
+ "pruned_heads": {},
344
+ "remove_invalid_values": false,
345
+ "repetition_penalty": 1.0,
346
+ "return_dict": true,
347
+ "return_dict_in_generate": false,
348
+ "sep_token_id": null,
349
+ "suppress_tokens": null,
350
+ "task_specific_params": null,
351
+ "temperature": 1.0,
352
+ "tf_legacy_loss": false,
353
+ "tie_encoder_decoder": false,
354
+ "tie_word_embeddings": true,
355
+ "tokenizer_class": null,
356
+ "top_k": 50,
357
+ "top_p": 1.0,
358
+ "torch_dtype": "float16",
359
+ "torchscript": false,
360
+ "transformers_version": "4.37.2",
361
+ "typical_p": 1.0,
362
+ "use_bfloat16": false,
363
+ "use_weighted_layer_sum": false,
364
+ "vocab_size": 32
365
+ },
366
+ "_hubert_extractor_config_dict": {
367
+ "_processor_class": null,
368
+ "do_normalize": true,
369
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
370
+ "feature_size": 1,
371
+ "padding_side": "right",
372
+ "padding_value": 0,
373
+ "return_attention_mask": false,
374
+ "sampling_rate": 16000
375
+ },
376
+ "architectures": [
377
+ "GPTSoVITSModel"
378
+ ],
379
+ "auto_map": {
380
+ "AutoConfig": "configuration_gpt_sovits.GPTSoVITSConfig",
381
+ "AutoModel": "modeling_gpt_sovits.GPTSoVITSModel"
382
+ },
383
+ "model_type": "gpt_sovits",
384
+ "prompt_language": "zh",
385
+ "torch_dtype": "float32",
386
+ "transformers_version": "4.37.2"
387
+ }
configuration_gpt_sovits.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ import torch
3
+
4
+
5
+ class GPTSoVITSConfig(PretrainedConfig):
6
+ model_type = "gpt_sovits"
7
+
8
+ def __init__(
9
+ self,
10
+ prompt_language: str="zh",
11
+ _hubert_config_dict: dict[str, any] = None,
12
+ _hubert_extractor_config_dict: dict[str, any] = None,
13
+ _bert_config_dict: dict[str, any] = None,
14
+ _hps_dict: dict[str, any] = None,
15
+ _gpt_config_dict: dict[str, any] = None,
16
+ **kwargs
17
+ ):
18
+ self.prompt_language = prompt_language
19
+ self._hubert_config_dict = _hubert_config_dict
20
+ self._hubert_extractor_config_dict = _hubert_extractor_config_dict
21
+ self._bert_config_dict = _bert_config_dict
22
+ self._hps_dict = _hps_dict
23
+ self._gpt_config_dict = _gpt_config_dict
24
+
25
+ super().__init__(**kwargs)
core_vq.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ #
7
+ # This implementation is inspired from
8
+ # https://github.com/lucidrains/vector-quantize-pytorch
9
+ # which is released under MIT License. Hereafter, the original license:
10
+ # MIT License
11
+ #
12
+ # Copyright (c) 2020 Phil Wang
13
+ #
14
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
15
+ # of this software and associated documentation files (the "Software"), to deal
16
+ # in the Software without restriction, including without limitation the rights
17
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
18
+ # copies of the Software, and to permit persons to whom the Software is
19
+ # furnished to do so, subject to the following conditions:
20
+ #
21
+ # The above copyright notice and this permission notice shall be included in all
22
+ # copies or substantial portions of the Software.
23
+ #
24
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
29
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30
+ # SOFTWARE.
31
+
32
+ """Core vector quantization implementation."""
33
+ import typing as tp
34
+
35
+ from einops import rearrange, repeat
36
+ import torch
37
+ from torch import nn
38
+ import torch.nn.functional as F
39
+ from tqdm import tqdm
40
+
41
+
42
+ def default(val: tp.Any, d: tp.Any) -> tp.Any:
43
+ return val if val is not None else d
44
+
45
+
46
+ def ema_inplace(moving_avg, new, decay: float):
47
+ moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
48
+
49
+
50
+ def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
51
+ return (x + epsilon) / (x.sum() + n_categories * epsilon)
52
+
53
+
54
+ def uniform_init(*shape: int):
55
+ t = torch.empty(shape)
56
+ nn.init.kaiming_uniform_(t)
57
+ return t
58
+
59
+
60
+ def sample_vectors(samples, num: int):
61
+ num_samples, device = samples.shape[0], samples.device
62
+
63
+ if num_samples >= num:
64
+ indices = torch.randperm(num_samples, device=device)[:num]
65
+ else:
66
+ indices = torch.randint(0, num_samples, (num,), device=device)
67
+
68
+ return samples[indices]
69
+
70
+
71
+ def kmeans(samples, num_clusters: int, num_iters: int = 10):
72
+ dim, dtype = samples.shape[-1], samples.dtype
73
+ max_kmeans_samples = 500
74
+ samples = samples[:max_kmeans_samples, :]
75
+ means = sample_vectors(samples, num_clusters)
76
+
77
+ print("kmeans start ... ")
78
+ for _ in tqdm(range(num_iters)):
79
+ diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d")
80
+ dists = -(diffs**2).sum(dim=-1)
81
+
82
+ buckets = dists.max(dim=-1).indices
83
+ bins = torch.bincount(buckets, minlength=num_clusters)
84
+ zero_mask = bins == 0
85
+ bins_min_clamped = bins.masked_fill(zero_mask, 1)
86
+
87
+ new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
88
+ new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
89
+ new_means = new_means / bins_min_clamped[..., None]
90
+
91
+ means = torch.where(zero_mask[..., None], means, new_means)
92
+
93
+ return means, bins
94
+
95
+
96
+ class EuclideanCodebook(nn.Module):
97
+ """Codebook with Euclidean distance.
98
+ Args:
99
+ dim (int): Dimension.
100
+ codebook_size (int): Codebook size.
101
+ kmeans_init (bool): Whether to use k-means to initialize the codebooks.
102
+ If set to true, run the k-means algorithm on the first training batch and use
103
+ the learned centroids as initialization.
104
+ kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
105
+ decay (float): Decay for exponential moving average over the codebooks.
106
+ epsilon (float): Epsilon value for numerical stability.
107
+ threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
108
+ that have an exponential moving average cluster size less than the specified threshold with
109
+ randomly selected vector from the current batch.
110
+ """
111
+
112
+ def __init__(
113
+ self,
114
+ dim: int,
115
+ codebook_size: int,
116
+ kmeans_init: int = False,
117
+ kmeans_iters: int = 10,
118
+ decay: float = 0.99,
119
+ epsilon: float = 1e-5,
120
+ threshold_ema_dead_code: int = 2,
121
+ ):
122
+ super().__init__()
123
+ self.decay = decay
124
+ init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = (
125
+ uniform_init if not kmeans_init else torch.zeros
126
+ )
127
+ embed = init_fn(codebook_size, dim)
128
+
129
+ self.codebook_size = codebook_size
130
+
131
+ self.kmeans_iters = kmeans_iters
132
+ self.epsilon = epsilon
133
+ self.threshold_ema_dead_code = threshold_ema_dead_code
134
+
135
+ self.register_buffer("inited", torch.Tensor([not kmeans_init]))
136
+ self.register_buffer("cluster_size", torch.zeros(codebook_size))
137
+ self.register_buffer("embed", embed)
138
+ self.register_buffer("embed_avg", embed.clone())
139
+
140
+ @torch.jit.ignore
141
+ def init_embed_(self, data):
142
+ if self.inited:
143
+ return
144
+
145
+ embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
146
+ self.embed.data.copy_(embed)
147
+ self.embed_avg.data.copy_(embed.clone())
148
+ self.cluster_size.data.copy_(cluster_size)
149
+ self.inited.data.copy_(torch.Tensor([True]))
150
+ # Make sure all buffers across workers are in sync after initialization
151
+ # broadcast_tensors(self.buffers())
152
+
153
+ def replace_(self, samples, mask):
154
+ modified_codebook = torch.where(
155
+ mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
156
+ )
157
+ self.embed.data.copy_(modified_codebook)
158
+
159
+ def expire_codes_(self, batch_samples):
160
+ if self.threshold_ema_dead_code == 0:
161
+ return
162
+
163
+ expired_codes = self.cluster_size < self.threshold_ema_dead_code
164
+ if not torch.any(expired_codes):
165
+ return
166
+
167
+ batch_samples = rearrange(batch_samples, "... d -> (...) d")
168
+ self.replace_(batch_samples, mask=expired_codes)
169
+ # broadcast_tensors(self.buffers())
170
+
171
+ def preprocess(self, x):
172
+ x = rearrange(x, "... d -> (...) d")
173
+ return x
174
+
175
+ def quantize(self, x):
176
+ embed = self.embed.t()
177
+ dist = -(
178
+ x.pow(2).sum(1, keepdim=True)
179
+ - 2 * x @ embed
180
+ + embed.pow(2).sum(0, keepdim=True)
181
+ )
182
+ embed_ind = dist.max(dim=-1).indices
183
+ return embed_ind
184
+
185
+ def postprocess_emb(self, embed_ind, shape):
186
+ return embed_ind.view(*shape[:-1])
187
+
188
+ def dequantize(self, embed_ind):
189
+ quantize = F.embedding(embed_ind, self.embed)
190
+ return quantize
191
+
192
+ def encode(self, x):
193
+ shape = x.shape
194
+ # pre-process
195
+ x = self.preprocess(x)
196
+ # quantize
197
+ embed_ind = self.quantize(x)
198
+ # post-process
199
+ embed_ind = self.postprocess_emb(embed_ind, shape)
200
+ return embed_ind
201
+
202
+ def decode(self, embed_ind):
203
+ quantize = self.dequantize(embed_ind)
204
+ return quantize
205
+
206
+ def forward(self, x):
207
+ shape, dtype = x.shape, x.dtype
208
+ x = self.preprocess(x)
209
+
210
+ self.init_embed_(x)
211
+
212
+ embed_ind = self.quantize(x)
213
+ embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
214
+ embed_ind = self.postprocess_emb(embed_ind, shape)
215
+ quantize = self.dequantize(embed_ind)
216
+
217
+ if self.training:
218
+ # We do the expiry of code at that point as buffers are in sync
219
+ # and all the workers will take the same decision.
220
+ self.expire_codes_(x)
221
+ ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
222
+ embed_sum = x.t() @ embed_onehot
223
+ ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
224
+ cluster_size = (
225
+ laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
226
+ * self.cluster_size.sum()
227
+ )
228
+ embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
229
+ self.embed.data.copy_(embed_normalized)
230
+
231
+ return quantize, embed_ind
232
+
233
+
234
+ class VectorQuantization(nn.Module):
235
+ """Vector quantization implementation.
236
+ Currently supports only euclidean distance.
237
+ Args:
238
+ dim (int): Dimension
239
+ codebook_size (int): Codebook size
240
+ codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
241
+ decay (float): Decay for exponential moving average over the codebooks.
242
+ epsilon (float): Epsilon value for numerical stability.
243
+ kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
244
+ kmeans_iters (int): Number of iterations used for kmeans initialization.
245
+ threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
246
+ that have an exponential moving average cluster size less than the specified threshold with
247
+ randomly selected vector from the current batch.
248
+ commitment_weight (float): Weight for commitment loss.
249
+ """
250
+
251
+ def __init__(
252
+ self,
253
+ dim: int,
254
+ codebook_size: int,
255
+ codebook_dim: tp.Optional[int] = None,
256
+ decay: float = 0.99,
257
+ epsilon: float = 1e-5,
258
+ kmeans_init: bool = True,
259
+ kmeans_iters: int = 50,
260
+ threshold_ema_dead_code: int = 2,
261
+ commitment_weight: float = 1.0,
262
+ ):
263
+ super().__init__()
264
+ _codebook_dim: int = default(codebook_dim, dim)
265
+
266
+ requires_projection = _codebook_dim != dim
267
+ self.project_in = (
268
+ nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()
269
+ )
270
+ self.project_out = (
271
+ nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()
272
+ )
273
+
274
+ self.epsilon = epsilon
275
+ self.commitment_weight = commitment_weight
276
+
277
+ self._codebook = EuclideanCodebook(
278
+ dim=_codebook_dim,
279
+ codebook_size=codebook_size,
280
+ kmeans_init=kmeans_init,
281
+ kmeans_iters=kmeans_iters,
282
+ decay=decay,
283
+ epsilon=epsilon,
284
+ threshold_ema_dead_code=threshold_ema_dead_code,
285
+ )
286
+ self.codebook_size = codebook_size
287
+
288
+ @property
289
+ def codebook(self):
290
+ return self._codebook.embed
291
+
292
+ def encode(self, x):
293
+ x = rearrange(x, "b d n -> b n d")
294
+ x = self.project_in(x)
295
+ embed_in = self._codebook.encode(x)
296
+ return embed_in
297
+
298
+ def decode(self, embed_ind):
299
+ quantize = self._codebook.decode(embed_ind)
300
+ quantize = self.project_out(quantize)
301
+ quantize = rearrange(quantize, "b n d -> b d n")
302
+ return quantize
303
+
304
+ def forward(self, x):
305
+ device = x.device
306
+ x = rearrange(x, "b d n -> b n d")
307
+ x = self.project_in(x)
308
+
309
+ quantize, embed_ind = self._codebook(x)
310
+
311
+ if self.training:
312
+ quantize = x + (quantize - x).detach()
313
+
314
+ loss = torch.tensor([0.0], device=device, requires_grad=self.training)
315
+
316
+ if self.training:
317
+ if self.commitment_weight > 0:
318
+ commit_loss = F.mse_loss(quantize.detach(), x)
319
+ loss = loss + commit_loss * self.commitment_weight
320
+
321
+ quantize = self.project_out(quantize)
322
+ quantize = rearrange(quantize, "b n d -> b d n")
323
+ return quantize, embed_ind, loss
324
+
325
+
326
+ class ResidualVectorQuantization(nn.Module):
327
+ """Residual vector quantization implementation.
328
+ Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
329
+ """
330
+
331
+ def __init__(self, *, num_quantizers, **kwargs):
332
+ super().__init__()
333
+ self.layers = nn.ModuleList(
334
+ [VectorQuantization(**kwargs) for _ in range(num_quantizers)]
335
+ )
336
+
337
+ def forward(
338
+ self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None
339
+ ):
340
+ quantized_out = 0.0
341
+ residual = x
342
+
343
+ all_losses = []
344
+ all_indices = []
345
+ out_quantized = []
346
+
347
+ n_q = n_q or len(self.layers)
348
+
349
+ for i, layer in enumerate(self.layers[:n_q]):
350
+ quantized, indices, loss = layer(residual)
351
+ residual = residual - quantized
352
+ quantized_out = quantized_out + quantized
353
+
354
+ all_indices.append(indices)
355
+ all_losses.append(loss)
356
+ if layers and i in layers:
357
+ out_quantized.append(quantized)
358
+
359
+ out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
360
+ return quantized_out, out_indices, out_losses, out_quantized
361
+
362
+ def encode(
363
+ self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None
364
+ ) -> torch.Tensor:
365
+ residual = x
366
+ all_indices = []
367
+ n_q = n_q or len(self.layers)
368
+ st = st or 0
369
+ for layer in self.layers[st:n_q]:
370
+ indices = layer.encode(residual)
371
+ quantized = layer.decode(indices)
372
+ residual = residual - quantized
373
+ all_indices.append(indices)
374
+ out_indices = torch.stack(all_indices)
375
+ return out_indices
376
+
377
+ def decode(self, q_indices: torch.Tensor, st: int = 0) -> torch.Tensor:
378
+ quantized_out = torch.tensor(0.0, device=q_indices.device)
379
+ for i, indices in enumerate(q_indices):
380
+ layer = self.layers[st + i]
381
+ quantized = layer.decode(indices)
382
+ quantized_out = quantized_out + quantized
383
+ return quantized_out
embedding.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
2
+ import math
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+
8
+ class TokenEmbedding(nn.Module):
9
+ def __init__(
10
+ self,
11
+ embedding_dim: int,
12
+ vocab_size: int,
13
+ dropout: float = 0.0,
14
+ ):
15
+ super().__init__()
16
+
17
+ self.vocab_size = vocab_size
18
+ self.embedding_dim = embedding_dim
19
+
20
+ self.dropout = torch.nn.Dropout(p=dropout)
21
+ self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
22
+
23
+ @property
24
+ def weight(self) -> torch.Tensor:
25
+ return self.word_embeddings.weight
26
+
27
+ def embedding(self, index: int) -> torch.Tensor:
28
+ return self.word_embeddings.weight[index : index + 1]
29
+
30
+ def forward(self, x: torch.Tensor):
31
+ x = self.word_embeddings(x)
32
+ x = self.dropout(x)
33
+ return x
34
+
35
+
36
+ class SinePositionalEmbedding(nn.Module):
37
+ def __init__(
38
+ self,
39
+ embedding_dim: int,
40
+ dropout: float = 0.0,
41
+ scale: bool = False,
42
+ alpha: bool = False,
43
+ ):
44
+ super().__init__()
45
+ self.embedding_dim = embedding_dim
46
+ self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
47
+ self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
48
+ self.dropout = torch.nn.Dropout(p=dropout)
49
+
50
+ self.reverse = False
51
+ self.pe = None
52
+ self.extend_pe(torch.tensor(0.0).expand(1, 4000))
53
+
54
+ def extend_pe(self, x):
55
+ """Reset the positional encodings."""
56
+ if self.pe is not None:
57
+ if self.pe.size(1) >= x.size(1):
58
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
59
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
60
+ return
61
+ pe = torch.zeros(x.size(1), self.embedding_dim)
62
+ if self.reverse:
63
+ position = torch.arange(
64
+ x.size(1) - 1, -1, -1.0, dtype=torch.float32
65
+ ).unsqueeze(1)
66
+ else:
67
+ position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
68
+ div_term = torch.exp(
69
+ torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
70
+ * -(math.log(10000.0) / self.embedding_dim)
71
+ )
72
+ pe[:, 0::2] = torch.sin(position * div_term)
73
+ pe[:, 1::2] = torch.cos(position * div_term)
74
+ pe = pe.unsqueeze(0)
75
+ self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ self.extend_pe(x)
79
+ output = x.unsqueeze(-1) if x.ndim == 2 else x
80
+ output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
81
+ return self.dropout(output)
lr_schedulers.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/lr_schedulers.py
2
+ import math
3
+
4
+ import torch
5
+ from matplotlib import pyplot as plt
6
+ from torch import nn
7
+ from torch.optim import Adam
8
+
9
+
10
+ class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
11
+ """
12
+ Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
13
+ """
14
+
15
+ def __init__(
16
+ self,
17
+ optimizer,
18
+ init_lr,
19
+ peak_lr,
20
+ end_lr,
21
+ warmup_steps=10000,
22
+ total_steps=400000,
23
+ current_step=0,
24
+ ):
25
+ self.init_lr = init_lr
26
+ self.peak_lr = peak_lr
27
+ self.end_lr = end_lr
28
+ self.optimizer = optimizer
29
+ self._warmup_rate = (peak_lr - init_lr) / warmup_steps
30
+ self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
31
+ self._current_step = current_step
32
+ self.lr = init_lr
33
+ self.warmup_steps = warmup_steps
34
+ self.total_steps = total_steps
35
+ self._last_lr = [self.lr]
36
+
37
+ def set_lr(self, lr):
38
+ self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
39
+ for g in self.optimizer.param_groups:
40
+ # g['lr'] = lr
41
+ g["lr"] = self.end_lr ###锁定用线性
42
+
43
+ def step(self):
44
+ if self._current_step < self.warmup_steps:
45
+ lr = self.init_lr + self._warmup_rate * self._current_step
46
+
47
+ elif self._current_step > self.total_steps:
48
+ lr = self.end_lr
49
+
50
+ else:
51
+ decay_ratio = (self._current_step - self.warmup_steps) / (
52
+ self.total_steps - self.warmup_steps
53
+ )
54
+ if decay_ratio < 0.0 or decay_ratio > 1.0:
55
+ raise RuntimeError(
56
+ "Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
57
+ )
58
+ coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
59
+ lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
60
+
61
+ self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
62
+ self.set_lr(lr)
63
+ self.lr = lr
64
+ self._current_step += 1
65
+ return self.lr
66
+
67
+
68
+ if __name__ == "__main__":
69
+ m = nn.Linear(10, 10)
70
+ opt = Adam(m.parameters(), lr=1e-4)
71
+ s = WarmupCosineLRSchedule(
72
+ opt, 1e-6, 2e-4, 1e-6, warmup_steps=2000, total_steps=20000, current_step=0
73
+ )
74
+ lrs = []
75
+ for i in range(25000):
76
+ s.step()
77
+ lrs.append(s.lr)
78
+ print(s.lr)
79
+
80
+ plt.plot(lrs)
81
+ plt.plot(range(0, 25000), lrs)
82
+ plt.show()
mel_processing.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.utils.data
3
+ from librosa.filters import mel as librosa_mel_fn
4
+
5
+ MAX_WAV_VALUE = 32768.0
6
+
7
+
8
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
9
+ """
10
+ PARAMS
11
+ ------
12
+ C: compression factor
13
+ """
14
+ return torch.log(torch.clamp(x, min=clip_val) * C)
15
+
16
+
17
+ def dynamic_range_decompression_torch(x, C=1):
18
+ """
19
+ PARAMS
20
+ ------
21
+ C: compression factor used to compress
22
+ """
23
+ return torch.exp(x) / C
24
+
25
+
26
+ def spectral_normalize_torch(magnitudes):
27
+ output = dynamic_range_compression_torch(magnitudes)
28
+ return output
29
+
30
+
31
+ def spectral_de_normalize_torch(magnitudes):
32
+ output = dynamic_range_decompression_torch(magnitudes)
33
+ return output
34
+
35
+
36
+ mel_basis = {}
37
+ hann_window = {}
38
+
39
+
40
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
41
+ if torch.min(y) < -1.0:
42
+ print("min value is ", torch.min(y))
43
+ if torch.max(y) > 1.0:
44
+ print("max value is ", torch.max(y))
45
+
46
+ global hann_window
47
+ dtype_device = str(y.dtype) + "_" + str(y.device)
48
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
49
+ if wnsize_dtype_device not in hann_window:
50
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
51
+ dtype=y.dtype, device=y.device
52
+ )
53
+
54
+ y = torch.nn.functional.pad(
55
+ y.unsqueeze(1),
56
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
57
+ mode="reflect",
58
+ )
59
+ y = y.squeeze(1)
60
+ spec = torch.stft(
61
+ y,
62
+ n_fft,
63
+ hop_length=hop_size,
64
+ win_length=win_size,
65
+ window=hann_window[wnsize_dtype_device],
66
+ center=center,
67
+ pad_mode="reflect",
68
+ normalized=False,
69
+ onesided=True,
70
+ return_complex=False,
71
+ )
72
+
73
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
74
+ return spec
75
+
76
+
77
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
78
+ global mel_basis
79
+ dtype_device = str(spec.dtype) + "_" + str(spec.device)
80
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
81
+ if fmax_dtype_device not in mel_basis:
82
+ mel = librosa_mel_fn(
83
+ sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
84
+ )
85
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
86
+ dtype=spec.dtype, device=spec.device
87
+ )
88
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
89
+ spec = spectral_normalize_torch(spec)
90
+ return spec
91
+
92
+
93
+ def mel_spectrogram_torch(
94
+ y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
95
+ ):
96
+ if torch.min(y) < -1.0:
97
+ print("min value is ", torch.min(y))
98
+ if torch.max(y) > 1.0:
99
+ print("max value is ", torch.max(y))
100
+
101
+ global mel_basis, hann_window
102
+ dtype_device = str(y.dtype) + "_" + str(y.device)
103
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
104
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
105
+ if fmax_dtype_device not in mel_basis:
106
+ mel = librosa_mel_fn(
107
+ sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
108
+ )
109
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
110
+ dtype=y.dtype, device=y.device
111
+ )
112
+ if wnsize_dtype_device not in hann_window:
113
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
114
+ dtype=y.dtype, device=y.device
115
+ )
116
+
117
+ y = torch.nn.functional.pad(
118
+ y.unsqueeze(1),
119
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
120
+ mode="reflect",
121
+ )
122
+ y = y.squeeze(1)
123
+
124
+ spec = torch.stft(
125
+ y,
126
+ n_fft,
127
+ hop_length=hop_size,
128
+ win_length=win_size,
129
+ window=hann_window[wnsize_dtype_device],
130
+ center=center,
131
+ pad_mode="reflect",
132
+ normalized=False,
133
+ onesided=True,
134
+ return_complex=False,
135
+ )
136
+
137
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
138
+
139
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
140
+ spec = spectral_normalize_torch(spec)
141
+
142
+ return spec
model_utils.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/utils.py\
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from typing import Tuple
5
+
6
+ def sequence_mask(length, max_length=None):
7
+ if max_length is None:
8
+ max_length = length.max()
9
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
10
+ return x.unsqueeze(0) < length.unsqueeze(1)
11
+
12
+
13
+ def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
14
+ """
15
+ Args:
16
+ lengths:
17
+ A 1-D tensor containing sentence lengths.
18
+ max_len:
19
+ The length of masks.
20
+ Returns:
21
+ Return a 2-D bool tensor, where masked positions
22
+ are filled with `True` and non-masked positions are
23
+ filled with `False`.
24
+
25
+ #>>> lengths = torch.tensor([1, 3, 2, 5])
26
+ #>>> make_pad_mask(lengths)
27
+ tensor([[False, True, True, True, True],
28
+ [False, False, False, True, True],
29
+ [False, False, True, True, True],
30
+ [False, False, False, False, False]])
31
+ """
32
+ assert lengths.ndim == 1, lengths.ndim
33
+ max_len = max(max_len, lengths.max())
34
+ n = lengths.size(0)
35
+ seq_range = torch.arange(0, max_len, device=lengths.device)
36
+ expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
37
+
38
+ return expaned_lengths >= lengths.unsqueeze(-1)
39
+
40
+
41
+ # https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
42
+ def top_k_top_p_filtering(
43
+ logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
44
+ ):
45
+ """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
46
+ Args:
47
+ logits: logits distribution shape (batch size, vocabulary size)
48
+ if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
49
+ if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
50
+ Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
51
+ Make sure we keep at least min_tokens_to_keep per batch example in the output
52
+ From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
53
+ """
54
+ if top_k > 0:
55
+ top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
56
+ # Remove all tokens with a probability less than the last token of the top-k
57
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
58
+ logits[indices_to_remove] = filter_value
59
+
60
+ if top_p < 1.0:
61
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
62
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
63
+
64
+ # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
65
+ sorted_indices_to_remove = cumulative_probs > top_p
66
+ if min_tokens_to_keep > 1:
67
+ # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
68
+ sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
69
+ # Shift the indices to the right to keep also the first token above the threshold
70
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
71
+ sorted_indices_to_remove[..., 0] = 0
72
+
73
+ # scatter sorted tensors to original indexing
74
+ indices_to_remove = sorted_indices_to_remove.scatter(
75
+ 1, sorted_indices, sorted_indices_to_remove
76
+ )
77
+ logits[indices_to_remove] = filter_value
78
+ return logits
79
+
80
+
81
+ def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
82
+ # temperature: (`optional`) float
83
+ # The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
84
+ # top_k: (`optional`) int
85
+ # The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
86
+ # top_p: (`optional`) float
87
+ # The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
88
+
89
+ # Temperature (higher temperature => more likely to sample low probability tokens)
90
+ if temperature != 1.0:
91
+ logits = logits / temperature
92
+ # Top-p/top-k filtering
93
+ logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
94
+ # Sample
95
+ token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
96
+ return token
97
+
98
+
99
+ from typing import Optional, Tuple
100
+
101
+
102
+ def multinomial_sample_one_no_sync(
103
+ probs_sort,
104
+ ): # Does multinomial sampling without a cuda synchronization
105
+ q = torch.empty_like(probs_sort).exponential_(1)
106
+ return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
107
+
108
+
109
+ def logits_to_probs(
110
+ logits,
111
+ previous_tokens: Optional[torch.Tensor] = None,
112
+ temperature: float = 1.0,
113
+ top_k: Optional[int] = None,
114
+ top_p: Optional[int] = None,
115
+ repetition_penalty: float = 1.0,
116
+ ):
117
+ if previous_tokens is not None:
118
+ previous_tokens = previous_tokens.squeeze()
119
+ # print(logits.shape,previous_tokens.shape)
120
+ # pdb.set_trace()
121
+ if previous_tokens is not None and repetition_penalty != 1.0:
122
+ previous_tokens = previous_tokens.long()
123
+ score = torch.gather(logits, dim=0, index=previous_tokens)
124
+ score = torch.where(
125
+ score < 0, score * repetition_penalty, score / repetition_penalty
126
+ )
127
+ logits.scatter_(dim=0, index=previous_tokens, src=score)
128
+
129
+ if top_p is not None and top_p < 1.0:
130
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
131
+ cum_probs = torch.cumsum(
132
+ torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
133
+ )
134
+ sorted_indices_to_remove = cum_probs > top_p
135
+ sorted_indices_to_remove[0] = False # keep at least one option
136
+ indices_to_remove = sorted_indices_to_remove.scatter(
137
+ dim=0, index=sorted_indices, src=sorted_indices_to_remove
138
+ )
139
+ logits = logits.masked_fill(indices_to_remove, -float("Inf"))
140
+
141
+ logits = logits / max(temperature, 1e-5)
142
+
143
+ if top_k is not None:
144
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
145
+ pivot = v.select(-1, -1).unsqueeze(-1)
146
+ logits = torch.where(logits < pivot, -float("Inf"), logits)
147
+
148
+ probs = torch.nn.functional.softmax(logits, dim=-1)
149
+ return probs
150
+
151
+
152
+ def sample(
153
+ logits,
154
+ previous_tokens: Optional[torch.Tensor] = None,
155
+ **sampling_kwargs,
156
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
157
+ probs = logits_to_probs(
158
+ logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
159
+ )
160
+ idx_next = multinomial_sample_one_no_sync(probs)
161
+ return idx_next, probs
162
+
163
+ def dpo_loss(policy_chosen_logps: torch.FloatTensor,
164
+ policy_rejected_logps: torch.FloatTensor,
165
+ reference_chosen_logps: torch.FloatTensor,
166
+ reference_rejected_logps: torch.FloatTensor,
167
+ beta: float,
168
+ reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
169
+ pi_logratios = policy_chosen_logps - policy_rejected_logps
170
+ ref_logratios = reference_chosen_logps - reference_rejected_logps
171
+
172
+ if reference_free:
173
+ ref_logratios = 0
174
+
175
+ logits = pi_logratios - ref_logratios
176
+
177
+ losses = -F.logsigmoid(beta * logits)
178
+ chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
179
+ rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
180
+
181
+ return losses.mean(), chosen_rewards, rejected_rewards
182
+
183
+ def get_batch_logps(logits_target: torch.FloatTensor, logits_reject: torch.FloatTensor, labels_target: torch.LongTensor, labels_reject: torch.LongTensor, average_log_prob: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
184
+
185
+ # dummy token; we'll ignore the losses on these tokens later
186
+
187
+ per_token_logps_target = torch.gather(logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)).squeeze(2)
188
+ per_token_logps_reject = torch.gather(logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)).squeeze(2)
189
+
190
+ return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
191
+
192
+ def make_reject_y(y_o, y_lens):
193
+ def repeat_P(y):
194
+ range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
195
+ pre = y[:range_idx[0]]
196
+ shf = y[range_idx[1]:]
197
+ range_text = y[range_idx[0]:range_idx[1]]
198
+ new_y = torch.cat([pre, range_text, range_text, shf])
199
+ return new_y
200
+ def lost_P(y):
201
+ range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
202
+ pre = y[:range_idx[0]]
203
+ shf = y[range_idx[1]:]
204
+ range_text = y[range_idx[0]:range_idx[1]]
205
+ new_y = torch.cat([pre, shf])
206
+ return new_y
207
+ bs = len(y_lens)
208
+ reject_y = []
209
+ reject_y_lens = []
210
+ for b in range(bs):
211
+ process_item_idx = torch.randint(0, 1, size=(1, ))[0]
212
+ if process_item_idx == 0:
213
+ new_y = repeat_P(y_o[b])
214
+ reject_y.append(new_y)
215
+ reject_y_lens.append(len(new_y))
216
+ elif process_item_idx==1:
217
+ new_y = lost_P(y_o[b])
218
+ reject_y.append(new_y)
219
+ reject_y_lens.append(len(new_y))
220
+ max_length = max(reject_y_lens)
221
+ for b in range(bs):
222
+ pad_length = max_length - reject_y_lens[b]
223
+ reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
224
+
225
+ reject_y = torch.stack(reject_y, dim = 0)
226
+ reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
227
+
228
+ return reject_y, reject_y_lens
modeling_gpt_sovits.py ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel
2
+ from .configuration_gpt_sovits import GPTSoVITSConfig
3
+
4
+ import os
5
+ import re
6
+ import LangSegment
7
+ import torch
8
+ import librosa
9
+ import numpy as np
10
+ import soundfile as sf
11
+ from transformers import AutoModelForMaskedLM, BertConfig
12
+
13
+ from .t2s_lightning_module import \
14
+ Text2SemanticLightningModule
15
+ from . import cnhubert
16
+ from .mel_processing import spectrogram_torch
17
+ # from io import BytesIO
18
+ from .models import SynthesizerTrn
19
+ from .my_utils import load_audio
20
+ from .symbols import cleaned_text_to_sequence
21
+ from .cleaner import clean_text
22
+
23
+ from huggingface_hub import hf_hub_download
24
+
25
+ class DictToAttrRecursive(dict):
26
+ def __init__(self, input_dict):
27
+ super().__init__(input_dict)
28
+ for key, value in input_dict.items():
29
+ if isinstance(value, dict):
30
+ value = DictToAttrRecursive(value)
31
+ self[key] = value
32
+ setattr(self, key, value)
33
+
34
+ def __getattr__(self, item):
35
+ try:
36
+ return self[item]
37
+ except KeyError:
38
+ raise AttributeError(f"Attribute {item} not found")
39
+
40
+ def __setattr__(self, key, value):
41
+ if isinstance(value, dict):
42
+ value = DictToAttrRecursive(value)
43
+ super(DictToAttrRecursive, self).__setitem__(key, value)
44
+ super().__setattr__(key, value)
45
+
46
+ def __delattr__(self, item):
47
+ try:
48
+ del self[item]
49
+ except KeyError:
50
+ raise AttributeError(f"Attribute {item} not found")
51
+
52
+ dict_language = {
53
+ "中文": "all_zh",#全部按中文识别
54
+ "英文": "en",#全部按英文识别#######不变
55
+ "日文": "all_ja",#全部按日文识别
56
+ "中英混合": "zh",#按中英混合识别####不变
57
+ "日英混合": "ja",#按日英混合识别####不变
58
+ "多语种混合": "auto",#多语种启动切分识别语种
59
+ "ZH": "zh",
60
+ "EN": "en",
61
+ "JA": "ja",
62
+ "zh": "zh",
63
+ "en": "en",
64
+ "ja": "ja",
65
+ "all_zh": "all_zh", #手动添加,以防万一
66
+ "all_ja": "all_ja", #手动添加,以防万一
67
+ "auto": "auto" #手动添加,以防万一
68
+ }
69
+
70
+ splits = {
71
+ ",",
72
+ "。",
73
+ "?",
74
+ "!",
75
+ ",",
76
+ ".",
77
+ "?",
78
+ "!",
79
+ "~",
80
+ ":",
81
+ ":",
82
+ "—",
83
+ "…",
84
+ } # 不考虑省略号
85
+
86
+ def splite_en_inf(sentence, language):
87
+ pattern = re.compile(r'[a-zA-Z ]+')
88
+ textlist = []
89
+ langlist = []
90
+ pos = 0
91
+ for match in pattern.finditer(sentence):
92
+ start, end = match.span()
93
+ if start > pos:
94
+ textlist.append(sentence[pos:start])
95
+ langlist.append(language)
96
+ textlist.append(sentence[start:end])
97
+ langlist.append("en")
98
+ pos = end
99
+ if pos < len(sentence):
100
+ textlist.append(sentence[pos:])
101
+ langlist.append(language)
102
+ # Merge punctuation into previous word
103
+ for i in range(len(textlist)-1, 0, -1):
104
+ if re.match(r'^[\W_]+$', textlist[i]):
105
+ textlist[i-1] += textlist[i]
106
+ del textlist[i]
107
+ del langlist[i]
108
+ # Merge consecutive words with the same language tag
109
+ i = 0
110
+ while i < len(langlist) - 1:
111
+ if langlist[i] == langlist[i+1]:
112
+ textlist[i] += textlist[i+1]
113
+ del textlist[i+1]
114
+ del langlist[i+1]
115
+ else:
116
+ i += 1
117
+
118
+ return textlist, langlist
119
+
120
+ def clean_text_inf(text, language):
121
+ formattext = ""
122
+ language = language.replace("all_","")
123
+ for tmp in LangSegment.getTexts(text):
124
+ if language == "ja":
125
+ if tmp["lang"] == language or tmp["lang"] == "zh":
126
+ formattext += tmp["text"] + " "
127
+ continue
128
+ if tmp["lang"] == language:
129
+ formattext += tmp["text"] + " "
130
+ while " " in formattext:
131
+ formattext = formattext.replace(" ", " ")
132
+ phones, word2ph, norm_text = clean_text(formattext, language)
133
+ phones = cleaned_text_to_sequence(phones)
134
+ return phones, word2ph, norm_text
135
+
136
+
137
+
138
+ def nonen_clean_text_inf(text, language):
139
+ if(language!="auto"):
140
+ textlist, langlist = splite_en_inf(text, language)
141
+ else:
142
+ textlist=[]
143
+ langlist=[]
144
+ for tmp in LangSegment.getTexts(text):
145
+ langlist.append(tmp["lang"])
146
+ textlist.append(tmp["text"])
147
+ phones_list = []
148
+ word2ph_list = []
149
+ norm_text_list = []
150
+ for i in range(len(textlist)):
151
+ lang = langlist[i]
152
+ phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
153
+ phones_list.append(phones)
154
+ if lang == "zh":
155
+ word2ph_list.append(word2ph)
156
+ norm_text_list.append(norm_text)
157
+ #【日志】 print(word2ph_list)
158
+ phones = sum(phones_list, [])
159
+ word2ph = sum(word2ph_list, [])
160
+ norm_text = ' '.join(norm_text_list)
161
+
162
+ return phones, word2ph, norm_text
163
+
164
+ def get_first(text):
165
+ pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
166
+ text = re.split(pattern, text)[0].strip()
167
+ return text
168
+
169
+ def merge_short_text_in_array(texts, threshold):
170
+ if (len(texts)) < 2:
171
+ return texts
172
+ result = []
173
+ text = ""
174
+ for ele in texts:
175
+ text += ele
176
+ if len(text) >= threshold:
177
+ result.append(text)
178
+ text = ""
179
+ if (len(text) > 0):
180
+ if len(result) == 0:
181
+ result.append(text)
182
+ else:
183
+ result[len(result) - 1] += text
184
+ return result
185
+
186
+ # ====== 对输入文本进行切割 =========
187
+
188
+ def split(todo_text):
189
+ """
190
+ 将大段文本按标点切割,并将每段文本(保留末尾标点)组成列表。
191
+ """
192
+ todo_text = todo_text.replace("……", "。").replace("——", ",")
193
+ if todo_text[-1] not in splits:
194
+ todo_text += "。"
195
+ i_split_head = i_split_tail = 0
196
+ len_text = len(todo_text)
197
+ todo_texts = []
198
+ while 1:
199
+ if i_split_head >= len_text:
200
+ break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
201
+ if todo_text[i_split_head] in splits:
202
+ i_split_head += 1
203
+ todo_texts.append(todo_text[i_split_tail:i_split_head])
204
+ i_split_tail = i_split_head
205
+ else:
206
+ i_split_head += 1
207
+ return todo_texts
208
+
209
+
210
+ def cut1(inp):
211
+ """
212
+ 第一种文本分段法:基于重写的split分割后,凑4段语句推理一次。
213
+ """
214
+ inp = inp.strip("\n")
215
+ inps = split(inp)
216
+ split_idx = list(range(0, len(inps), 4))
217
+ split_idx[-1] = None
218
+ if len(split_idx) > 1:
219
+ opts = []
220
+ for idx in range(len(split_idx) - 1):
221
+ opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
222
+ else:
223
+ opts = [inp]
224
+ return "\n".join(opts)
225
+
226
+
227
+ def cut2(inp):
228
+ """
229
+ 第二种文本分段法:基于重写split分割后,凑50个字推理一次。
230
+ """
231
+ inp = inp.strip("\n")
232
+ inps = split(inp)
233
+ if len(inps) < 2:
234
+ return [inp]
235
+ opts = []
236
+ summ = 0
237
+ tmp_str = ""
238
+ for i in range(len(inps)):
239
+ summ += len(inps[i])
240
+ tmp_str += inps[i]
241
+ if summ > 50:
242
+ summ = 0
243
+ opts.append(tmp_str)
244
+ tmp_str = ""
245
+ if tmp_str != "":
246
+ opts.append(tmp_str)
247
+ if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
248
+ opts[-2] = opts[-2] + opts[-1]
249
+ opts = opts[:-1]
250
+ return "\n".join(opts)
251
+
252
+ def cut3(inp):
253
+ """
254
+ 第三种文本分段法:仅仅按中文句号分割。
255
+ """
256
+ inp = inp.strip("\n")
257
+ return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
258
+
259
+ # 新增两种切法
260
+
261
+ def cut4(inp):
262
+ """
263
+ "按英文句号.切"
264
+ """
265
+ inp = inp.strip("\n")
266
+ return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
267
+
268
+
269
+ # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
270
+ def cut5(inp):
271
+ """
272
+ "按标点符号切"
273
+ """
274
+ # if not re.search(r'[^\w\s]', inp[-1]):
275
+ # inp += '。'
276
+ inp = inp.strip("\n")
277
+ punds = r'[,.;?!、,。?!;:…]'
278
+ items = re.split(f'({punds})', inp)
279
+ mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
280
+ # 在句子不存在符号或句尾无符号的时候保证文本完整
281
+ if len(items)%2 == 1:
282
+ mergeitems.append(items[-1])
283
+ opt = "\n".join(mergeitems)
284
+ return opt
285
+
286
+ def get_spepc(hps, filename):
287
+ audio = load_audio(filename, int(hps.data.sampling_rate))
288
+ audio = torch.FloatTensor(audio)
289
+ audio_norm = audio
290
+ audio_norm = audio_norm.unsqueeze(0)
291
+ spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
292
+ hps.data.win_length, center=False)
293
+ return spec
294
+
295
+ class GPTSoVITSModel(PreTrainedModel):
296
+ config_class = GPTSoVITSConfig
297
+
298
+ def __init__(self, config: GPTSoVITSConfig):
299
+ super().__init__(config)
300
+ self.name_or_path = config.name_or_path
301
+ current_dir = os.path.dirname(os.path.abspath(__file__))
302
+ try:
303
+ for file in ["opencpop-strict.txt","cmudict-fast.rep","cmudict.rep","engdict-hot.rep"]:
304
+ hf_hub_download(
305
+ repo_id=self.name_or_path,
306
+ filename=file,
307
+ repo_type="model",
308
+ local_dir=current_dir
309
+ )
310
+ except:
311
+ print("Download not executed: maybe under dev mode, please put the files in current directory")
312
+ pass
313
+
314
+ self.prompt_language = config.prompt_language
315
+
316
+ self.ssl_model = cnhubert.CNHubert(config._hubert_config_dict, config._hubert_extractor_config_dict)
317
+ self.bert_model = AutoModelForMaskedLM.from_config(BertConfig.from_dict(config._bert_config_dict))
318
+ self.hps = DictToAttrRecursive(config._hps_dict)
319
+ self.hps.model.semantic_frame_rate = "25hz"
320
+ self.gpt_config = config._gpt_config_dict
321
+ self.vq_model = SynthesizerTrn(
322
+ self.hps.data.filter_length // 2 + 1,
323
+ self.hps.train.segment_size // self.hps.data.hop_length,
324
+ n_speakers=self.hps.data.n_speakers,
325
+ **self.hps.model)
326
+ self.t2s_model = Text2SemanticLightningModule(self.gpt_config, "ojbk", is_train=False)
327
+ try:
328
+ self.ref_wav_path = hf_hub_download(
329
+ repo_id=self.name_or_path,
330
+ filename="ref.wav",
331
+ repo_type="model",
332
+ local_dir = current_dir
333
+ )
334
+ self.prompt_text_path = hf_hub_download(
335
+ repo_id=self.name_or_path,
336
+ filename="ref.txt",
337
+ repo_type="model",
338
+ local_dir = current_dir
339
+ )
340
+ except:
341
+ self.ref_wav_path = os.path.join(current_dir, "ref.wav")
342
+ self.prompt_text_path = os.path.join(current_dir, "ref.txt")
343
+ print("Download not executed: maybe under dev mode, please put the files in current directory")
344
+ self.refer = get_spepc(self.hps, self.ref_wav_path)
345
+
346
+
347
+
348
+
349
+ def get_cleaned_text_final(self,text,language):
350
+ """
351
+ 根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
352
+ -> phones,word2ph,norm_text
353
+ - clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
354
+ - clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
355
+ - nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
356
+ - splite_en_inf
357
+ """
358
+ if language in {"en","all_zh","all_ja"}:
359
+ phones, word2ph, norm_text = clean_text_inf(text, language)
360
+ elif language in {"zh", "ja","auto"}:
361
+ phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
362
+ return phones, word2ph, norm_text
363
+
364
+ def get_bert_inf(self, phones, word2ph, norm_text, language):
365
+ device = self.device # 【补】
366
+ is_half = self.dtype == torch.float16 # 【补】
367
+
368
+ language=language.replace("all_","")
369
+ if language == "zh":
370
+ bert = self.get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
371
+ else:
372
+ bert = torch.zeros(
373
+ (1024, len(phones)),
374
+ dtype=torch.float16 if is_half == True else torch.float32,
375
+ ).to(device)
376
+
377
+ return bert
378
+
379
+ def get_bert_feature(self, text, word2ph, tokenizer):
380
+
381
+ is_half = self.dtype == torch.float16 # 【补】
382
+ device = self.device # 【补】
383
+
384
+ with torch.no_grad():
385
+ inputs = tokenizer(text, return_tensors="pt")
386
+ for i in inputs:
387
+ inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
388
+ res = self.bert_model(**inputs, output_hidden_states=True)
389
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
390
+ assert len(word2ph) == len(text)
391
+ phone_level_feature = []
392
+ for i in range(len(word2ph)):
393
+ repeat_feature = res[i].repeat(word2ph[i], 1)
394
+ phone_level_feature.append(repeat_feature)
395
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
396
+ if(is_half==True):phone_level_feature=phone_level_feature.half()
397
+
398
+ return phone_level_feature.T
399
+
400
+ # ======适配混合语种输出======
401
+ # ===
402
+ def get_cleaned_text_final(self,text,language):
403
+ """
404
+ 根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
405
+ -> phones,word2ph,norm_text
406
+ - clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
407
+ - clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
408
+ - nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
409
+ - splite_en_inf
410
+ """
411
+ if language in {"en","all_zh","all_ja"}:
412
+ phones, word2ph, norm_text = clean_text_inf(text, language)
413
+ elif language in {"zh", "ja","auto"}:
414
+ phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
415
+ return phones, word2ph, norm_text
416
+
417
+ def get_bert_inf(self, phones, word2ph, norm_text, language, tokenizer):
418
+ device = self.device # 【补】
419
+ is_half = self.dtype == torch.float16 # 【补】
420
+
421
+ language=language.replace("all_","")
422
+ if language == "zh":
423
+ bert = self.get_bert_feature(norm_text, word2ph,tokenizer).to(device)#.to(dtype)
424
+ else:
425
+ bert = torch.zeros(
426
+ (1024, len(phones)),
427
+ dtype=torch.float16 if is_half == True else torch.float32,
428
+ ).to(device)
429
+
430
+ return bert
431
+
432
+ def nonen_get_bert_inf(self, text, language, tokenizer):
433
+ if(language!="auto"):
434
+ textlist, langlist = splite_en_inf(text, language)
435
+ else:
436
+ textlist=[]
437
+ langlist=[]
438
+ for tmp in LangSegment.getTexts(text):
439
+ langlist.append(tmp["lang"])
440
+ textlist.append(tmp["text"])
441
+ print(textlist)
442
+ print(langlist)
443
+ bert_list = []
444
+ for i in range(len(textlist)):
445
+ lang = langlist[i]
446
+ phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
447
+ bert = self.get_bert_inf(phones, word2ph, norm_text, lang,tokenizer)
448
+ bert_list.append(bert)
449
+ bert = torch.cat(bert_list, dim=1)
450
+
451
+ return bert
452
+
453
+ def get_bert_final(self,phones, word2ph, text,language, tokenizer):
454
+ """
455
+ 根据语言 选择调用不同的函数来得到一个bert表示。
456
+ 需要输入Get_clean_text_final得到的文字素材
457
+ -> bert
458
+ - get_bert_inf 针对纯英文”en”
459
+ - nonen_get_bert_inf 针对混合语种{"zh", "ja","auto"}
460
+ - get_bert_feature 针对纯中文”all_zh”
461
+ """
462
+ device = self.device # 【补】
463
+
464
+ if language == "en":
465
+ bert = self.get_bert_inf(phones, word2ph, text, language, tokenizer) # 【补】
466
+ elif language in {"zh", "ja","auto"}:
467
+ bert = self.nonen_get_bert_inf(text, language, tokenizer)
468
+ elif language == "all_zh":
469
+ bert = self.get_bert_feature(text, word2ph, tokenizer).to(device)
470
+ else:
471
+ bert = torch.zeros((1024, len(phones))).to(device)
472
+ return bert
473
+
474
+ # ===
475
+ # ======适配混合语种输出======
476
+
477
+ def infer(self, text, tokenizer, text_language="zh",
478
+ how_to_cut="凑四句一切",
479
+ top_k=20, top_p=0.6, temperature=0.6,
480
+ # 关于上面三个参数 https://github.com/RVC-Boss/GPT-SoVITS/pull/457
481
+ # 可以通过降低温度,降低top_p,top_k 提升模型输出内容的一致性
482
+ ref_free = False) -> tuple[np.ndarray,float|int]: # 在不知道参考音频文本的情况下进行推理
483
+
484
+ # ====== 函数内变量 ======
485
+ # ===
486
+ # 根据声色指定相关模型与参考语音
487
+ ref_wav_path = self.ref_wav_path
488
+
489
+ if not ref_free:
490
+ prompt_text_path = self.prompt_text_path
491
+ with open(prompt_text_path, 'r', encoding='utf-8') as file:
492
+ prompt_text = file.read()
493
+ # 如果txt中音频文本为空,则也不使用音频文本。
494
+ if prompt_text is None or len(prompt_text) == 0:
495
+ ref_free = True
496
+ prompt_language = self.prompt_language
497
+
498
+
499
+ device = self.device
500
+ is_half = self.dtype == torch.float16
501
+ dtype = self.dtype
502
+
503
+ hz = 50
504
+ max_sec = self.gpt_config['data']['max_sec']
505
+ # ===
506
+ # ====== 函数内变量 ======
507
+
508
+
509
+ # 确认参考语音和推理文本的语种(可以不必,已对prompt_language和text_language的输入做了严格限制)
510
+ prompt_language = dict_language[prompt_language]
511
+ text_language = dict_language[text_language]
512
+
513
+ if not ref_free:
514
+ prompt_text = prompt_text.strip("\n")
515
+ if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
516
+ #【日志】 print("实际输入的参考文本:", prompt_text)
517
+
518
+ # 预处理推理文本:文本第一段(get_first)若特别短<4字符,则在文本最前方加上句号。
519
+ text = text.strip("\n")
520
+ if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
521
+
522
+ #【日志】 print("实际输入的目标文本:", text)
523
+
524
+ # 创建空音频段
525
+ # 第一个with torch.no_grad() 从参考音频中提取语义信息,并把空音频段放到参考音频末尾->prompt_semantic
526
+ zero_wav = np.zeros(
527
+ int(self.hps.data.sampling_rate * 0.3), # 【补】
528
+ dtype=np.float16 if is_half == True else np.float32,
529
+ )
530
+ with torch.no_grad():
531
+ wav16k, sr = librosa.load(ref_wav_path, sr=16000)
532
+ if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
533
+ raise OSError("参考音频在3~10秒范围外,请更换!")
534
+ wav16k = torch.from_numpy(wav16k)
535
+ zero_wav_torch = torch.from_numpy(zero_wav)
536
+ if is_half == True:
537
+ wav16k = wav16k.half().to(device)
538
+ zero_wav_torch = zero_wav_torch.half().to(device)
539
+ else:
540
+ wav16k = wav16k.to(device)
541
+ zero_wav_torch = zero_wav_torch.to(device)
542
+ wav16k = torch.cat([wav16k, zero_wav_torch])
543
+ ssl_content = self.ssl_model.model(wav16k.unsqueeze(0))[
544
+ "last_hidden_state"
545
+ ].transpose(
546
+ 1, 2
547
+ ) # .float()
548
+ codes = self.vq_model.extract_latent(ssl_content)
549
+
550
+ prompt_semantic = codes[0, 0]
551
+
552
+ # 切分推理文本,5种方法。一般可选4句一��和按标点符号切。之后,将其中小于5的语句/短语合并(merge_short_text_in_array)。最终得到推理文本切割列表
553
+ # -> texts
554
+ if (how_to_cut == "凑四句一切"):
555
+ text = cut1(text)
556
+ elif (how_to_cut == "凑50字一切"):
557
+ text = cut2(text)
558
+ elif (how_to_cut == "按中文句号。切"):
559
+ text = cut3(text)
560
+ elif (how_to_cut == "按英文句号.切"):
561
+ text = cut4(text)
562
+ elif (how_to_cut == "按标点符号切"):
563
+ text = cut5(text)
564
+ while "\n\n" in text:
565
+ text = text.replace("\n\n", "\n")
566
+
567
+ #【日志】 print("实际输入的目标文本(切句后):", text)
568
+ texts = text.split("\n")
569
+ texts = merge_short_text_in_array(texts, 5)
570
+ audio_opt = []
571
+ if not ref_free:
572
+ # 处理参考文本(get_cleaned_text_final)得到文字素材
573
+ # -> phones1,word2ph1,norm_text1
574
+ phones1, word2ph1, norm_text1=self.get_cleaned_text_final(prompt_text, prompt_language)
575
+ # 处理参考语音(Get_bert_final) 输入文字素材phones1,word2ph1,norm_text1
576
+ # 得到bert表示
577
+ # ->bert1
578
+ bert1=self.get_bert_final(phones1, word2ph1, norm_text1,prompt_language,tokenizer).to(dtype)
579
+
580
+ # for循环 处理推理文本,对texts中的每一段语句/短语
581
+ # 处理文本(get_cleaned_text_final)得到文字素材
582
+ # -> phones2,word2ph2,norm_text2
583
+ # 处理参考语音(Get_bert_final) 输入文字素材phones2,word2ph2,norm_text2
584
+ # 得到bert表示
585
+ # ->bert2
586
+ for text in texts:
587
+ # 解决输入目标文本的空行导致报错的问题
588
+ if (len(text.strip()) == 0):
589
+ continue
590
+ if (text[-1] not in splits): text += "。" if text_language != "en" else "."
591
+ # 【日志】print("实际输入的目标文本(每句):", text)
592
+ phones2, word2ph2, norm_text2 = self.get_cleaned_text_final(text, text_language)
593
+ bert2 = self.get_bert_final(phones2, word2ph2, norm_text2, text_language,tokenizer).to(dtype)
594
+ if not ref_free:
595
+ bert = torch.cat([bert1, bert2], 1)
596
+ all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
597
+ else:
598
+ bert = bert2
599
+ all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
600
+
601
+ bert = bert.to(device).unsqueeze(0)
602
+ all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
603
+ prompt = prompt_semantic.unsqueeze(0).to(device)
604
+
605
+ with torch.no_grad():
606
+ # pred_semantic = t2s_model.model.infer(
607
+ pred_semantic, idx = self.t2s_model.model.infer_panel(
608
+ all_phoneme_ids,
609
+ all_phoneme_len,
610
+ None if ref_free else prompt,
611
+ bert,
612
+ # prompt_phone_len=ph_offset,
613
+ top_k=top_k,
614
+ top_p=top_p,
615
+ temperature=temperature,
616
+ early_stop_num=hz * max_sec,
617
+ )
618
+
619
+ # print(pred_semantic.shape,idx)
620
+ pred_semantic = pred_semantic[:, -idx:].unsqueeze(
621
+ 0
622
+ ) # .unsqueeze(0)#mq要多unsqueeze一次
623
+ refer = get_spepc(self.hps, ref_wav_path) # .to(device) # 【补】
624
+ if is_half == True:
625
+ refer = refer.half().to(device)
626
+ else:
627
+ refer = refer.to(device)
628
+ # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
629
+ audio = (
630
+ self.vq_model.decode( # 【补】
631
+ pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
632
+ )
633
+ .detach()
634
+ .cpu()
635
+ .numpy()[0, 0]
636
+ ) ###试试重建不带上prompt部分
637
+ max_audio=np.abs(audio).max()#简单防止16bit爆音
638
+ if max_audio>1:audio/=max_audio
639
+ audio_opt.append(audio)
640
+ audio_opt.append(zero_wav)
641
+
642
+ sampling_rate, audio_data = self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
643
+ np.int16
644
+ )
645
+
646
+ # sf.write(wav_save_path, audio_data, sampling_rate, format='wav')
647
+ torch.cuda.empty_cache()
648
+ return audio_data, sampling_rate
models.py ADDED
@@ -0,0 +1,991 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from . import commons
7
+ from . import modules
8
+ from . import attentions
9
+
10
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from .commons import init_weights, get_padding
13
+ from .mrte_model import MRTE
14
+ from .quantize import ResidualVectorQuantizer
15
+ from . import symbols
16
+ from torch.cuda.amp import autocast
17
+
18
+
19
+ class StochasticDurationPredictor(nn.Module):
20
+ def __init__(
21
+ self,
22
+ in_channels,
23
+ filter_channels,
24
+ kernel_size,
25
+ p_dropout,
26
+ n_flows=4,
27
+ gin_channels=0,
28
+ ):
29
+ super().__init__()
30
+ filter_channels = in_channels # it needs to be removed from future version.
31
+ self.in_channels = in_channels
32
+ self.filter_channels = filter_channels
33
+ self.kernel_size = kernel_size
34
+ self.p_dropout = p_dropout
35
+ self.n_flows = n_flows
36
+ self.gin_channels = gin_channels
37
+
38
+ self.log_flow = modules.Log()
39
+ self.flows = nn.ModuleList()
40
+ self.flows.append(modules.ElementwiseAffine(2))
41
+ for i in range(n_flows):
42
+ self.flows.append(
43
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
44
+ )
45
+ self.flows.append(modules.Flip())
46
+
47
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
48
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
49
+ self.post_convs = modules.DDSConv(
50
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
51
+ )
52
+ self.post_flows = nn.ModuleList()
53
+ self.post_flows.append(modules.ElementwiseAffine(2))
54
+ for i in range(4):
55
+ self.post_flows.append(
56
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
57
+ )
58
+ self.post_flows.append(modules.Flip())
59
+
60
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
61
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
62
+ self.convs = modules.DDSConv(
63
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
64
+ )
65
+ if gin_channels != 0:
66
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
67
+
68
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
69
+ x = torch.detach(x)
70
+ x = self.pre(x)
71
+ if g is not None:
72
+ g = torch.detach(g)
73
+ x = x + self.cond(g)
74
+ x = self.convs(x, x_mask)
75
+ x = self.proj(x) * x_mask
76
+
77
+ if not reverse:
78
+ flows = self.flows
79
+ assert w is not None
80
+
81
+ logdet_tot_q = 0
82
+ h_w = self.post_pre(w)
83
+ h_w = self.post_convs(h_w, x_mask)
84
+ h_w = self.post_proj(h_w) * x_mask
85
+ e_q = (
86
+ torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
87
+ * x_mask
88
+ )
89
+ z_q = e_q
90
+ for flow in self.post_flows:
91
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
92
+ logdet_tot_q += logdet_q
93
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
94
+ u = torch.sigmoid(z_u) * x_mask
95
+ z0 = (w - u) * x_mask
96
+ logdet_tot_q += torch.sum(
97
+ (F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
98
+ )
99
+ logq = (
100
+ torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
101
+ - logdet_tot_q
102
+ )
103
+
104
+ logdet_tot = 0
105
+ z0, logdet = self.log_flow(z0, x_mask)
106
+ logdet_tot += logdet
107
+ z = torch.cat([z0, z1], 1)
108
+ for flow in flows:
109
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
110
+ logdet_tot = logdet_tot + logdet
111
+ nll = (
112
+ torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
113
+ - logdet_tot
114
+ )
115
+ return nll + logq # [b]
116
+ else:
117
+ flows = list(reversed(self.flows))
118
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
119
+ z = (
120
+ torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
121
+ * noise_scale
122
+ )
123
+ for flow in flows:
124
+ z = flow(z, x_mask, g=x, reverse=reverse)
125
+ z0, z1 = torch.split(z, [1, 1], 1)
126
+ logw = z0
127
+ return logw
128
+
129
+
130
+ class DurationPredictor(nn.Module):
131
+ def __init__(
132
+ self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
133
+ ):
134
+ super().__init__()
135
+
136
+ self.in_channels = in_channels
137
+ self.filter_channels = filter_channels
138
+ self.kernel_size = kernel_size
139
+ self.p_dropout = p_dropout
140
+ self.gin_channels = gin_channels
141
+
142
+ self.drop = nn.Dropout(p_dropout)
143
+ self.conv_1 = nn.Conv1d(
144
+ in_channels, filter_channels, kernel_size, padding=kernel_size // 2
145
+ )
146
+ self.norm_1 = modules.LayerNorm(filter_channels)
147
+ self.conv_2 = nn.Conv1d(
148
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
149
+ )
150
+ self.norm_2 = modules.LayerNorm(filter_channels)
151
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
152
+
153
+ if gin_channels != 0:
154
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
155
+
156
+ def forward(self, x, x_mask, g=None):
157
+ x = torch.detach(x)
158
+ if g is not None:
159
+ g = torch.detach(g)
160
+ x = x + self.cond(g)
161
+ x = self.conv_1(x * x_mask)
162
+ x = torch.relu(x)
163
+ x = self.norm_1(x)
164
+ x = self.drop(x)
165
+ x = self.conv_2(x * x_mask)
166
+ x = torch.relu(x)
167
+ x = self.norm_2(x)
168
+ x = self.drop(x)
169
+ x = self.proj(x * x_mask)
170
+ return x * x_mask
171
+
172
+
173
+ class TextEncoder(nn.Module):
174
+ def __init__(
175
+ self,
176
+ out_channels,
177
+ hidden_channels,
178
+ filter_channels,
179
+ n_heads,
180
+ n_layers,
181
+ kernel_size,
182
+ p_dropout,
183
+ latent_channels=192,
184
+ ):
185
+ super().__init__()
186
+ self.out_channels = out_channels
187
+ self.hidden_channels = hidden_channels
188
+ self.filter_channels = filter_channels
189
+ self.n_heads = n_heads
190
+ self.n_layers = n_layers
191
+ self.kernel_size = kernel_size
192
+ self.p_dropout = p_dropout
193
+ self.latent_channels = latent_channels
194
+
195
+ self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
196
+
197
+ self.encoder_ssl = attentions.Encoder(
198
+ hidden_channels,
199
+ filter_channels,
200
+ n_heads,
201
+ n_layers // 2,
202
+ kernel_size,
203
+ p_dropout,
204
+ )
205
+
206
+ self.encoder_text = attentions.Encoder(
207
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
208
+ )
209
+ self.text_embedding = nn.Embedding(len(symbols.symbols), hidden_channels)
210
+
211
+ self.mrte = MRTE()
212
+
213
+ self.encoder2 = attentions.Encoder(
214
+ hidden_channels,
215
+ filter_channels,
216
+ n_heads,
217
+ n_layers // 2,
218
+ kernel_size,
219
+ p_dropout,
220
+ )
221
+
222
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
223
+
224
+ def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
225
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
226
+ y.dtype
227
+ )
228
+
229
+ y = self.ssl_proj(y * y_mask) * y_mask
230
+
231
+ y = self.encoder_ssl(y * y_mask, y_mask)
232
+
233
+ text_mask = torch.unsqueeze(
234
+ commons.sequence_mask(text_lengths, text.size(1)), 1
235
+ ).to(y.dtype)
236
+ if test == 1:
237
+ text[:, :] = 0
238
+ text = self.text_embedding(text).transpose(1, 2)
239
+ text = self.encoder_text(text * text_mask, text_mask)
240
+ y = self.mrte(y, y_mask, text, text_mask, ge)
241
+
242
+ y = self.encoder2(y * y_mask, y_mask)
243
+
244
+ stats = self.proj(y) * y_mask
245
+ m, logs = torch.split(stats, self.out_channels, dim=1)
246
+ return y, m, logs, y_mask
247
+
248
+ def extract_latent(self, x):
249
+ x = self.ssl_proj(x)
250
+ quantized, codes, commit_loss, quantized_list = self.quantizer(x)
251
+ return codes.transpose(0, 1)
252
+
253
+ def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
254
+ quantized = self.quantizer.decode(codes)
255
+
256
+ y = self.vq_proj(quantized) * y_mask
257
+ y = self.encoder_ssl(y * y_mask, y_mask)
258
+
259
+ y = self.mrte(y, y_mask, refer, refer_mask, ge)
260
+
261
+ y = self.encoder2(y * y_mask, y_mask)
262
+
263
+ stats = self.proj(y) * y_mask
264
+ m, logs = torch.split(stats, self.out_channels, dim=1)
265
+ return y, m, logs, y_mask, quantized
266
+
267
+
268
+ class ResidualCouplingBlock(nn.Module):
269
+ def __init__(
270
+ self,
271
+ channels,
272
+ hidden_channels,
273
+ kernel_size,
274
+ dilation_rate,
275
+ n_layers,
276
+ n_flows=4,
277
+ gin_channels=0,
278
+ ):
279
+ super().__init__()
280
+ self.channels = channels
281
+ self.hidden_channels = hidden_channels
282
+ self.kernel_size = kernel_size
283
+ self.dilation_rate = dilation_rate
284
+ self.n_layers = n_layers
285
+ self.n_flows = n_flows
286
+ self.gin_channels = gin_channels
287
+
288
+ self.flows = nn.ModuleList()
289
+ for i in range(n_flows):
290
+ self.flows.append(
291
+ modules.ResidualCouplingLayer(
292
+ channels,
293
+ hidden_channels,
294
+ kernel_size,
295
+ dilation_rate,
296
+ n_layers,
297
+ gin_channels=gin_channels,
298
+ mean_only=True,
299
+ )
300
+ )
301
+ self.flows.append(modules.Flip())
302
+
303
+ def forward(self, x, x_mask, g=None, reverse=False):
304
+ if not reverse:
305
+ for flow in self.flows:
306
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
307
+ else:
308
+ for flow in reversed(self.flows):
309
+ x = flow(x, x_mask, g=g, reverse=reverse)
310
+ return x
311
+
312
+
313
+ class PosteriorEncoder(nn.Module):
314
+ def __init__(
315
+ self,
316
+ in_channels,
317
+ out_channels,
318
+ hidden_channels,
319
+ kernel_size,
320
+ dilation_rate,
321
+ n_layers,
322
+ gin_channels=0,
323
+ ):
324
+ super().__init__()
325
+ self.in_channels = in_channels
326
+ self.out_channels = out_channels
327
+ self.hidden_channels = hidden_channels
328
+ self.kernel_size = kernel_size
329
+ self.dilation_rate = dilation_rate
330
+ self.n_layers = n_layers
331
+ self.gin_channels = gin_channels
332
+
333
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
334
+ self.enc = modules.WN(
335
+ hidden_channels,
336
+ kernel_size,
337
+ dilation_rate,
338
+ n_layers,
339
+ gin_channels=gin_channels,
340
+ )
341
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
342
+
343
+ def forward(self, x, x_lengths, g=None):
344
+ if g != None:
345
+ g = g.detach()
346
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
347
+ x.dtype
348
+ )
349
+ x = self.pre(x) * x_mask
350
+ x = self.enc(x, x_mask, g=g)
351
+ stats = self.proj(x) * x_mask
352
+ m, logs = torch.split(stats, self.out_channels, dim=1)
353
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
354
+ return z, m, logs, x_mask
355
+
356
+
357
+ class WNEncoder(nn.Module):
358
+ def __init__(
359
+ self,
360
+ in_channels,
361
+ out_channels,
362
+ hidden_channels,
363
+ kernel_size,
364
+ dilation_rate,
365
+ n_layers,
366
+ gin_channels=0,
367
+ ):
368
+ super().__init__()
369
+ self.in_channels = in_channels
370
+ self.out_channels = out_channels
371
+ self.hidden_channels = hidden_channels
372
+ self.kernel_size = kernel_size
373
+ self.dilation_rate = dilation_rate
374
+ self.n_layers = n_layers
375
+ self.gin_channels = gin_channels
376
+
377
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
378
+ self.enc = modules.WN(
379
+ hidden_channels,
380
+ kernel_size,
381
+ dilation_rate,
382
+ n_layers,
383
+ gin_channels=gin_channels,
384
+ )
385
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
386
+ self.norm = modules.LayerNorm(out_channels)
387
+
388
+ def forward(self, x, x_lengths, g=None):
389
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
390
+ x.dtype
391
+ )
392
+ x = self.pre(x) * x_mask
393
+ x = self.enc(x, x_mask, g=g)
394
+ out = self.proj(x) * x_mask
395
+ out = self.norm(out)
396
+ return out
397
+
398
+
399
+ class Generator(torch.nn.Module):
400
+ def __init__(
401
+ self,
402
+ initial_channel,
403
+ resblock,
404
+ resblock_kernel_sizes,
405
+ resblock_dilation_sizes,
406
+ upsample_rates,
407
+ upsample_initial_channel,
408
+ upsample_kernel_sizes,
409
+ gin_channels=0,
410
+ ):
411
+ super(Generator, self).__init__()
412
+ self.num_kernels = len(resblock_kernel_sizes)
413
+ self.num_upsamples = len(upsample_rates)
414
+ self.conv_pre = Conv1d(
415
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
416
+ )
417
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
418
+
419
+ self.ups = nn.ModuleList()
420
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
421
+ self.ups.append(
422
+ weight_norm(
423
+ ConvTranspose1d(
424
+ upsample_initial_channel // (2**i),
425
+ upsample_initial_channel // (2 ** (i + 1)),
426
+ k,
427
+ u,
428
+ padding=(k - u) // 2,
429
+ )
430
+ )
431
+ )
432
+
433
+ self.resblocks = nn.ModuleList()
434
+ for i in range(len(self.ups)):
435
+ ch = upsample_initial_channel // (2 ** (i + 1))
436
+ for j, (k, d) in enumerate(
437
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
438
+ ):
439
+ self.resblocks.append(resblock(ch, k, d))
440
+
441
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
442
+ self.ups.apply(init_weights)
443
+
444
+ if gin_channels != 0:
445
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
446
+
447
+ def forward(self, x, g=None):
448
+ x = self.conv_pre(x)
449
+ if g is not None:
450
+ x = x + self.cond(g)
451
+
452
+ for i in range(self.num_upsamples):
453
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
454
+ x = self.ups[i](x)
455
+ xs = None
456
+ for j in range(self.num_kernels):
457
+ if xs is None:
458
+ xs = self.resblocks[i * self.num_kernels + j](x)
459
+ else:
460
+ xs += self.resblocks[i * self.num_kernels + j](x)
461
+ x = xs / self.num_kernels
462
+ x = F.leaky_relu(x)
463
+ x = self.conv_post(x)
464
+ x = torch.tanh(x)
465
+
466
+ return x
467
+
468
+ def remove_weight_norm(self):
469
+ print("Removing weight norm...")
470
+ for l in self.ups:
471
+ remove_weight_norm(l)
472
+ for l in self.resblocks:
473
+ l.remove_weight_norm()
474
+
475
+
476
+ class DiscriminatorP(torch.nn.Module):
477
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
478
+ super(DiscriminatorP, self).__init__()
479
+ self.period = period
480
+ self.use_spectral_norm = use_spectral_norm
481
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
482
+ self.convs = nn.ModuleList(
483
+ [
484
+ norm_f(
485
+ Conv2d(
486
+ 1,
487
+ 32,
488
+ (kernel_size, 1),
489
+ (stride, 1),
490
+ padding=(get_padding(kernel_size, 1), 0),
491
+ )
492
+ ),
493
+ norm_f(
494
+ Conv2d(
495
+ 32,
496
+ 128,
497
+ (kernel_size, 1),
498
+ (stride, 1),
499
+ padding=(get_padding(kernel_size, 1), 0),
500
+ )
501
+ ),
502
+ norm_f(
503
+ Conv2d(
504
+ 128,
505
+ 512,
506
+ (kernel_size, 1),
507
+ (stride, 1),
508
+ padding=(get_padding(kernel_size, 1), 0),
509
+ )
510
+ ),
511
+ norm_f(
512
+ Conv2d(
513
+ 512,
514
+ 1024,
515
+ (kernel_size, 1),
516
+ (stride, 1),
517
+ padding=(get_padding(kernel_size, 1), 0),
518
+ )
519
+ ),
520
+ norm_f(
521
+ Conv2d(
522
+ 1024,
523
+ 1024,
524
+ (kernel_size, 1),
525
+ 1,
526
+ padding=(get_padding(kernel_size, 1), 0),
527
+ )
528
+ ),
529
+ ]
530
+ )
531
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
532
+
533
+ def forward(self, x):
534
+ fmap = []
535
+
536
+ # 1d to 2d
537
+ b, c, t = x.shape
538
+ if t % self.period != 0: # pad first
539
+ n_pad = self.period - (t % self.period)
540
+ x = F.pad(x, (0, n_pad), "reflect")
541
+ t = t + n_pad
542
+ x = x.view(b, c, t // self.period, self.period)
543
+
544
+ for l in self.convs:
545
+ x = l(x)
546
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
547
+ fmap.append(x)
548
+ x = self.conv_post(x)
549
+ fmap.append(x)
550
+ x = torch.flatten(x, 1, -1)
551
+
552
+ return x, fmap
553
+
554
+
555
+ class DiscriminatorS(torch.nn.Module):
556
+ def __init__(self, use_spectral_norm=False):
557
+ super(DiscriminatorS, self).__init__()
558
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
559
+ self.convs = nn.ModuleList(
560
+ [
561
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
562
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
563
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
564
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
565
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
566
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
567
+ ]
568
+ )
569
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
570
+
571
+ def forward(self, x):
572
+ fmap = []
573
+
574
+ for l in self.convs:
575
+ x = l(x)
576
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
577
+ fmap.append(x)
578
+ x = self.conv_post(x)
579
+ fmap.append(x)
580
+ x = torch.flatten(x, 1, -1)
581
+
582
+ return x, fmap
583
+
584
+
585
+ class MultiPeriodDiscriminator(torch.nn.Module):
586
+ def __init__(self, use_spectral_norm=False):
587
+ super(MultiPeriodDiscriminator, self).__init__()
588
+ periods = [2, 3, 5, 7, 11]
589
+
590
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
591
+ discs = discs + [
592
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
593
+ ]
594
+ self.discriminators = nn.ModuleList(discs)
595
+
596
+ def forward(self, y, y_hat):
597
+ y_d_rs = []
598
+ y_d_gs = []
599
+ fmap_rs = []
600
+ fmap_gs = []
601
+ for i, d in enumerate(self.discriminators):
602
+ y_d_r, fmap_r = d(y)
603
+ y_d_g, fmap_g = d(y_hat)
604
+ y_d_rs.append(y_d_r)
605
+ y_d_gs.append(y_d_g)
606
+ fmap_rs.append(fmap_r)
607
+ fmap_gs.append(fmap_g)
608
+
609
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
610
+
611
+
612
+ class ReferenceEncoder(nn.Module):
613
+ """
614
+ inputs --- [N, Ty/r, n_mels*r] mels
615
+ outputs --- [N, ref_enc_gru_size]
616
+ """
617
+
618
+ def __init__(self, spec_channels, gin_channels=0):
619
+ super().__init__()
620
+ self.spec_channels = spec_channels
621
+ ref_enc_filters = [32, 32, 64, 64, 128, 128]
622
+ K = len(ref_enc_filters)
623
+ filters = [1] + ref_enc_filters
624
+ convs = [
625
+ weight_norm(
626
+ nn.Conv2d(
627
+ in_channels=filters[i],
628
+ out_channels=filters[i + 1],
629
+ kernel_size=(3, 3),
630
+ stride=(2, 2),
631
+ padding=(1, 1),
632
+ )
633
+ )
634
+ for i in range(K)
635
+ ]
636
+ self.convs = nn.ModuleList(convs)
637
+ # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
638
+
639
+ out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
640
+ self.gru = nn.GRU(
641
+ input_size=ref_enc_filters[-1] * out_channels,
642
+ hidden_size=256 // 2,
643
+ batch_first=True,
644
+ )
645
+ self.proj = nn.Linear(128, gin_channels)
646
+
647
+ def forward(self, inputs):
648
+ N = inputs.size(0)
649
+ out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
650
+ for conv in self.convs:
651
+ out = conv(out)
652
+ # out = wn(out)
653
+ out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
654
+
655
+ out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
656
+ T = out.size(1)
657
+ N = out.size(0)
658
+ out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
659
+
660
+ self.gru.flatten_parameters()
661
+ memory, out = self.gru(out) # out --- [1, N, 128]
662
+
663
+ return self.proj(out.squeeze(0)).unsqueeze(-1)
664
+
665
+ def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
666
+ for i in range(n_convs):
667
+ L = (L - kernel_size + 2 * pad) // stride + 1
668
+ return L
669
+
670
+
671
+ class Quantizer_module(torch.nn.Module):
672
+ def __init__(self, n_e, e_dim):
673
+ super(Quantizer_module, self).__init__()
674
+ self.embedding = nn.Embedding(n_e, e_dim)
675
+ self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
676
+
677
+ def forward(self, x):
678
+ d = (
679
+ torch.sum(x**2, 1, keepdim=True)
680
+ + torch.sum(self.embedding.weight**2, 1)
681
+ - 2 * torch.matmul(x, self.embedding.weight.T)
682
+ )
683
+ min_indicies = torch.argmin(d, 1)
684
+ z_q = self.embedding(min_indicies)
685
+ return z_q, min_indicies
686
+
687
+
688
+ class Quantizer(torch.nn.Module):
689
+ def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
690
+ super(Quantizer, self).__init__()
691
+ assert embed_dim % n_code_groups == 0
692
+ self.quantizer_modules = nn.ModuleList(
693
+ [
694
+ Quantizer_module(n_codes, embed_dim // n_code_groups)
695
+ for _ in range(n_code_groups)
696
+ ]
697
+ )
698
+ self.n_code_groups = n_code_groups
699
+ self.embed_dim = embed_dim
700
+
701
+ def forward(self, xin):
702
+ # B, C, T
703
+ B, C, T = xin.shape
704
+ xin = xin.transpose(1, 2)
705
+ x = xin.reshape(-1, self.embed_dim)
706
+ x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
707
+ min_indicies = []
708
+ z_q = []
709
+ for _x, m in zip(x, self.quantizer_modules):
710
+ _z_q, _min_indicies = m(_x)
711
+ z_q.append(_z_q)
712
+ min_indicies.append(_min_indicies) # B * T,
713
+ z_q = torch.cat(z_q, -1).reshape(xin.shape)
714
+ loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean(
715
+ (z_q - xin.detach()) ** 2
716
+ )
717
+ z_q = xin + (z_q - xin).detach()
718
+ z_q = z_q.transpose(1, 2)
719
+ codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
720
+ return z_q, loss, codes.transpose(1, 2)
721
+
722
+ def embed(self, x):
723
+ # idx: N, 4, T
724
+ x = x.transpose(1, 2)
725
+ x = torch.split(x, 1, 2)
726
+ ret = []
727
+ for q, embed in zip(x, self.quantizer_modules):
728
+ q = embed.embedding(q.squeeze(-1))
729
+ ret.append(q)
730
+ ret = torch.cat(ret, -1)
731
+ return ret.transpose(1, 2) # N, C, T
732
+
733
+
734
+ class CodePredictor(nn.Module):
735
+ def __init__(
736
+ self,
737
+ hidden_channels,
738
+ filter_channels,
739
+ n_heads,
740
+ n_layers,
741
+ kernel_size,
742
+ p_dropout,
743
+ n_q=8,
744
+ dims=1024,
745
+ ssl_dim=768,
746
+ ):
747
+ super().__init__()
748
+ self.hidden_channels = hidden_channels
749
+ self.filter_channels = filter_channels
750
+ self.n_heads = n_heads
751
+ self.n_layers = n_layers
752
+ self.kernel_size = kernel_size
753
+ self.p_dropout = p_dropout
754
+
755
+ self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
756
+ self.ref_enc = modules.MelStyleEncoder(
757
+ ssl_dim, style_vector_dim=hidden_channels
758
+ )
759
+
760
+ self.encoder = attentions.Encoder(
761
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
762
+ )
763
+
764
+ self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1)
765
+ self.n_q = n_q
766
+ self.dims = dims
767
+
768
+ def forward(self, x, x_mask, refer, codes, infer=False):
769
+ x = x.detach()
770
+ x = self.vq_proj(x * x_mask) * x_mask
771
+ g = self.ref_enc(refer, x_mask)
772
+ x = x + g
773
+ x = self.encoder(x * x_mask, x_mask)
774
+ x = self.out_proj(x * x_mask) * x_mask
775
+ logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(
776
+ 2, 3
777
+ )
778
+ target = codes[1:].transpose(0, 1)
779
+ if not infer:
780
+ logits = logits.reshape(-1, self.dims)
781
+ target = target.reshape(-1)
782
+ loss = torch.nn.functional.cross_entropy(logits, target)
783
+ return loss
784
+ else:
785
+ _, top10_preds = torch.topk(logits, 10, dim=-1)
786
+ correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
787
+ top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
788
+
789
+ print("Top-10 Accuracy:", top3_acc, "%")
790
+
791
+ pred_codes = torch.argmax(logits, dim=-1)
792
+ acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
793
+ print("Top-1 Accuracy:", acc, "%")
794
+
795
+ return pred_codes.transpose(0, 1)
796
+
797
+
798
+ class SynthesizerTrn(nn.Module):
799
+ """
800
+ Synthesizer for Training
801
+ """
802
+
803
+ def __init__(
804
+ self,
805
+ spec_channels,
806
+ segment_size,
807
+ inter_channels,
808
+ hidden_channels,
809
+ filter_channels,
810
+ n_heads,
811
+ n_layers,
812
+ kernel_size,
813
+ p_dropout,
814
+ resblock,
815
+ resblock_kernel_sizes,
816
+ resblock_dilation_sizes,
817
+ upsample_rates,
818
+ upsample_initial_channel,
819
+ upsample_kernel_sizes,
820
+ n_speakers=0,
821
+ gin_channels=0,
822
+ use_sdp=True,
823
+ semantic_frame_rate=None,
824
+ freeze_quantizer=None,
825
+ **kwargs
826
+ ):
827
+ super().__init__()
828
+ self.spec_channels = spec_channels
829
+ self.inter_channels = inter_channels
830
+ self.hidden_channels = hidden_channels
831
+ self.filter_channels = filter_channels
832
+ self.n_heads = n_heads
833
+ self.n_layers = n_layers
834
+ self.kernel_size = kernel_size
835
+ self.p_dropout = p_dropout
836
+ self.resblock = resblock
837
+ self.resblock_kernel_sizes = resblock_kernel_sizes
838
+ self.resblock_dilation_sizes = resblock_dilation_sizes
839
+ self.upsample_rates = upsample_rates
840
+ self.upsample_initial_channel = upsample_initial_channel
841
+ self.upsample_kernel_sizes = upsample_kernel_sizes
842
+ self.segment_size = segment_size
843
+ self.n_speakers = n_speakers
844
+ self.gin_channels = gin_channels
845
+
846
+ self.use_sdp = use_sdp
847
+ self.enc_p = TextEncoder(
848
+ inter_channels,
849
+ hidden_channels,
850
+ filter_channels,
851
+ n_heads,
852
+ n_layers,
853
+ kernel_size,
854
+ p_dropout,
855
+ )
856
+ self.dec = Generator(
857
+ inter_channels,
858
+ resblock,
859
+ resblock_kernel_sizes,
860
+ resblock_dilation_sizes,
861
+ upsample_rates,
862
+ upsample_initial_channel,
863
+ upsample_kernel_sizes,
864
+ gin_channels=gin_channels,
865
+ )
866
+ self.enc_q = PosteriorEncoder(
867
+ spec_channels,
868
+ inter_channels,
869
+ hidden_channels,
870
+ 5,
871
+ 1,
872
+ 16,
873
+ gin_channels=gin_channels,
874
+ )
875
+ self.flow = ResidualCouplingBlock(
876
+ inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
877
+ )
878
+
879
+ self.ref_enc = modules.MelStyleEncoder(
880
+ spec_channels, style_vector_dim=gin_channels
881
+ )
882
+
883
+ ssl_dim = 768
884
+ assert semantic_frame_rate in ["25hz", "50hz"]
885
+ self.semantic_frame_rate = semantic_frame_rate
886
+ if semantic_frame_rate == "25hz":
887
+ self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
888
+ else:
889
+ self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
890
+
891
+ self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
892
+ if freeze_quantizer:
893
+ self.ssl_proj.requires_grad_(False)
894
+ self.quantizer.requires_grad_(False)
895
+ # self.enc_p.text_embedding.requires_grad_(False)
896
+ # self.enc_p.encoder_text.requires_grad_(False)
897
+ # self.enc_p.mrte.requires_grad_(False)
898
+
899
+ def forward(self, ssl, y, y_lengths, text, text_lengths):
900
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
901
+ y.dtype
902
+ )
903
+ ge = self.ref_enc(y * y_mask, y_mask)
904
+
905
+ with autocast(enabled=False):
906
+ ssl = self.ssl_proj(ssl)
907
+ quantized, codes, commit_loss, quantized_list = self.quantizer(
908
+ ssl, layers=[0]
909
+ )
910
+
911
+ if self.semantic_frame_rate == "25hz":
912
+ quantized = F.interpolate(
913
+ quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
914
+ )
915
+
916
+ x, m_p, logs_p, y_mask = self.enc_p(
917
+ quantized, y_lengths, text, text_lengths, ge
918
+ )
919
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
920
+ z_p = self.flow(z, y_mask, g=ge)
921
+
922
+ z_slice, ids_slice = commons.rand_slice_segments(
923
+ z, y_lengths, self.segment_size
924
+ )
925
+ o = self.dec(z_slice, g=ge)
926
+ return (
927
+ o,
928
+ commit_loss,
929
+ ids_slice,
930
+ y_mask,
931
+ y_mask,
932
+ (z, z_p, m_p, logs_p, m_q, logs_q),
933
+ quantized,
934
+ )
935
+
936
+ def infer(self, ssl, y, y_lengths, text, text_lengths, test=None, noise_scale=0.5):
937
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
938
+ y.dtype
939
+ )
940
+ ge = self.ref_enc(y * y_mask, y_mask)
941
+
942
+ ssl = self.ssl_proj(ssl)
943
+ quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
944
+ if self.semantic_frame_rate == "25hz":
945
+ quantized = F.interpolate(
946
+ quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
947
+ )
948
+
949
+ x, m_p, logs_p, y_mask = self.enc_p(
950
+ quantized, y_lengths, text, text_lengths, ge, test=test
951
+ )
952
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
953
+
954
+ z = self.flow(z_p, y_mask, g=ge, reverse=True)
955
+
956
+ o = self.dec((z * y_mask)[:, :, :], g=ge)
957
+ return o, y_mask, (z, z_p, m_p, logs_p)
958
+
959
+ @torch.no_grad()
960
+ def decode(self, codes, text, refer, noise_scale=0.5):
961
+ ge = None
962
+ if refer is not None:
963
+ refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
964
+ refer_mask = torch.unsqueeze(
965
+ commons.sequence_mask(refer_lengths, refer.size(2)), 1
966
+ ).to(refer.dtype)
967
+ ge = self.ref_enc(refer * refer_mask, refer_mask)
968
+
969
+ y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
970
+ text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
971
+
972
+ quantized = self.quantizer.decode(codes)
973
+ if self.semantic_frame_rate == "25hz":
974
+ quantized = F.interpolate(
975
+ quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
976
+ )
977
+
978
+ x, m_p, logs_p, y_mask = self.enc_p(
979
+ quantized, y_lengths, text, text_lengths, ge
980
+ )
981
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
982
+
983
+ z = self.flow(z_p, y_mask, g=ge, reverse=True)
984
+
985
+ o = self.dec((z * y_mask)[:, :, :], g=ge)
986
+ return o
987
+
988
+ def extract_latent(self, x):
989
+ ssl = self.ssl_proj(x)
990
+ quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
991
+ return codes.transpose(0, 1)
modules.py ADDED
@@ -0,0 +1,923 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ from torch.nn import Conv1d
8
+ from torch.nn.utils import weight_norm, remove_weight_norm
9
+
10
+ from . import commons
11
+ from .commons import init_weights, get_padding
12
+ from .transforms import piecewise_rational_quadratic_transform
13
+ import torch.distributions as D
14
+
15
+
16
+ LRELU_SLOPE = 0.1
17
+
18
+
19
+ class LayerNorm(nn.Module):
20
+ def __init__(self, channels, eps=1e-5):
21
+ super().__init__()
22
+ self.channels = channels
23
+ self.eps = eps
24
+
25
+ self.gamma = nn.Parameter(torch.ones(channels))
26
+ self.beta = nn.Parameter(torch.zeros(channels))
27
+
28
+ def forward(self, x):
29
+ x = x.transpose(1, -1)
30
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
31
+ return x.transpose(1, -1)
32
+
33
+
34
+ class ConvReluNorm(nn.Module):
35
+ def __init__(
36
+ self,
37
+ in_channels,
38
+ hidden_channels,
39
+ out_channels,
40
+ kernel_size,
41
+ n_layers,
42
+ p_dropout,
43
+ ):
44
+ super().__init__()
45
+ self.in_channels = in_channels
46
+ self.hidden_channels = hidden_channels
47
+ self.out_channels = out_channels
48
+ self.kernel_size = kernel_size
49
+ self.n_layers = n_layers
50
+ self.p_dropout = p_dropout
51
+ assert n_layers > 1, "Number of layers should be larger than 0."
52
+
53
+ self.conv_layers = nn.ModuleList()
54
+ self.norm_layers = nn.ModuleList()
55
+ self.conv_layers.append(
56
+ nn.Conv1d(
57
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
58
+ )
59
+ )
60
+ self.norm_layers.append(LayerNorm(hidden_channels))
61
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
62
+ for _ in range(n_layers - 1):
63
+ self.conv_layers.append(
64
+ nn.Conv1d(
65
+ hidden_channels,
66
+ hidden_channels,
67
+ kernel_size,
68
+ padding=kernel_size // 2,
69
+ )
70
+ )
71
+ self.norm_layers.append(LayerNorm(hidden_channels))
72
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
73
+ self.proj.weight.data.zero_()
74
+ self.proj.bias.data.zero_()
75
+
76
+ def forward(self, x, x_mask):
77
+ x_org = x
78
+ for i in range(self.n_layers):
79
+ x = self.conv_layers[i](x * x_mask)
80
+ x = self.norm_layers[i](x)
81
+ x = self.relu_drop(x)
82
+ x = x_org + self.proj(x)
83
+ return x * x_mask
84
+
85
+
86
+ class DDSConv(nn.Module):
87
+ """
88
+ Dialted and Depth-Separable Convolution
89
+ """
90
+
91
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
92
+ super().__init__()
93
+ self.channels = channels
94
+ self.kernel_size = kernel_size
95
+ self.n_layers = n_layers
96
+ self.p_dropout = p_dropout
97
+
98
+ self.drop = nn.Dropout(p_dropout)
99
+ self.convs_sep = nn.ModuleList()
100
+ self.convs_1x1 = nn.ModuleList()
101
+ self.norms_1 = nn.ModuleList()
102
+ self.norms_2 = nn.ModuleList()
103
+ for i in range(n_layers):
104
+ dilation = kernel_size**i
105
+ padding = (kernel_size * dilation - dilation) // 2
106
+ self.convs_sep.append(
107
+ nn.Conv1d(
108
+ channels,
109
+ channels,
110
+ kernel_size,
111
+ groups=channels,
112
+ dilation=dilation,
113
+ padding=padding,
114
+ )
115
+ )
116
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
117
+ self.norms_1.append(LayerNorm(channels))
118
+ self.norms_2.append(LayerNorm(channels))
119
+
120
+ def forward(self, x, x_mask, g=None):
121
+ if g is not None:
122
+ x = x + g
123
+ for i in range(self.n_layers):
124
+ y = self.convs_sep[i](x * x_mask)
125
+ y = self.norms_1[i](y)
126
+ y = F.gelu(y)
127
+ y = self.convs_1x1[i](y)
128
+ y = self.norms_2[i](y)
129
+ y = F.gelu(y)
130
+ y = self.drop(y)
131
+ x = x + y
132
+ return x * x_mask
133
+
134
+
135
+ class WN(torch.nn.Module):
136
+ def __init__(
137
+ self,
138
+ hidden_channels,
139
+ kernel_size,
140
+ dilation_rate,
141
+ n_layers,
142
+ gin_channels=0,
143
+ p_dropout=0,
144
+ ):
145
+ super(WN, self).__init__()
146
+ assert kernel_size % 2 == 1
147
+ self.hidden_channels = hidden_channels
148
+ self.kernel_size = (kernel_size,)
149
+ self.dilation_rate = dilation_rate
150
+ self.n_layers = n_layers
151
+ self.gin_channels = gin_channels
152
+ self.p_dropout = p_dropout
153
+
154
+ self.in_layers = torch.nn.ModuleList()
155
+ self.res_skip_layers = torch.nn.ModuleList()
156
+ self.drop = nn.Dropout(p_dropout)
157
+
158
+ if gin_channels != 0:
159
+ cond_layer = torch.nn.Conv1d(
160
+ gin_channels, 2 * hidden_channels * n_layers, 1
161
+ )
162
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
163
+
164
+ for i in range(n_layers):
165
+ dilation = dilation_rate**i
166
+ padding = int((kernel_size * dilation - dilation) / 2)
167
+ in_layer = torch.nn.Conv1d(
168
+ hidden_channels,
169
+ 2 * hidden_channels,
170
+ kernel_size,
171
+ dilation=dilation,
172
+ padding=padding,
173
+ )
174
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
175
+ self.in_layers.append(in_layer)
176
+
177
+ # last one is not necessary
178
+ if i < n_layers - 1:
179
+ res_skip_channels = 2 * hidden_channels
180
+ else:
181
+ res_skip_channels = hidden_channels
182
+
183
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
184
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
185
+ self.res_skip_layers.append(res_skip_layer)
186
+
187
+ def forward(self, x, x_mask, g=None, **kwargs):
188
+ output = torch.zeros_like(x)
189
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
190
+
191
+ if g is not None:
192
+ g = self.cond_layer(g)
193
+
194
+ for i in range(self.n_layers):
195
+ x_in = self.in_layers[i](x)
196
+ if g is not None:
197
+ cond_offset = i * 2 * self.hidden_channels
198
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
199
+ else:
200
+ g_l = torch.zeros_like(x_in)
201
+
202
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
203
+ acts = self.drop(acts)
204
+
205
+ res_skip_acts = self.res_skip_layers[i](acts)
206
+ if i < self.n_layers - 1:
207
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
208
+ x = (x + res_acts) * x_mask
209
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
210
+ else:
211
+ output = output + res_skip_acts
212
+ return output * x_mask
213
+
214
+ def remove_weight_norm(self):
215
+ if self.gin_channels != 0:
216
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
217
+ for l in self.in_layers:
218
+ torch.nn.utils.remove_weight_norm(l)
219
+ for l in self.res_skip_layers:
220
+ torch.nn.utils.remove_weight_norm(l)
221
+
222
+
223
+ class ResBlock1(torch.nn.Module):
224
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
225
+ super(ResBlock1, self).__init__()
226
+ self.convs1 = nn.ModuleList(
227
+ [
228
+ weight_norm(
229
+ Conv1d(
230
+ channels,
231
+ channels,
232
+ kernel_size,
233
+ 1,
234
+ dilation=dilation[0],
235
+ padding=get_padding(kernel_size, dilation[0]),
236
+ )
237
+ ),
238
+ weight_norm(
239
+ Conv1d(
240
+ channels,
241
+ channels,
242
+ kernel_size,
243
+ 1,
244
+ dilation=dilation[1],
245
+ padding=get_padding(kernel_size, dilation[1]),
246
+ )
247
+ ),
248
+ weight_norm(
249
+ Conv1d(
250
+ channels,
251
+ channels,
252
+ kernel_size,
253
+ 1,
254
+ dilation=dilation[2],
255
+ padding=get_padding(kernel_size, dilation[2]),
256
+ )
257
+ ),
258
+ ]
259
+ )
260
+ self.convs1.apply(init_weights)
261
+
262
+ self.convs2 = nn.ModuleList(
263
+ [
264
+ weight_norm(
265
+ Conv1d(
266
+ channels,
267
+ channels,
268
+ kernel_size,
269
+ 1,
270
+ dilation=1,
271
+ padding=get_padding(kernel_size, 1),
272
+ )
273
+ ),
274
+ weight_norm(
275
+ Conv1d(
276
+ channels,
277
+ channels,
278
+ kernel_size,
279
+ 1,
280
+ dilation=1,
281
+ padding=get_padding(kernel_size, 1),
282
+ )
283
+ ),
284
+ weight_norm(
285
+ Conv1d(
286
+ channels,
287
+ channels,
288
+ kernel_size,
289
+ 1,
290
+ dilation=1,
291
+ padding=get_padding(kernel_size, 1),
292
+ )
293
+ ),
294
+ ]
295
+ )
296
+ self.convs2.apply(init_weights)
297
+
298
+ def forward(self, x, x_mask=None):
299
+ for c1, c2 in zip(self.convs1, self.convs2):
300
+ xt = F.leaky_relu(x, LRELU_SLOPE)
301
+ if x_mask is not None:
302
+ xt = xt * x_mask
303
+ xt = c1(xt)
304
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
305
+ if x_mask is not None:
306
+ xt = xt * x_mask
307
+ xt = c2(xt)
308
+ x = xt + x
309
+ if x_mask is not None:
310
+ x = x * x_mask
311
+ return x
312
+
313
+ def remove_weight_norm(self):
314
+ for l in self.convs1:
315
+ remove_weight_norm(l)
316
+ for l in self.convs2:
317
+ remove_weight_norm(l)
318
+
319
+
320
+ class ResBlock2(torch.nn.Module):
321
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
322
+ super(ResBlock2, self).__init__()
323
+ self.convs = nn.ModuleList(
324
+ [
325
+ weight_norm(
326
+ Conv1d(
327
+ channels,
328
+ channels,
329
+ kernel_size,
330
+ 1,
331
+ dilation=dilation[0],
332
+ padding=get_padding(kernel_size, dilation[0]),
333
+ )
334
+ ),
335
+ weight_norm(
336
+ Conv1d(
337
+ channels,
338
+ channels,
339
+ kernel_size,
340
+ 1,
341
+ dilation=dilation[1],
342
+ padding=get_padding(kernel_size, dilation[1]),
343
+ )
344
+ ),
345
+ ]
346
+ )
347
+ self.convs.apply(init_weights)
348
+
349
+ def forward(self, x, x_mask=None):
350
+ for c in self.convs:
351
+ xt = F.leaky_relu(x, LRELU_SLOPE)
352
+ if x_mask is not None:
353
+ xt = xt * x_mask
354
+ xt = c(xt)
355
+ x = xt + x
356
+ if x_mask is not None:
357
+ x = x * x_mask
358
+ return x
359
+
360
+ def remove_weight_norm(self):
361
+ for l in self.convs:
362
+ remove_weight_norm(l)
363
+
364
+
365
+ class Log(nn.Module):
366
+ def forward(self, x, x_mask, reverse=False, **kwargs):
367
+ if not reverse:
368
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
369
+ logdet = torch.sum(-y, [1, 2])
370
+ return y, logdet
371
+ else:
372
+ x = torch.exp(x) * x_mask
373
+ return x
374
+
375
+
376
+ class Flip(nn.Module):
377
+ def forward(self, x, *args, reverse=False, **kwargs):
378
+ x = torch.flip(x, [1])
379
+ if not reverse:
380
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
381
+ return x, logdet
382
+ else:
383
+ return x
384
+
385
+
386
+ class ElementwiseAffine(nn.Module):
387
+ def __init__(self, channels):
388
+ super().__init__()
389
+ self.channels = channels
390
+ self.m = nn.Parameter(torch.zeros(channels, 1))
391
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
392
+
393
+ def forward(self, x, x_mask, reverse=False, **kwargs):
394
+ if not reverse:
395
+ y = self.m + torch.exp(self.logs) * x
396
+ y = y * x_mask
397
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
398
+ return y, logdet
399
+ else:
400
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
401
+ return x
402
+
403
+
404
+ class ResidualCouplingLayer(nn.Module):
405
+ def __init__(
406
+ self,
407
+ channels,
408
+ hidden_channels,
409
+ kernel_size,
410
+ dilation_rate,
411
+ n_layers,
412
+ p_dropout=0,
413
+ gin_channels=0,
414
+ mean_only=False,
415
+ ):
416
+ assert channels % 2 == 0, "channels should be divisible by 2"
417
+ super().__init__()
418
+ self.channels = channels
419
+ self.hidden_channels = hidden_channels
420
+ self.kernel_size = kernel_size
421
+ self.dilation_rate = dilation_rate
422
+ self.n_layers = n_layers
423
+ self.half_channels = channels // 2
424
+ self.mean_only = mean_only
425
+
426
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
427
+ self.enc = WN(
428
+ hidden_channels,
429
+ kernel_size,
430
+ dilation_rate,
431
+ n_layers,
432
+ p_dropout=p_dropout,
433
+ gin_channels=gin_channels,
434
+ )
435
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
436
+ self.post.weight.data.zero_()
437
+ self.post.bias.data.zero_()
438
+
439
+ def forward(self, x, x_mask, g=None, reverse=False):
440
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
441
+ h = self.pre(x0) * x_mask
442
+ h = self.enc(h, x_mask, g=g)
443
+ stats = self.post(h) * x_mask
444
+ if not self.mean_only:
445
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
446
+ else:
447
+ m = stats
448
+ logs = torch.zeros_like(m)
449
+
450
+ if not reverse:
451
+ x1 = m + x1 * torch.exp(logs) * x_mask
452
+ x = torch.cat([x0, x1], 1)
453
+ logdet = torch.sum(logs, [1, 2])
454
+ return x, logdet
455
+ else:
456
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
457
+ x = torch.cat([x0, x1], 1)
458
+ return x
459
+
460
+
461
+ class ConvFlow(nn.Module):
462
+ def __init__(
463
+ self,
464
+ in_channels,
465
+ filter_channels,
466
+ kernel_size,
467
+ n_layers,
468
+ num_bins=10,
469
+ tail_bound=5.0,
470
+ ):
471
+ super().__init__()
472
+ self.in_channels = in_channels
473
+ self.filter_channels = filter_channels
474
+ self.kernel_size = kernel_size
475
+ self.n_layers = n_layers
476
+ self.num_bins = num_bins
477
+ self.tail_bound = tail_bound
478
+ self.half_channels = in_channels // 2
479
+
480
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
481
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
482
+ self.proj = nn.Conv1d(
483
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
484
+ )
485
+ self.proj.weight.data.zero_()
486
+ self.proj.bias.data.zero_()
487
+
488
+ def forward(self, x, x_mask, g=None, reverse=False):
489
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
490
+ h = self.pre(x0)
491
+ h = self.convs(h, x_mask, g=g)
492
+ h = self.proj(h) * x_mask
493
+
494
+ b, c, t = x0.shape
495
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
496
+
497
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
498
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
499
+ self.filter_channels
500
+ )
501
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
502
+
503
+ x1, logabsdet = piecewise_rational_quadratic_transform(
504
+ x1,
505
+ unnormalized_widths,
506
+ unnormalized_heights,
507
+ unnormalized_derivatives,
508
+ inverse=reverse,
509
+ tails="linear",
510
+ tail_bound=self.tail_bound,
511
+ )
512
+
513
+ x = torch.cat([x0, x1], 1) * x_mask
514
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
515
+ if not reverse:
516
+ return x, logdet
517
+ else:
518
+ return x
519
+
520
+
521
+ class LinearNorm(nn.Module):
522
+ def __init__(
523
+ self,
524
+ in_channels,
525
+ out_channels,
526
+ bias=True,
527
+ spectral_norm=False,
528
+ ):
529
+ super(LinearNorm, self).__init__()
530
+ self.fc = nn.Linear(in_channels, out_channels, bias)
531
+
532
+ if spectral_norm:
533
+ self.fc = nn.utils.spectral_norm(self.fc)
534
+
535
+ def forward(self, input):
536
+ out = self.fc(input)
537
+ return out
538
+
539
+
540
+ class Mish(nn.Module):
541
+ def __init__(self):
542
+ super(Mish, self).__init__()
543
+
544
+ def forward(self, x):
545
+ return x * torch.tanh(F.softplus(x))
546
+
547
+
548
+ class Conv1dGLU(nn.Module):
549
+ """
550
+ Conv1d + GLU(Gated Linear Unit) with residual connection.
551
+ For GLU refer to https://arxiv.org/abs/1612.08083 paper.
552
+ """
553
+
554
+ def __init__(self, in_channels, out_channels, kernel_size, dropout):
555
+ super(Conv1dGLU, self).__init__()
556
+ self.out_channels = out_channels
557
+ self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size)
558
+ self.dropout = nn.Dropout(dropout)
559
+
560
+ def forward(self, x):
561
+ residual = x
562
+ x = self.conv1(x)
563
+ x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
564
+ x = x1 * torch.sigmoid(x2)
565
+ x = residual + self.dropout(x)
566
+ return x
567
+
568
+
569
+ class ConvNorm(nn.Module):
570
+ def __init__(
571
+ self,
572
+ in_channels,
573
+ out_channels,
574
+ kernel_size=1,
575
+ stride=1,
576
+ padding=None,
577
+ dilation=1,
578
+ bias=True,
579
+ spectral_norm=False,
580
+ ):
581
+ super(ConvNorm, self).__init__()
582
+
583
+ if padding is None:
584
+ assert kernel_size % 2 == 1
585
+ padding = int(dilation * (kernel_size - 1) / 2)
586
+
587
+ self.conv = torch.nn.Conv1d(
588
+ in_channels,
589
+ out_channels,
590
+ kernel_size=kernel_size,
591
+ stride=stride,
592
+ padding=padding,
593
+ dilation=dilation,
594
+ bias=bias,
595
+ )
596
+
597
+ if spectral_norm:
598
+ self.conv = nn.utils.spectral_norm(self.conv)
599
+
600
+ def forward(self, input):
601
+ out = self.conv(input)
602
+ return out
603
+
604
+
605
+ class MultiHeadAttention(nn.Module):
606
+ """Multi-Head Attention module"""
607
+
608
+ def __init__(self, n_head, d_model, d_k, d_v, dropout=0.0, spectral_norm=False):
609
+ super().__init__()
610
+
611
+ self.n_head = n_head
612
+ self.d_k = d_k
613
+ self.d_v = d_v
614
+
615
+ self.w_qs = nn.Linear(d_model, n_head * d_k)
616
+ self.w_ks = nn.Linear(d_model, n_head * d_k)
617
+ self.w_vs = nn.Linear(d_model, n_head * d_v)
618
+
619
+ self.attention = ScaledDotProductAttention(
620
+ temperature=np.power(d_model, 0.5), dropout=dropout
621
+ )
622
+
623
+ self.fc = nn.Linear(n_head * d_v, d_model)
624
+ self.dropout = nn.Dropout(dropout)
625
+
626
+ if spectral_norm:
627
+ self.w_qs = nn.utils.spectral_norm(self.w_qs)
628
+ self.w_ks = nn.utils.spectral_norm(self.w_ks)
629
+ self.w_vs = nn.utils.spectral_norm(self.w_vs)
630
+ self.fc = nn.utils.spectral_norm(self.fc)
631
+
632
+ def forward(self, x, mask=None):
633
+ d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
634
+ sz_b, len_x, _ = x.size()
635
+
636
+ residual = x
637
+
638
+ q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
639
+ k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
640
+ v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
641
+ q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lq x dk
642
+ k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lk x dk
643
+ v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_v) # (n*b) x lv x dv
644
+
645
+ if mask is not None:
646
+ slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
647
+ else:
648
+ slf_mask = None
649
+ output, attn = self.attention(q, k, v, mask=slf_mask)
650
+
651
+ output = output.view(n_head, sz_b, len_x, d_v)
652
+ output = (
653
+ output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_x, -1)
654
+ ) # b x lq x (n*dv)
655
+
656
+ output = self.fc(output)
657
+
658
+ output = self.dropout(output) + residual
659
+ return output, attn
660
+
661
+
662
+ class ScaledDotProductAttention(nn.Module):
663
+ """Scaled Dot-Product Attention"""
664
+
665
+ def __init__(self, temperature, dropout):
666
+ super().__init__()
667
+ self.temperature = temperature
668
+ self.softmax = nn.Softmax(dim=2)
669
+ self.dropout = nn.Dropout(dropout)
670
+
671
+ def forward(self, q, k, v, mask=None):
672
+ attn = torch.bmm(q, k.transpose(1, 2))
673
+ attn = attn / self.temperature
674
+
675
+ if mask is not None:
676
+ attn = attn.masked_fill(mask, -np.inf)
677
+
678
+ attn = self.softmax(attn)
679
+ p_attn = self.dropout(attn)
680
+
681
+ output = torch.bmm(p_attn, v)
682
+ return output, attn
683
+
684
+
685
+ class MelStyleEncoder(nn.Module):
686
+ """MelStyleEncoder"""
687
+
688
+ def __init__(
689
+ self,
690
+ n_mel_channels=80,
691
+ style_hidden=128,
692
+ style_vector_dim=256,
693
+ style_kernel_size=5,
694
+ style_head=2,
695
+ dropout=0.1,
696
+ ):
697
+ super(MelStyleEncoder, self).__init__()
698
+ self.in_dim = n_mel_channels
699
+ self.hidden_dim = style_hidden
700
+ self.out_dim = style_vector_dim
701
+ self.kernel_size = style_kernel_size
702
+ self.n_head = style_head
703
+ self.dropout = dropout
704
+
705
+ self.spectral = nn.Sequential(
706
+ LinearNorm(self.in_dim, self.hidden_dim),
707
+ Mish(),
708
+ nn.Dropout(self.dropout),
709
+ LinearNorm(self.hidden_dim, self.hidden_dim),
710
+ Mish(),
711
+ nn.Dropout(self.dropout),
712
+ )
713
+
714
+ self.temporal = nn.Sequential(
715
+ Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
716
+ Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
717
+ )
718
+
719
+ self.slf_attn = MultiHeadAttention(
720
+ self.n_head,
721
+ self.hidden_dim,
722
+ self.hidden_dim // self.n_head,
723
+ self.hidden_dim // self.n_head,
724
+ self.dropout,
725
+ )
726
+
727
+ self.fc = LinearNorm(self.hidden_dim, self.out_dim)
728
+
729
+ def temporal_avg_pool(self, x, mask=None):
730
+ if mask is None:
731
+ out = torch.mean(x, dim=1)
732
+ else:
733
+ len_ = (~mask).sum(dim=1).unsqueeze(1)
734
+ x = x.masked_fill(mask.unsqueeze(-1), 0)
735
+ x = x.sum(dim=1)
736
+ out = torch.div(x, len_)
737
+ return out
738
+
739
+ def forward(self, x, mask=None):
740
+ x = x.transpose(1, 2)
741
+ if mask is not None:
742
+ mask = (mask.int() == 0).squeeze(1)
743
+ max_len = x.shape[1]
744
+ slf_attn_mask = (
745
+ mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
746
+ )
747
+
748
+ # spectral
749
+ x = self.spectral(x)
750
+ # temporal
751
+ x = x.transpose(1, 2)
752
+ x = self.temporal(x)
753
+ x = x.transpose(1, 2)
754
+ # self-attention
755
+ if mask is not None:
756
+ x = x.masked_fill(mask.unsqueeze(-1), 0)
757
+ x, _ = self.slf_attn(x, mask=slf_attn_mask)
758
+ # fc
759
+ x = self.fc(x)
760
+ # temoral average pooling
761
+ w = self.temporal_avg_pool(x, mask=mask)
762
+
763
+ return w.unsqueeze(-1)
764
+
765
+
766
+ class MelStyleEncoderVAE(nn.Module):
767
+ def __init__(self, spec_channels, z_latent_dim, emb_dim):
768
+ super().__init__()
769
+ self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim)
770
+ self.fc1 = nn.Linear(emb_dim, z_latent_dim)
771
+ self.fc2 = nn.Linear(emb_dim, z_latent_dim)
772
+ self.fc3 = nn.Linear(z_latent_dim, emb_dim)
773
+ self.z_latent_dim = z_latent_dim
774
+
775
+ def reparameterize(self, mu, logvar):
776
+ if self.training:
777
+ std = torch.exp(0.5 * logvar)
778
+ eps = torch.randn_like(std)
779
+ return eps.mul(std).add_(mu)
780
+ else:
781
+ return mu
782
+
783
+ def forward(self, inputs, mask=None):
784
+ enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1)
785
+ mu = self.fc1(enc_out)
786
+ logvar = self.fc2(enc_out)
787
+ posterior = D.Normal(mu, torch.exp(logvar))
788
+ kl_divergence = D.kl_divergence(
789
+ posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar))
790
+ )
791
+ loss_kl = kl_divergence.mean()
792
+
793
+ z = posterior.rsample()
794
+ style_embed = self.fc3(z)
795
+
796
+ return style_embed.unsqueeze(-1), loss_kl
797
+
798
+ def infer(self, inputs=None, random_sample=False, manual_latent=None):
799
+ if manual_latent is None:
800
+ if random_sample:
801
+ dev = next(self.parameters()).device
802
+ posterior = D.Normal(
803
+ torch.zeros(1, self.z_latent_dim, device=dev),
804
+ torch.ones(1, self.z_latent_dim, device=dev),
805
+ )
806
+ z = posterior.rsample()
807
+ else:
808
+ enc_out = self.ref_encoder(inputs.transpose(1, 2))
809
+ mu = self.fc1(enc_out)
810
+ z = mu
811
+ else:
812
+ z = manual_latent
813
+ style_embed = self.fc3(z)
814
+ return style_embed.unsqueeze(-1), z
815
+
816
+
817
+ class ActNorm(nn.Module):
818
+ def __init__(self, channels, ddi=False, **kwargs):
819
+ super().__init__()
820
+ self.channels = channels
821
+ self.initialized = not ddi
822
+
823
+ self.logs = nn.Parameter(torch.zeros(1, channels, 1))
824
+ self.bias = nn.Parameter(torch.zeros(1, channels, 1))
825
+
826
+ def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
827
+ if x_mask is None:
828
+ x_mask = torch.ones(x.size(0), 1, x.size(2)).to(
829
+ device=x.device, dtype=x.dtype
830
+ )
831
+ x_len = torch.sum(x_mask, [1, 2])
832
+ if not self.initialized:
833
+ self.initialize(x, x_mask)
834
+ self.initialized = True
835
+
836
+ if reverse:
837
+ z = (x - self.bias) * torch.exp(-self.logs) * x_mask
838
+ logdet = None
839
+ return z
840
+ else:
841
+ z = (self.bias + torch.exp(self.logs) * x) * x_mask
842
+ logdet = torch.sum(self.logs) * x_len # [b]
843
+ return z, logdet
844
+
845
+ def store_inverse(self):
846
+ pass
847
+
848
+ def set_ddi(self, ddi):
849
+ self.initialized = not ddi
850
+
851
+ def initialize(self, x, x_mask):
852
+ with torch.no_grad():
853
+ denom = torch.sum(x_mask, [0, 2])
854
+ m = torch.sum(x * x_mask, [0, 2]) / denom
855
+ m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
856
+ v = m_sq - (m**2)
857
+ logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
858
+
859
+ bias_init = (
860
+ (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
861
+ )
862
+ logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
863
+
864
+ self.bias.data.copy_(bias_init)
865
+ self.logs.data.copy_(logs_init)
866
+
867
+
868
+ class InvConvNear(nn.Module):
869
+ def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
870
+ super().__init__()
871
+ assert n_split % 2 == 0
872
+ self.channels = channels
873
+ self.n_split = n_split
874
+ self.no_jacobian = no_jacobian
875
+
876
+ w_init = torch.linalg.qr(
877
+ torch.FloatTensor(self.n_split, self.n_split).normal_()
878
+ )[0]
879
+ if torch.det(w_init) < 0:
880
+ w_init[:, 0] = -1 * w_init[:, 0]
881
+ self.weight = nn.Parameter(w_init)
882
+
883
+ def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
884
+ b, c, t = x.size()
885
+ assert c % self.n_split == 0
886
+ if x_mask is None:
887
+ x_mask = 1
888
+ x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
889
+ else:
890
+ x_len = torch.sum(x_mask, [1, 2])
891
+
892
+ x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
893
+ x = (
894
+ x.permute(0, 1, 3, 2, 4)
895
+ .contiguous()
896
+ .view(b, self.n_split, c // self.n_split, t)
897
+ )
898
+
899
+ if reverse:
900
+ if hasattr(self, "weight_inv"):
901
+ weight = self.weight_inv
902
+ else:
903
+ weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
904
+ logdet = None
905
+ else:
906
+ weight = self.weight
907
+ if self.no_jacobian:
908
+ logdet = 0
909
+ else:
910
+ logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
911
+
912
+ weight = weight.view(self.n_split, self.n_split, 1, 1)
913
+ z = F.conv2d(x, weight)
914
+
915
+ z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
916
+ z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
917
+ if reverse:
918
+ return z
919
+ else:
920
+ return z, logdet
921
+
922
+ def store_inverse(self):
923
+ self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
mrte_model.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is Multi-reference timbre encoder
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn.utils import remove_weight_norm, weight_norm
6
+ from .attentions import MultiHeadAttention
7
+
8
+
9
+ class MRTE(nn.Module):
10
+ def __init__(
11
+ self,
12
+ content_enc_channels=192,
13
+ hidden_size=512,
14
+ out_channels=192,
15
+ kernel_size=5,
16
+ n_heads=4,
17
+ ge_layer=2,
18
+ ):
19
+ super(MRTE, self).__init__()
20
+ self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
21
+ self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
22
+ self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
23
+ self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
24
+
25
+ def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
26
+ if ge == None:
27
+ ge = 0
28
+ attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
29
+
30
+ ssl_enc = self.c_pre(ssl_enc * ssl_mask)
31
+ text_enc = self.text_pre(text * text_mask)
32
+ if test != None:
33
+ if test == 0:
34
+ x = (
35
+ self.cross_attention(
36
+ ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
37
+ )
38
+ + ssl_enc
39
+ + ge
40
+ )
41
+ elif test == 1:
42
+ x = ssl_enc + ge
43
+ elif test == 2:
44
+ x = (
45
+ self.cross_attention(
46
+ ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask
47
+ )
48
+ + ge
49
+ )
50
+ else:
51
+ raise ValueError("test should be 0,1,2")
52
+ else:
53
+ x = (
54
+ self.cross_attention(
55
+ ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
56
+ )
57
+ + ssl_enc
58
+ + ge
59
+ )
60
+ x = self.c_post(x * ssl_mask)
61
+ return x
62
+
63
+
64
+ class SpeakerEncoder(torch.nn.Module):
65
+ def __init__(
66
+ self,
67
+ mel_n_channels=80,
68
+ model_num_layers=2,
69
+ model_hidden_size=256,
70
+ model_embedding_size=256,
71
+ ):
72
+ super(SpeakerEncoder, self).__init__()
73
+ self.lstm = nn.LSTM(
74
+ mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
75
+ )
76
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
77
+ self.relu = nn.ReLU()
78
+
79
+ def forward(self, mels):
80
+ self.lstm.flatten_parameters()
81
+ _, (hidden, _) = self.lstm(mels.transpose(-1, -2))
82
+ embeds_raw = self.relu(self.linear(hidden[-1]))
83
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
84
+
85
+
86
+ class MELEncoder(nn.Module):
87
+ def __init__(
88
+ self,
89
+ in_channels,
90
+ out_channels,
91
+ hidden_channels,
92
+ kernel_size,
93
+ dilation_rate,
94
+ n_layers,
95
+ ):
96
+ super().__init__()
97
+ self.in_channels = in_channels
98
+ self.out_channels = out_channels
99
+ self.hidden_channels = hidden_channels
100
+ self.kernel_size = kernel_size
101
+ self.dilation_rate = dilation_rate
102
+ self.n_layers = n_layers
103
+
104
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
105
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
106
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
107
+
108
+ def forward(self, x):
109
+ # print(x.shape,x_lengths.shape)
110
+ x = self.pre(x)
111
+ x = self.enc(x)
112
+ x = self.proj(x)
113
+ return x
114
+
115
+
116
+ class WN(torch.nn.Module):
117
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
118
+ super(WN, self).__init__()
119
+ assert kernel_size % 2 == 1
120
+ self.hidden_channels = hidden_channels
121
+ self.kernel_size = kernel_size
122
+ self.dilation_rate = dilation_rate
123
+ self.n_layers = n_layers
124
+
125
+ self.in_layers = torch.nn.ModuleList()
126
+ self.res_skip_layers = torch.nn.ModuleList()
127
+
128
+ for i in range(n_layers):
129
+ dilation = dilation_rate**i
130
+ padding = int((kernel_size * dilation - dilation) / 2)
131
+ in_layer = nn.Conv1d(
132
+ hidden_channels,
133
+ 2 * hidden_channels,
134
+ kernel_size,
135
+ dilation=dilation,
136
+ padding=padding,
137
+ )
138
+ in_layer = weight_norm(in_layer)
139
+ self.in_layers.append(in_layer)
140
+
141
+ # last one is not necessary
142
+ if i < n_layers - 1:
143
+ res_skip_channels = 2 * hidden_channels
144
+ else:
145
+ res_skip_channels = hidden_channels
146
+
147
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
148
+ res_skip_layer = weight_norm(res_skip_layer, name="weight")
149
+ self.res_skip_layers.append(res_skip_layer)
150
+
151
+ def forward(self, x):
152
+ output = torch.zeros_like(x)
153
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+
158
+ acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor)
159
+
160
+ res_skip_acts = self.res_skip_layers[i](acts)
161
+ if i < self.n_layers - 1:
162
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
163
+ x = x + res_acts
164
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
165
+ else:
166
+ output = output + res_skip_acts
167
+ return output
168
+
169
+ def remove_weight_norm(self):
170
+ for l in self.in_layers:
171
+ remove_weight_norm(l)
172
+ for l in self.res_skip_layers:
173
+ remove_weight_norm(l)
174
+
175
+
176
+ @torch.jit.script
177
+ def fused_add_tanh_sigmoid_multiply(input, n_channels):
178
+ n_channels_int = n_channels[0]
179
+ t_act = torch.tanh(input[:, :n_channels_int, :])
180
+ s_act = torch.sigmoid(input[:, n_channels_int:, :])
181
+ acts = t_act * s_act
182
+ return acts
183
+
184
+
185
+ if __name__ == "__main__":
186
+ content_enc = torch.randn(3, 192, 100)
187
+ content_mask = torch.ones(3, 1, 100)
188
+ ref_mel = torch.randn(3, 128, 30)
189
+ ref_mask = torch.ones(3, 1, 30)
190
+ model = MRTE()
191
+ out = model(content_enc, content_mask, ref_mel, ref_mask)
192
+ print(out.shape)
my_utils.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ffmpeg
2
+ import numpy as np
3
+
4
+
5
+ def load_audio(file, sr):
6
+ try:
7
+ # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
8
+ # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
9
+ # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
10
+ file = (
11
+ file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
12
+ ) # 防止小白拷路径头尾带了空格和"和回车
13
+ out, _ = (
14
+ ffmpeg.input(file, threads=0)
15
+ .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
16
+ .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
17
+ )
18
+ except Exception as e:
19
+ raise RuntimeError(f"Failed to load audio: {e}")
20
+
21
+ return np.frombuffer(out, np.float32).flatten()
optim.py ADDED
@@ -0,0 +1,622 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
2
+ #
3
+ # See ../LICENSE for clarification regarding multiple authors
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ import contextlib
17
+ import logging
18
+ from collections import defaultdict
19
+ from typing import List
20
+ from typing import Tuple
21
+
22
+ import torch
23
+ from torch import Tensor
24
+ from torch.optim import Optimizer
25
+
26
+
27
+ class BatchedOptimizer(Optimizer):
28
+ """
29
+ This class adds to class Optimizer the capability to optimize parameters in batches:
30
+ it will stack the parameters and their grads for you so the optimizer can work
31
+ on tensors with an extra leading dimension. This is intended for speed with GPUs,
32
+ as it reduces the number of kernels launched in the optimizer.
33
+
34
+ Args:
35
+ params:
36
+ """
37
+
38
+ def __init__(self, params, defaults):
39
+ super(BatchedOptimizer, self).__init__(params, defaults)
40
+
41
+ @contextlib.contextmanager
42
+ def batched_params(self, param_group, group_params_names):
43
+ """
44
+ This function returns (technically, yields) a list of
45
+ of tuples (p, state), where
46
+ p is a `fake` parameter that is stacked (over axis 0) from real parameters
47
+ that share the same shape, and its gradient is also stacked;
48
+ `state` is the state corresponding to this batch of parameters
49
+ (it will be physically located in the "state" for one of the real
50
+ parameters, the last one that has any particular shape and dtype).
51
+
52
+ This function is decorated as a context manager so that it can
53
+ write parameters back to their "real" locations.
54
+
55
+ The idea is, instead of doing:
56
+ <code>
57
+ for p in group["params"]:
58
+ state = self.state[p]
59
+ ...
60
+ </code>
61
+ you can do:
62
+ <code>
63
+ with self.batched_params(group["params"]) as batches:
64
+ for p, state, p_names in batches:
65
+ ...
66
+ </code>
67
+
68
+ Args:
69
+ group: a parameter group, which is a list of parameters; should be
70
+ one of self.param_groups.
71
+ group_params_names: name for each parameter in group,
72
+ which is List[str].
73
+ """
74
+ batches = defaultdict(
75
+ list
76
+ ) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
77
+ batches_names = defaultdict(
78
+ list
79
+ ) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
80
+
81
+ assert len(param_group) == len(group_params_names)
82
+ for p, named_p in zip(param_group, group_params_names):
83
+ key = (str(p.dtype), *p.shape)
84
+ batches[key].append(p)
85
+ batches_names[key].append(named_p)
86
+
87
+ batches_names_keys = list(batches_names.keys())
88
+ sorted_idx = sorted(
89
+ range(len(batches_names)), key=lambda i: batches_names_keys[i])
90
+ batches_names = [
91
+ batches_names[batches_names_keys[idx]] for idx in sorted_idx
92
+ ]
93
+ batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
94
+
95
+ stacked_params_dict = dict()
96
+
97
+ # turn batches into a list, in deterministic order.
98
+ # tuples will contain tuples of (stacked_param, state, stacked_params_names),
99
+ # one for each batch in `batches`.
100
+ tuples = []
101
+
102
+ for batch, batch_names in zip(batches, batches_names):
103
+ p = batch[0]
104
+ # we arbitrarily store the state in the
105
+ # state corresponding to the 1st parameter in the
106
+ # group. class Optimizer will take care of saving/loading state.
107
+ state = self.state[p]
108
+ p_stacked = torch.stack(batch)
109
+ grad = torch.stack([
110
+ torch.zeros_like(p) if p.grad is None else p.grad for p in batch
111
+ ])
112
+ p_stacked.grad = grad
113
+ stacked_params_dict[key] = p_stacked
114
+ tuples.append((p_stacked, state, batch_names))
115
+
116
+ yield tuples # <-- calling code will do the actual optimization here!
117
+
118
+ for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
119
+ for i, p in enumerate(batch): # batch is list of Parameter
120
+ p.copy_(stacked_params[i])
121
+
122
+
123
+ class ScaledAdam(BatchedOptimizer):
124
+ """
125
+ Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
126
+ proportional to the norm of that parameter; and also learn the scale of the parameter,
127
+ in log space, subject to upper and lower limits (as if we had factored each parameter as
128
+ param = underlying_param * log_scale.exp())
129
+
130
+
131
+ Args:
132
+ params: The parameters or param_groups to optimize (like other Optimizer subclasses)
133
+ lr: The learning rate. We will typically use a learning rate schedule that starts
134
+ at 0.03 and decreases over time, i.e. much higher than other common
135
+ optimizers.
136
+ clipping_scale: (e.g. 2.0)
137
+ A scale for gradient-clipping: if specified, the normalized gradients
138
+ over the whole model will be clipped to have 2-norm equal to
139
+ `clipping_scale` times the median 2-norm over the most recent period
140
+ of `clipping_update_period` minibatches. By "normalized gradients",
141
+ we mean after multiplying by the rms parameter value for this tensor
142
+ [for non-scalars]; this is appropriate because our update is scaled
143
+ by this quantity.
144
+ betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
145
+ Must satisfy 0 < beta <= beta2 < 1.
146
+ scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
147
+ scale of each parameter tensor and scalar parameters of the mode..
148
+ If each parameter were decomposed
149
+ as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
150
+ would be a the scaling factor on the learning rate of p_scale.
151
+ eps: A general-purpose epsilon to prevent division by zero
152
+ param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
153
+ learning the scale on the parameters (we'll constrain the rms of each non-scalar
154
+ parameter tensor to be >= this value)
155
+ param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
156
+ learning the scale on the parameters (we'll constrain the rms of each non-scalar
157
+ parameter tensor to be <= this value)
158
+ scalar_max: Maximum absolute value for scalar parameters (applicable if your
159
+ model has any parameters with numel() == 1).
160
+ size_update_period: The periodicity, in steps, with which we update the size (scale)
161
+ of the parameter tensor. This is provided to save a little time
162
+ in the update.
163
+ clipping_update_period: if clipping_scale is specified, this is the period
164
+ """
165
+
166
+ def __init__(
167
+ self,
168
+ params,
169
+ lr=3e-02,
170
+ clipping_scale=None,
171
+ betas=(0.9, 0.98),
172
+ scalar_lr_scale=0.1,
173
+ eps=1.0e-08,
174
+ param_min_rms=1.0e-05,
175
+ param_max_rms=3.0,
176
+ scalar_max=10.0,
177
+ size_update_period=4,
178
+ clipping_update_period=100,
179
+ parameters_names=None,
180
+ show_dominant_parameters=True, ):
181
+
182
+ assert parameters_names is not None, (
183
+ "Please prepare parameters_names,"
184
+ "which is a List[List[str]]. Each List[str] is for a group"
185
+ "and each str is for a parameter")
186
+ defaults = dict(
187
+ lr=lr,
188
+ clipping_scale=clipping_scale,
189
+ betas=betas,
190
+ scalar_lr_scale=scalar_lr_scale,
191
+ eps=eps,
192
+ param_min_rms=param_min_rms,
193
+ param_max_rms=param_max_rms,
194
+ scalar_max=scalar_max,
195
+ size_update_period=size_update_period,
196
+ clipping_update_period=clipping_update_period, )
197
+
198
+ super(ScaledAdam, self).__init__(params, defaults)
199
+ assert len(self.param_groups) == len(parameters_names)
200
+ self.parameters_names = parameters_names
201
+ self.show_dominant_parameters = show_dominant_parameters
202
+
203
+ def __setstate__(self, state):
204
+ super(ScaledAdam, self).__setstate__(state)
205
+
206
+ @torch.no_grad()
207
+ def step(self, closure=None):
208
+ """Performs a single optimization step.
209
+
210
+ Arguments:
211
+ closure (callable, optional): A closure that reevaluates the model
212
+ and returns the loss.
213
+ """
214
+ loss = None
215
+ if closure is not None:
216
+ with torch.enable_grad():
217
+ loss = closure()
218
+
219
+ batch = True
220
+
221
+ for group, group_params_names in zip(self.param_groups,
222
+ self.parameters_names):
223
+
224
+ with self.batched_params(group["params"],
225
+ group_params_names) as batches:
226
+
227
+ # batches is list of pairs (stacked_param, state). stacked_param is like
228
+ # a regular parameter, and will have a .grad, but the 1st dim corresponds to
229
+ # a stacking dim, it is not a real dim.
230
+
231
+ if (len(batches[0][1]) ==
232
+ 0): # if len(first state) == 0: not yet initialized
233
+ clipping_scale = 1
234
+ else:
235
+ clipping_scale = self._get_clipping_scale(group, batches)
236
+
237
+ for p, state, _ in batches:
238
+ # Perform optimization step.
239
+ # grad is not going to be None, we handled that when creating the batches.
240
+ grad = p.grad
241
+ if grad.is_sparse:
242
+ raise RuntimeError(
243
+ "ScaledAdam optimizer does not support sparse gradients"
244
+ )
245
+ # State initialization
246
+ if len(state) == 0:
247
+ self._init_state(group, p, state)
248
+
249
+ self._step_one_batch(group, p, state, clipping_scale)
250
+
251
+ return loss
252
+
253
+ def _init_state(self, group: dict, p: Tensor, state: dict):
254
+ """
255
+ Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
256
+ is actually the batch dimension, corresponding to batched-together
257
+ parameters of a given shape.
258
+
259
+
260
+ Args:
261
+ group: Dict to look up configuration values.
262
+ p: The parameter that we are initializing the state for
263
+ state: Dict from string to whatever state we are initializing
264
+ """
265
+ size_update_period = group["size_update_period"]
266
+
267
+ state["step"] = 0
268
+
269
+ kwargs = {"device": p.device, "dtype": p.dtype}
270
+
271
+ # 'delta' implements conventional momentum. There are
272
+ # several different kinds of update going on, so rather than
273
+ # compute "exp_avg" like in Adam, we store and decay a
274
+ # parameter-change "delta", which combines all forms of
275
+ # update. this is equivalent to how it's done in Adam,
276
+ # except for the first few steps.
277
+ state["delta"] = torch.zeros_like(
278
+ p, memory_format=torch.preserve_format)
279
+
280
+ batch_size = p.shape[0]
281
+ numel = p.numel() // batch_size
282
+ numel = p.numel()
283
+
284
+ if numel > 1:
285
+ # "param_rms" just periodically records the scalar root-mean-square value of
286
+ # the parameter tensor.
287
+ # it has a shape like (batch_size, 1, 1, 1, 1)
288
+ param_rms = (
289
+ (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
290
+ state["param_rms"] = param_rms
291
+
292
+ state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
293
+ state["scale_grads"] = torch.zeros(size_update_period,
294
+ *param_rms.shape, **kwargs)
295
+
296
+ # exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
297
+ state["exp_avg_sq"] = torch.zeros_like(
298
+ p, memory_format=torch.preserve_format)
299
+
300
+ def _get_clipping_scale(self,
301
+ group: dict,
302
+ tuples: List[Tuple[Tensor, dict, List[str]]]
303
+ ) -> float:
304
+ """
305
+ Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
306
+ by this amount before applying the rest of the update.
307
+
308
+ Args:
309
+ group: the parameter group, an item in self.param_groups
310
+ tuples: a list of tuples of (param, state, param_names)
311
+ where param is a batched set of parameters,
312
+ with a .grad (1st dim is batch dim)
313
+ and state is the state-dict where optimization parameters are kept.
314
+ param_names is a List[str] while each str is name for a parameter
315
+ in batched set of parameters "param".
316
+ """
317
+ assert len(tuples) >= 1
318
+ clipping_scale = group["clipping_scale"]
319
+ (first_p, first_state, _) = tuples[0]
320
+ step = first_state["step"]
321
+ if clipping_scale is None or step == 0:
322
+ # no clipping. return early on step == 0 because the other
323
+ # parameters' state won't have been initialized yet.
324
+ return 1.0
325
+ clipping_update_period = group["clipping_update_period"]
326
+
327
+ tot_sumsq = torch.tensor(0.0, device=first_p.device)
328
+ for (p, state, param_names) in tuples:
329
+ grad = p.grad
330
+ if grad.is_sparse:
331
+ raise RuntimeError(
332
+ "ScaledAdam optimizer does not support sparse gradients")
333
+ if p.numel() == p.shape[0]: # a batch of scalars
334
+ tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
335
+ else:
336
+ tot_sumsq += ((grad * state["param_rms"])**2).sum()
337
+
338
+ tot_norm = tot_sumsq.sqrt()
339
+ if "model_norms" not in first_state:
340
+ first_state["model_norms"] = torch.zeros(
341
+ clipping_update_period, device=p.device)
342
+ first_state["model_norms"][step % clipping_update_period] = tot_norm
343
+
344
+ if step % clipping_update_period == 0:
345
+ # Print some stats.
346
+ # We don't reach here if step == 0 because we would have returned
347
+ # above.
348
+ sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
349
+ quartiles = []
350
+ for n in range(0, 5):
351
+ index = min(
352
+ clipping_update_period - 1,
353
+ (clipping_update_period // 4) * n, )
354
+ quartiles.append(sorted_norms[index].item())
355
+
356
+ median = quartiles[2]
357
+ threshold = clipping_scale * median
358
+ first_state["model_norm_threshold"] = threshold
359
+ percent_clipped = (first_state["num_clipped"] * 100.0 /
360
+ clipping_update_period
361
+ if "num_clipped" in first_state else 0.0)
362
+ first_state["num_clipped"] = 0
363
+ quartiles = " ".join(["%.3e" % x for x in quartiles])
364
+ logging.info(
365
+ f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
366
+ f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
367
+ )
368
+
369
+ if step < clipping_update_period:
370
+ return 1.0 # We have not yet estimated a norm to clip to.
371
+ else:
372
+ try:
373
+ model_norm_threshold = first_state["model_norm_threshold"]
374
+ except KeyError:
375
+ logging.info(
376
+ "Warning: model_norm_threshold not in state: possibly "
377
+ "you changed config when restarting, adding clipping_scale option?"
378
+ )
379
+ return 1.0
380
+ ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
381
+ if ans < 1.0:
382
+ first_state["num_clipped"] += 1
383
+ if ans < 0.1:
384
+ logging.warn(
385
+ f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
386
+ )
387
+ if self.show_dominant_parameters:
388
+ assert p.shape[0] == len(param_names)
389
+ self._show_gradient_dominating_parameter(tuples, tot_sumsq)
390
+ return ans
391
+
392
+ def _show_gradient_dominating_parameter(
393
+ self, tuples: List[Tuple[Tensor, dict, List[str]]],
394
+ tot_sumsq: Tensor):
395
+ """
396
+ Show information of parameter wihch dominanting tot_sumsq.
397
+
398
+ Args:
399
+ tuples: a list of tuples of (param, state, param_names)
400
+ where param is a batched set of parameters,
401
+ with a .grad (1st dim is batch dim)
402
+ and state is the state-dict where optimization parameters are kept.
403
+ param_names is a List[str] while each str is name for a parameter
404
+ in batched set of parameters "param".
405
+ tot_sumsq: sumsq of all parameters. Though it's could be calculated
406
+ from tuples, we still pass it to save some time.
407
+ """
408
+ all_sumsq_orig = {}
409
+ for (p, state, batch_param_names) in tuples:
410
+ # p is a stacked batch parameters.
411
+ batch_grad = p.grad
412
+ if p.numel() == p.shape[0]: # a batch of scalars
413
+ batch_sumsq_orig = batch_grad**2
414
+ # Dummpy values used by following `zip` statement.
415
+ batch_rms_orig = torch.ones(p.shape[0])
416
+ else:
417
+ batch_rms_orig = state["param_rms"]
418
+ batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
419
+ dim=list(range(1, batch_grad.ndim)))
420
+
421
+ for name, sumsq_orig, rms, grad in zip(batch_param_names,
422
+ batch_sumsq_orig,
423
+ batch_rms_orig, batch_grad):
424
+
425
+ proportion_orig = sumsq_orig / tot_sumsq
426
+ all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
427
+
428
+ assert torch.isclose(
429
+ sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
430
+ torch.tensor(1.0), )
431
+ sorted_by_proportion = {
432
+ k: v
433
+ for k, v in sorted(
434
+ all_sumsq_orig.items(),
435
+ key=lambda item: item[1][0],
436
+ reverse=True, )
437
+ }
438
+ dominant_param_name = next(iter(sorted_by_proportion))
439
+ (dominant_proportion, dominant_sumsq, dominant_rms,
440
+ dominant_grad, ) = sorted_by_proportion[dominant_param_name]
441
+ logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
442
+ f" with proportion {dominant_proportion:.2f},"
443
+ f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
444
+ f"={dominant_sumsq:.3e},"
445
+ f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
446
+ f" orig_rms_sq={(dominant_rms**2).item():.3e}")
447
+
448
+ def _step_one_batch(self,
449
+ group: dict,
450
+ p: Tensor,
451
+ state: dict,
452
+ clipping_scale: float):
453
+ """
454
+ Do the step for one parameter, which is actually going to be a batch of
455
+ `real` parameters, with dim 0 as the batch dim.
456
+ Args:
457
+ group: dict to look up configuration values
458
+ p: parameter to update (actually multiple parameters stacked together
459
+ as a batch)
460
+ state: state-dict for p, to look up the optimizer state
461
+ """
462
+ lr = group["lr"]
463
+ size_update_period = group["size_update_period"]
464
+ beta1 = group["betas"][0]
465
+
466
+ grad = p.grad
467
+ if clipping_scale != 1.0:
468
+ grad = grad * clipping_scale
469
+ step = state["step"]
470
+ delta = state["delta"]
471
+
472
+ delta.mul_(beta1)
473
+ batch_size = p.shape[0]
474
+ numel = p.numel() // batch_size
475
+ if numel > 1:
476
+ # Update the size/scale of p, and set param_rms
477
+ scale_grads = state["scale_grads"]
478
+ scale_grads[step % size_update_period] = (p * grad).sum(
479
+ dim=list(range(1, p.ndim)), keepdim=True)
480
+ if step % size_update_period == size_update_period - 1:
481
+ param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
482
+ param_rms.copy_((p**2)
483
+ .mean(dim=list(range(1, p.ndim)), keepdim=True)
484
+ .sqrt())
485
+ if step > 0:
486
+ # self._size_update() learns the overall scale on the
487
+ # parameter, by shrinking or expanding it.
488
+ self._size_update(group, scale_grads, p, state)
489
+
490
+ if numel == 1:
491
+ # For parameters with 1 element we just use regular Adam.
492
+ # Updates delta.
493
+ self._step_scalar(group, p, state)
494
+ else:
495
+ self._step(group, p, state)
496
+
497
+ state["step"] = step + 1
498
+
499
+ def _size_update(self,
500
+ group: dict,
501
+ scale_grads: Tensor,
502
+ p: Tensor,
503
+ state: dict) -> None:
504
+ """
505
+ Called only where p.numel() > 1, this updates the scale of the parameter.
506
+ If we imagine: p = underlying_param * scale.exp(), and we are doing
507
+ gradient descent on underlying param and on scale, this function does the update
508
+ on `scale`.
509
+
510
+ Args:
511
+ group: dict to look up configuration values
512
+ scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
513
+ grads w.r.t. the scales.
514
+ p: The parameter to update
515
+ state: The state-dict of p
516
+ """
517
+
518
+ param_rms = state["param_rms"]
519
+ beta1, beta2 = group["betas"]
520
+ size_lr = group["lr"] * group["scalar_lr_scale"]
521
+ param_min_rms = group["param_min_rms"]
522
+ param_max_rms = group["param_max_rms"]
523
+ eps = group["eps"]
524
+ step = state["step"]
525
+ batch_size = p.shape[0]
526
+
527
+ size_update_period = scale_grads.shape[0]
528
+ # correct beta2 for the size update period: we will have
529
+ # faster decay at this level.
530
+ beta2_corr = beta2**size_update_period
531
+
532
+ scale_exp_avg_sq = state[
533
+ "scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
534
+ scale_exp_avg_sq.mul_(beta2_corr).add_(
535
+ (scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
536
+ alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...)
537
+
538
+ # The 1st time we reach here is when size_step == 1.
539
+ size_step = (step + 1) // size_update_period
540
+ bias_correction2 = 1 - beta2_corr**size_step
541
+ # we don't bother with bias_correction1; this will help prevent divergence
542
+ # at the start of training.
543
+
544
+ denom = scale_exp_avg_sq.sqrt() + eps
545
+
546
+ scale_step = (-size_lr * (bias_correction2**0.5) *
547
+ scale_grads.sum(dim=0) / denom)
548
+
549
+ is_too_small = param_rms < param_min_rms
550
+ is_too_large = param_rms > param_max_rms
551
+
552
+ # when the param gets too small, just don't shrink it any further.
553
+ scale_step.masked_fill_(is_too_small, 0.0)
554
+ # when it gets too large, stop it from getting any larger.
555
+ scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
556
+ delta = state["delta"]
557
+ # the factor of (1-beta1) relates to momentum.
558
+ delta.add_(p * scale_step, alpha=(1 - beta1))
559
+
560
+ def _step(self, group: dict, p: Tensor, state: dict):
561
+ """
562
+ This function does the core update of self.step(), in the case where the members of
563
+ the batch have more than 1 element.
564
+
565
+ Args:
566
+ group: A dict which will be used to look up configuration values
567
+ p: The parameter to be updated
568
+ grad: The grad of p
569
+ state: The state-dict corresponding to parameter p
570
+
571
+ This function modifies p.
572
+ """
573
+ grad = p.grad
574
+ lr = group["lr"]
575
+ beta1, beta2 = group["betas"]
576
+ eps = group["eps"]
577
+ param_min_rms = group["param_min_rms"]
578
+ step = state["step"]
579
+
580
+ exp_avg_sq = state["exp_avg_sq"]
581
+ exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
582
+
583
+ this_step = state["step"] - (state["zero_step"]
584
+ if "zero_step" in state else 0)
585
+ bias_correction2 = 1 - beta2**(this_step + 1)
586
+ if bias_correction2 < 0.99:
587
+ # note: not in-place.
588
+ exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
589
+
590
+ denom = exp_avg_sq.sqrt()
591
+ denom += eps
592
+ grad = grad / denom
593
+
594
+ alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
595
+
596
+ delta = state["delta"]
597
+ delta.add_(grad * alpha)
598
+ p.add_(delta)
599
+
600
+ def _step_scalar(self, group: dict, p: Tensor, state: dict):
601
+ """
602
+ A simplified form of the core update for scalar tensors, where we cannot get a good
603
+ estimate of the parameter rms.
604
+ """
605
+ beta1, beta2 = group["betas"]
606
+ scalar_max = group["scalar_max"]
607
+ eps = group["eps"]
608
+ lr = group["lr"] * group["scalar_lr_scale"]
609
+ grad = p.grad
610
+
611
+ exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
612
+ exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
613
+
614
+ # bias_correction2 is like in Adam. Don't bother with bias_correction1;
615
+ # slower update at the start will help stability anyway.
616
+ bias_correction2 = 1 - beta2**(state["step"] + 1)
617
+ denom = (exp_avg_sq / bias_correction2).sqrt() + eps
618
+
619
+ delta = state["delta"]
620
+ delta.add_(grad / denom, alpha=-lr * (1 - beta1))
621
+ p.clamp_(min=-scalar_max, max=scalar_max)
622
+ p.add_(delta)
patched_mha_with_cache.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from torch.nn.functional import *
3
+ from torch.nn.functional import (
4
+ _mha_shape_check,
5
+ _canonical_mask,
6
+ _none_or_dtype,
7
+ _in_projection_packed,
8
+ )
9
+ import torch
10
+ Tensor = torch.Tensor
11
+ from typing import Optional, Tuple
12
+
13
+
14
+ def multi_head_attention_forward_patched(
15
+ query: Tensor,
16
+ key: Tensor,
17
+ value: Tensor,
18
+ embed_dim_to_check: int,
19
+ num_heads: int,
20
+ in_proj_weight: Optional[Tensor],
21
+ in_proj_bias: Optional[Tensor],
22
+ bias_k: Optional[Tensor],
23
+ bias_v: Optional[Tensor],
24
+ add_zero_attn: bool,
25
+ dropout_p: float,
26
+ out_proj_weight: Tensor,
27
+ out_proj_bias: Optional[Tensor],
28
+ training: bool = True,
29
+ key_padding_mask: Optional[Tensor] = None,
30
+ need_weights: bool = True,
31
+ attn_mask: Optional[Tensor] = None,
32
+ use_separate_proj_weight: bool = False,
33
+ q_proj_weight: Optional[Tensor] = None,
34
+ k_proj_weight: Optional[Tensor] = None,
35
+ v_proj_weight: Optional[Tensor] = None,
36
+ static_k: Optional[Tensor] = None,
37
+ static_v: Optional[Tensor] = None,
38
+ average_attn_weights: bool = True,
39
+ is_causal: bool = False,
40
+ cache=None,
41
+ ) -> Tuple[Tensor, Optional[Tensor]]:
42
+ r"""
43
+ Args:
44
+ query, key, value: map a query and a set of key-value pairs to an output.
45
+ See "Attention Is All You Need" for more details.
46
+ embed_dim_to_check: total dimension of the model.
47
+ num_heads: parallel attention heads.
48
+ in_proj_weight, in_proj_bias: input projection weight and bias.
49
+ bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
50
+ add_zero_attn: add a new batch of zeros to the key and
51
+ value sequences at dim=1.
52
+ dropout_p: probability of an element to be zeroed.
53
+ out_proj_weight, out_proj_bias: the output projection weight and bias.
54
+ training: apply dropout if is ``True``.
55
+ key_padding_mask: if provided, specified padding elements in the key will
56
+ be ignored by the attention. This is an binary mask. When the value is True,
57
+ the corresponding value on the attention layer will be filled with -inf.
58
+ need_weights: output attn_output_weights.
59
+ Default: `True`
60
+ Note: `needs_weight` defaults to `True`, but should be set to `False`
61
+ For best performance when attention weights are not nedeeded.
62
+ *Setting needs_weights to `True`
63
+ leads to a significant performance degradation.*
64
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
65
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
66
+ is_causal: If specified, applies a causal mask as attention mask, and ignores
67
+ attn_mask for computing scaled dot product attention.
68
+ Default: ``False``.
69
+ .. warning::
70
+ is_causal is provides a hint that the attn_mask is the
71
+ causal mask.Providing incorrect hints can result in
72
+ incorrect execution, including forward and backward
73
+ compatibility.
74
+ use_separate_proj_weight: the function accept the proj. weights for query, key,
75
+ and value in different forms. If false, in_proj_weight will be used, which is
76
+ a combination of q_proj_weight, k_proj_weight, v_proj_weight.
77
+ q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
78
+ static_k, static_v: static key and value used for attention operators.
79
+ average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
80
+ Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
81
+ when ``need_weights=True.``. Default: True
82
+
83
+
84
+ Shape:
85
+ Inputs:
86
+ - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
87
+ the embedding dimension.
88
+ - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
89
+ the embedding dimension.
90
+ - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
91
+ the embedding dimension.
92
+ - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
93
+ If a FloatTensor is provided, it will be directly added to the value.
94
+ If a BoolTensor is provided, the positions with the
95
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
96
+ - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
97
+ 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
98
+ S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
99
+ positions. If a BoolTensor is provided, positions with ``True``
100
+ are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
101
+ is provided, it will be added to the attention weight.
102
+ - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
103
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
104
+ - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
105
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
106
+
107
+ Outputs:
108
+ - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
109
+ E is the embedding dimension.
110
+ - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
111
+ attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
112
+ :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
113
+ :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
114
+ head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
115
+ """
116
+ tens_ops = (
117
+ query,
118
+ key,
119
+ value,
120
+ in_proj_weight,
121
+ in_proj_bias,
122
+ bias_k,
123
+ bias_v,
124
+ out_proj_weight,
125
+ out_proj_bias,
126
+ )
127
+ if has_torch_function(tens_ops):
128
+ return handle_torch_function(
129
+ multi_head_attention_forward,
130
+ tens_ops,
131
+ query,
132
+ key,
133
+ value,
134
+ embed_dim_to_check,
135
+ num_heads,
136
+ in_proj_weight,
137
+ in_proj_bias,
138
+ bias_k,
139
+ bias_v,
140
+ add_zero_attn,
141
+ dropout_p,
142
+ out_proj_weight,
143
+ out_proj_bias,
144
+ training=training,
145
+ key_padding_mask=key_padding_mask,
146
+ need_weights=need_weights,
147
+ attn_mask=attn_mask,
148
+ is_causal=is_causal,
149
+ use_separate_proj_weight=use_separate_proj_weight,
150
+ q_proj_weight=q_proj_weight,
151
+ k_proj_weight=k_proj_weight,
152
+ v_proj_weight=v_proj_weight,
153
+ static_k=static_k,
154
+ static_v=static_v,
155
+ average_attn_weights=average_attn_weights,
156
+ cache=cache,
157
+ )
158
+
159
+ is_batched = _mha_shape_check(
160
+ query, key, value, key_padding_mask, attn_mask, num_heads
161
+ )
162
+
163
+ # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
164
+ # is batched, run the computation and before returning squeeze the
165
+ # batch dimension so that the output doesn't carry this temporary batch dimension.
166
+ if not is_batched:
167
+ # unsqueeze if the input is unbatched
168
+ query = query.unsqueeze(1)
169
+ key = key.unsqueeze(1)
170
+ value = value.unsqueeze(1)
171
+ if key_padding_mask is not None:
172
+ key_padding_mask = key_padding_mask.unsqueeze(0)
173
+
174
+ # set up shape vars
175
+ tgt_len, bsz, embed_dim = query.shape
176
+ src_len, _, _ = key.shape
177
+
178
+ key_padding_mask = _canonical_mask(
179
+ mask=key_padding_mask,
180
+ mask_name="key_padding_mask",
181
+ other_type=_none_or_dtype(attn_mask),
182
+ other_name="attn_mask",
183
+ target_type=query.dtype,
184
+ )
185
+
186
+ if is_causal and attn_mask is None:
187
+ raise RuntimeError(
188
+ "Need attn_mask if specifying the is_causal hint. "
189
+ "You may use the Transformer module method "
190
+ "`generate_square_subsequent_mask` to create this mask."
191
+ )
192
+
193
+ if is_causal and key_padding_mask is None and not need_weights:
194
+ # when we have a kpm or need weights, we need attn_mask
195
+ # Otherwise, we use the is_causal hint go as is_causal
196
+ # indicator to SDPA.
197
+ attn_mask = None
198
+ else:
199
+ attn_mask = _canonical_mask(
200
+ mask=attn_mask,
201
+ mask_name="attn_mask",
202
+ other_type=None,
203
+ other_name="",
204
+ target_type=query.dtype,
205
+ check_other=False,
206
+ )
207
+
208
+ if key_padding_mask is not None:
209
+ # We have the attn_mask, and use that to merge kpm into it.
210
+ # Turn off use of is_causal hint, as the merged mask is no
211
+ # longer causal.
212
+ is_causal = False
213
+
214
+ assert (
215
+ embed_dim == embed_dim_to_check
216
+ ), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
217
+ if isinstance(embed_dim, torch.Tensor):
218
+ # embed_dim can be a tensor when JIT tracing
219
+ head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
220
+ else:
221
+ head_dim = embed_dim // num_heads
222
+ assert (
223
+ head_dim * num_heads == embed_dim
224
+ ), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
225
+ if use_separate_proj_weight:
226
+ # allow MHA to have different embedding dimensions when separate projection weights are used
227
+ assert (
228
+ key.shape[:2] == value.shape[:2]
229
+ ), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
230
+ else:
231
+ assert (
232
+ key.shape == value.shape
233
+ ), f"key shape {key.shape} does not match value shape {value.shape}"
234
+
235
+ #
236
+ # compute in-projection
237
+ #
238
+ if not use_separate_proj_weight:
239
+ assert (
240
+ in_proj_weight is not None
241
+ ), "use_separate_proj_weight is False but in_proj_weight is None"
242
+ q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
243
+ else:
244
+ assert (
245
+ q_proj_weight is not None
246
+ ), "use_separate_proj_weight is True but q_proj_weight is None"
247
+ assert (
248
+ k_proj_weight is not None
249
+ ), "use_separate_proj_weight is True but k_proj_weight is None"
250
+ assert (
251
+ v_proj_weight is not None
252
+ ), "use_separate_proj_weight is True but v_proj_weight is None"
253
+ if in_proj_bias is None:
254
+ b_q = b_k = b_v = None
255
+ else:
256
+ b_q, b_k, b_v = in_proj_bias.chunk(3)
257
+ q, k, v = _in_projection(
258
+ query,
259
+ key,
260
+ value,
261
+ q_proj_weight,
262
+ k_proj_weight,
263
+ v_proj_weight,
264
+ b_q,
265
+ b_k,
266
+ b_v,
267
+ )
268
+ if cache != None:
269
+ if cache["first_infer"] == 1:
270
+ cache["k"][cache["stage"]] = k
271
+ # print(0,cache["k"].shape)
272
+ cache["v"][cache["stage"]] = v
273
+ else: ###12个layer每个都要留自己的cache_kv
274
+ # print(1,cache["k"].shape)
275
+ cache["k"][cache["stage"]] = torch.cat(
276
+ [cache["k"][cache["stage"]], k], 0
277
+ ) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
278
+ cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
279
+ # print(2, cache["k"].shape)
280
+ src_len = cache["k"][cache["stage"]].shape[0]
281
+ k = cache["k"][cache["stage"]]
282
+ v = cache["v"][cache["stage"]]
283
+ # if attn_mask is not None:
284
+ # attn_mask=attn_mask[-1:,]
285
+ # print(attn_mask.shape,attn_mask)
286
+ cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
287
+ # print(2333,cache)
288
+ # prep attention mask
289
+
290
+ attn_mask = _canonical_mask(
291
+ mask=attn_mask,
292
+ mask_name="attn_mask",
293
+ other_type=None,
294
+ other_name="",
295
+ target_type=q.dtype,
296
+ check_other=False,
297
+ )
298
+
299
+ if attn_mask is not None:
300
+ # ensure attn_mask's dim is 3
301
+ if attn_mask.dim() == 2:
302
+ correct_2d_size = (tgt_len, src_len)
303
+ if attn_mask.shape != correct_2d_size:
304
+ raise RuntimeError(
305
+ f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
306
+ )
307
+ attn_mask = attn_mask.unsqueeze(0)
308
+ elif attn_mask.dim() == 3:
309
+ correct_3d_size = (bsz * num_heads, tgt_len, src_len)
310
+ if attn_mask.shape != correct_3d_size:
311
+ raise RuntimeError(
312
+ f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
313
+ )
314
+ else:
315
+ raise RuntimeError(
316
+ f"attn_mask's dimension {attn_mask.dim()} is not supported"
317
+ )
318
+
319
+ # add bias along batch dimension (currently second)
320
+ if bias_k is not None and bias_v is not None:
321
+ assert static_k is None, "bias cannot be added to static key."
322
+ assert static_v is None, "bias cannot be added to static value."
323
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
324
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
325
+ if attn_mask is not None:
326
+ attn_mask = pad(attn_mask, (0, 1))
327
+ if key_padding_mask is not None:
328
+ key_padding_mask = pad(key_padding_mask, (0, 1))
329
+ else:
330
+ assert bias_k is None
331
+ assert bias_v is None
332
+
333
+ #
334
+ # reshape q, k, v for multihead attention and make em batch first
335
+ #
336
+ q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
337
+ if static_k is None:
338
+ k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
339
+ else:
340
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
341
+ assert (
342
+ static_k.size(0) == bsz * num_heads
343
+ ), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
344
+ assert (
345
+ static_k.size(2) == head_dim
346
+ ), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
347
+ k = static_k
348
+ if static_v is None:
349
+ v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
350
+ else:
351
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
352
+ assert (
353
+ static_v.size(0) == bsz * num_heads
354
+ ), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
355
+ assert (
356
+ static_v.size(2) == head_dim
357
+ ), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
358
+ v = static_v
359
+
360
+ # add zero attention along batch dimension (now first)
361
+ if add_zero_attn:
362
+ zero_attn_shape = (bsz * num_heads, 1, head_dim)
363
+ k = torch.cat(
364
+ [k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
365
+ )
366
+ v = torch.cat(
367
+ [v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
368
+ )
369
+ if attn_mask is not None:
370
+ attn_mask = pad(attn_mask, (0, 1))
371
+ if key_padding_mask is not None:
372
+ key_padding_mask = pad(key_padding_mask, (0, 1))
373
+
374
+ # update source sequence length after adjustments
375
+ src_len = k.size(1)
376
+
377
+ # merge key padding and attention masks
378
+ if key_padding_mask is not None:
379
+ assert key_padding_mask.shape == (
380
+ bsz,
381
+ src_len,
382
+ ), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
383
+ key_padding_mask = (
384
+ key_padding_mask.view(bsz, 1, 1, src_len)
385
+ .expand(-1, num_heads, -1, -1)
386
+ .reshape(bsz * num_heads, 1, src_len)
387
+ )
388
+ if attn_mask is None:
389
+ attn_mask = key_padding_mask
390
+ else:
391
+ attn_mask = attn_mask + key_padding_mask
392
+
393
+ # adjust dropout probability
394
+ if not training:
395
+ dropout_p = 0.0
396
+
397
+ #
398
+ # (deep breath) calculate attention and out projection
399
+ #
400
+
401
+ if need_weights:
402
+ B, Nt, E = q.shape
403
+ q_scaled = q / math.sqrt(E)
404
+
405
+ assert not (
406
+ is_causal and attn_mask is None
407
+ ), "FIXME: is_causal not implemented for need_weights"
408
+
409
+ if attn_mask is not None:
410
+ attn_output_weights = torch.baddbmm(
411
+ attn_mask, q_scaled, k.transpose(-2, -1)
412
+ )
413
+ else:
414
+ attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
415
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
416
+ if dropout_p > 0.0:
417
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p)
418
+
419
+ attn_output = torch.bmm(attn_output_weights, v)
420
+
421
+ attn_output = (
422
+ attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
423
+ )
424
+ attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
425
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
426
+
427
+ # optionally average attention weights over heads
428
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
429
+ if average_attn_weights:
430
+ attn_output_weights = attn_output_weights.mean(dim=1)
431
+
432
+ if not is_batched:
433
+ # squeeze the output if input was unbatched
434
+ attn_output = attn_output.squeeze(1)
435
+ attn_output_weights = attn_output_weights.squeeze(0)
436
+ return attn_output, attn_output_weights
437
+ else:
438
+ # attn_mask can be either (L,S) or (N*num_heads, L, S)
439
+ # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
440
+ # in order to match the input for SDPA of (N, num_heads, L, S)
441
+ if attn_mask is not None:
442
+ if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
443
+ attn_mask = attn_mask.unsqueeze(0)
444
+ else:
445
+ attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
446
+
447
+ q = q.view(bsz, num_heads, tgt_len, head_dim)
448
+ k = k.view(bsz, num_heads, src_len, head_dim)
449
+ v = v.view(bsz, num_heads, src_len, head_dim)
450
+
451
+ # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
452
+ attn_output = scaled_dot_product_attention(
453
+ q, k, v, attn_mask, dropout_p, is_causal
454
+ )
455
+
456
+ attn_output = (
457
+ attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
458
+ )
459
+
460
+ attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
461
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
462
+ if not is_batched:
463
+ # squeeze the output if input was unbatched
464
+ attn_output = attn_output.squeeze(1)
465
+ return attn_output, None
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d2d132bb01eae38f54fd4eb0f2fd8087f0ddbeeeace5b81a39c26586db9a8ee
3
+ size 2201587998
quantize.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """Residual vector quantizer implementation."""
8
+
9
+ from dataclasses import dataclass, field
10
+ import typing as tp
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+ from .core_vq import ResidualVectorQuantization
16
+
17
+
18
+ @dataclass
19
+ class QuantizedResult:
20
+ quantized: torch.Tensor
21
+ codes: torch.Tensor
22
+ bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item.
23
+ penalty: tp.Optional[torch.Tensor] = None
24
+ metrics: dict = field(default_factory=dict)
25
+
26
+
27
+ class ResidualVectorQuantizer(nn.Module):
28
+ """Residual Vector Quantizer.
29
+ Args:
30
+ dimension (int): Dimension of the codebooks.
31
+ n_q (int): Number of residual vector quantizers used.
32
+ bins (int): Codebook size.
33
+ decay (float): Decay for exponential moving average over the codebooks.
34
+ kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
35
+ kmeans_iters (int): Number of iterations used for kmeans initialization.
36
+ threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
37
+ that have an exponential moving average cluster size less than the specified threshold with
38
+ randomly selected vector from the current batch.
39
+ """
40
+
41
+ def __init__(
42
+ self,
43
+ dimension: int = 256,
44
+ n_q: int = 8,
45
+ bins: int = 1024,
46
+ decay: float = 0.99,
47
+ kmeans_init: bool = True,
48
+ kmeans_iters: int = 50,
49
+ threshold_ema_dead_code: int = 2,
50
+ ):
51
+ super().__init__()
52
+ self.n_q = n_q
53
+ self.dimension = dimension
54
+ self.bins = bins
55
+ self.decay = decay
56
+ self.kmeans_init = kmeans_init
57
+ self.kmeans_iters = kmeans_iters
58
+ self.threshold_ema_dead_code = threshold_ema_dead_code
59
+ self.vq = ResidualVectorQuantization(
60
+ dim=self.dimension,
61
+ codebook_size=self.bins,
62
+ num_quantizers=self.n_q,
63
+ decay=self.decay,
64
+ kmeans_init=self.kmeans_init,
65
+ kmeans_iters=self.kmeans_iters,
66
+ threshold_ema_dead_code=self.threshold_ema_dead_code,
67
+ )
68
+
69
+ def forward(
70
+ self,
71
+ x: torch.Tensor,
72
+ n_q: tp.Optional[int] = None,
73
+ layers: tp.Optional[list] = None,
74
+ ) -> QuantizedResult:
75
+ """Residual vector quantization on the given input tensor.
76
+ Args:
77
+ x (torch.Tensor): Input tensor.
78
+ n_q (int): Number of quantizer used to quantize. Default: All quantizers.
79
+ layers (list): Layer that need to return quantized. Defalt: None.
80
+ Returns:
81
+ QuantizedResult:
82
+ The quantized (or approximately quantized) representation with
83
+ the associated numbert quantizers and layer quantized required to return.
84
+ """
85
+ n_q = n_q if n_q else self.n_q
86
+ if layers and max(layers) >= n_q:
87
+ raise ValueError(
88
+ f"Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B."
89
+ )
90
+ quantized, codes, commit_loss, quantized_list = self.vq(
91
+ x, n_q=n_q, layers=layers
92
+ )
93
+ return quantized, codes, torch.mean(commit_loss), quantized_list
94
+
95
+ def encode(
96
+ self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None
97
+ ) -> torch.Tensor:
98
+ """Encode a given input tensor with the specified sample rate at the given bandwidth.
99
+ The RVQ encode method sets the appropriate number of quantizer to use
100
+ and returns indices for each quantizer.
101
+ Args:
102
+ x (torch.Tensor): Input tensor.
103
+ n_q (int): Number of quantizer used to quantize. Default: All quantizers.
104
+ st (int): Start to encode input from which layers. Default: 0.
105
+ """
106
+ n_q = n_q if n_q else self.n_q
107
+ st = st or 0
108
+ codes = self.vq.encode(x, n_q=n_q, st=st)
109
+ return codes
110
+
111
+ def decode(self, codes: torch.Tensor, st: int = 0) -> torch.Tensor:
112
+ """Decode the given codes to the quantized representation.
113
+ Args:
114
+ codes (torch.Tensor): Input indices for each quantizer.
115
+ st (int): Start to decode input codes from which layers. Default: 0.
116
+ """
117
+ quantized = self.vq.decode(codes, st=st)
118
+ return quantized
scaling.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
2
+ #
3
+ # See ../../../../LICENSE for clarification regarding multiple authors
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ import random
17
+ from typing import Optional
18
+ from typing import Tuple
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+ from torch import Tensor
23
+
24
+
25
+ class DoubleSwishFunction(torch.autograd.Function):
26
+ """
27
+ double_swish(x) = x * torch.sigmoid(x-1)
28
+ This is a definition, originally motivated by its close numerical
29
+ similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
30
+
31
+ Memory-efficient derivative computation:
32
+ double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
33
+ double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
34
+ Now, s'(x) = s(x) * (1-s(x)).
35
+ double_swish'(x) = x * s'(x) + s(x).
36
+ = x * s(x) * (1-s(x)) + s(x).
37
+ = double_swish(x) * (1-s(x)) + s(x)
38
+ ... so we just need to remember s(x) but not x itself.
39
+ """
40
+
41
+ @staticmethod
42
+ def forward(ctx, x: Tensor) -> Tensor:
43
+ requires_grad = x.requires_grad
44
+ x_dtype = x.dtype
45
+ if x.dtype == torch.float16:
46
+ x = x.to(torch.float32)
47
+
48
+ s = torch.sigmoid(x - 1.0)
49
+ y = x * s
50
+
51
+ if requires_grad:
52
+ deriv = y * (1 - s) + s
53
+ # notes on derivative of x * sigmoid(x - 1):
54
+ # https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
55
+ # min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
56
+ # max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
57
+ # the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
58
+ # floors), should be expectation-preserving.
59
+ floor = -0.043637
60
+ ceil = 1.2
61
+ d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
62
+ deriv
63
+ )
64
+ if __name__ == "__main__":
65
+ # for self-testing only.
66
+ assert d_scaled.min() >= 0.0
67
+ assert d_scaled.max() < 256.0
68
+ d_int = d_scaled.to(torch.uint8)
69
+ ctx.save_for_backward(d_int)
70
+ if x.dtype == torch.float16 or torch.is_autocast_enabled():
71
+ y = y.to(torch.float16)
72
+ return y
73
+
74
+ @staticmethod
75
+ def backward(ctx, y_grad: Tensor) -> Tensor:
76
+ (d,) = ctx.saved_tensors
77
+ # the same constants as used in forward pass.
78
+ floor = -0.043637
79
+ ceil = 1.2
80
+ d = d * ((ceil - floor) / 255.0) + floor
81
+ return y_grad * d
82
+
83
+
84
+ class DoubleSwish(torch.nn.Module):
85
+ def forward(self, x: Tensor) -> Tensor:
86
+ """Return double-swish activation function which is an approximation to Swish(Swish(x)),
87
+ that we approximate closely with x * sigmoid(x-1).
88
+ """
89
+ if torch.jit.is_scripting() or torch.jit.is_tracing():
90
+ return x * torch.sigmoid(x - 1.0)
91
+ return DoubleSwishFunction.apply(x)
92
+
93
+
94
+ class ActivationBalancerFunction(torch.autograd.Function):
95
+ @staticmethod
96
+ def forward(
97
+ ctx,
98
+ x: Tensor,
99
+ scale_factor: Tensor,
100
+ sign_factor: Optional[Tensor],
101
+ channel_dim: int,
102
+ ) -> Tensor:
103
+ if channel_dim < 0:
104
+ channel_dim += x.ndim
105
+ ctx.channel_dim = channel_dim
106
+ xgt0 = x > 0
107
+ if sign_factor is None:
108
+ ctx.save_for_backward(xgt0, scale_factor)
109
+ else:
110
+ ctx.save_for_backward(xgt0, scale_factor, sign_factor)
111
+ return x
112
+
113
+ @staticmethod
114
+ def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
115
+ if len(ctx.saved_tensors) == 3:
116
+ xgt0, scale_factor, sign_factor = ctx.saved_tensors
117
+ for _ in range(ctx.channel_dim, x_grad.ndim - 1):
118
+ scale_factor = scale_factor.unsqueeze(-1)
119
+ sign_factor = sign_factor.unsqueeze(-1)
120
+ factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
121
+ else:
122
+ xgt0, scale_factor = ctx.saved_tensors
123
+ for _ in range(ctx.channel_dim, x_grad.ndim - 1):
124
+ scale_factor = scale_factor.unsqueeze(-1)
125
+ factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
126
+ neg_delta_grad = x_grad.abs() * factor
127
+ return (
128
+ x_grad - neg_delta_grad,
129
+ None,
130
+ None,
131
+ None,
132
+ )
133
+
134
+
135
+ def _compute_scale_factor(
136
+ x: Tensor,
137
+ channel_dim: int,
138
+ min_abs: float,
139
+ max_abs: float,
140
+ gain_factor: float,
141
+ max_factor: float,
142
+ ) -> Tensor:
143
+ if channel_dim < 0:
144
+ channel_dim += x.ndim
145
+ sum_dims = [d for d in range(x.ndim) if d != channel_dim]
146
+ x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
147
+
148
+ if min_abs == 0.0:
149
+ below_threshold = 0.0
150
+ else:
151
+ # below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
152
+ # x_abs)_mean , min_abs.
153
+ below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
154
+ min=0, max=max_factor
155
+ )
156
+
157
+ above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
158
+ min=0, max=max_factor
159
+ )
160
+
161
+ return below_threshold - above_threshold
162
+
163
+
164
+ def _compute_sign_factor(
165
+ x: Tensor,
166
+ channel_dim: int,
167
+ min_positive: float,
168
+ max_positive: float,
169
+ gain_factor: float,
170
+ max_factor: float,
171
+ ) -> Tensor:
172
+ if channel_dim < 0:
173
+ channel_dim += x.ndim
174
+ sum_dims = [d for d in range(x.ndim) if d != channel_dim]
175
+ proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
176
+ if min_positive == 0.0:
177
+ factor1 = 0.0
178
+ else:
179
+ # 0 if proportion_positive >= min_positive, else can be
180
+ # as large as max_factor.
181
+ factor1 = (
182
+ (min_positive - proportion_positive) * (gain_factor / min_positive)
183
+ ).clamp_(min=0, max=max_factor)
184
+
185
+ if max_positive == 1.0:
186
+ factor2 = 0.0
187
+ else:
188
+ # 0 if self.proportion_positive <= max_positive, else can be
189
+ # as large as -max_factor.
190
+ factor2 = (
191
+ (proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
192
+ ).clamp_(min=0, max=max_factor)
193
+ sign_factor = factor1 - factor2
194
+ # require min_positive != 0 or max_positive != 1:
195
+ assert not isinstance(sign_factor, float)
196
+ return sign_factor
197
+
198
+
199
+ class ActivationBalancer(torch.nn.Module):
200
+ """
201
+ Modifies the backpropped derivatives of a function to try to encourage, for
202
+ each channel, that it is positive at least a proportion `threshold` of the
203
+ time. It does this by multiplying negative derivative values by up to
204
+ (1+max_factor), and positive derivative values by up to (1-max_factor),
205
+ interpolated from 1 at the threshold to those extremal values when none
206
+ of the inputs are positive.
207
+
208
+ Args:
209
+ num_channels: the number of channels
210
+ channel_dim: the dimension/axis corresponding to the channel, e.g.
211
+ -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
212
+ min_positive: the minimum, per channel, of the proportion of the time
213
+ that (x > 0), below which we start to modify the derivatives.
214
+ max_positive: the maximum, per channel, of the proportion of the time
215
+ that (x > 0), above which we start to modify the derivatives.
216
+ max_factor: the maximum factor by which we modify the derivatives for
217
+ either the sign constraint or the magnitude constraint;
218
+ e.g. with max_factor=0.02, the the derivatives would be multiplied by
219
+ values in the range [0.98..1.02].
220
+ sign_gain_factor: determines the 'gain' with which we increase the
221
+ change in gradient once the constraints on min_positive and max_positive
222
+ are violated.
223
+ scale_gain_factor: determines the 'gain' with which we increase the
224
+ change in gradient once the constraints on min_abs and max_abs
225
+ are violated.
226
+ min_abs: the minimum average-absolute-value difference from the mean
227
+ value per channel, which we allow, before we start to modify
228
+ the derivatives to prevent this.
229
+ max_abs: the maximum average-absolute-value difference from the mean
230
+ value per channel, which we allow, before we start to modify
231
+ the derivatives to prevent this.
232
+ min_prob: determines the minimum probability with which we modify the
233
+ gradients for the {min,max}_positive and {min,max}_abs constraints,
234
+ on each forward(). This is done randomly to prevent all layers
235
+ from doing it at the same time. Early in training we may use
236
+ higher probabilities than this; it will decay to this value.
237
+ """
238
+
239
+ def __init__(
240
+ self,
241
+ num_channels: int,
242
+ channel_dim: int,
243
+ min_positive: float = 0.05,
244
+ max_positive: float = 0.95,
245
+ max_factor: float = 0.04,
246
+ sign_gain_factor: float = 0.01,
247
+ scale_gain_factor: float = 0.02,
248
+ min_abs: float = 0.2,
249
+ max_abs: float = 100.0,
250
+ min_prob: float = 0.1,
251
+ ):
252
+ super(ActivationBalancer, self).__init__()
253
+ self.num_channels = num_channels
254
+ self.channel_dim = channel_dim
255
+ self.min_positive = min_positive
256
+ self.max_positive = max_positive
257
+ self.max_factor = max_factor
258
+ self.min_abs = min_abs
259
+ self.max_abs = max_abs
260
+ self.min_prob = min_prob
261
+ self.sign_gain_factor = sign_gain_factor
262
+ self.scale_gain_factor = scale_gain_factor
263
+
264
+ # count measures how many times the forward() function has been called.
265
+ # We occasionally sync this to a tensor called `count`, that exists to
266
+ # make sure it is synced to disk when we load and save the model.
267
+ self.cpu_count = 0
268
+ self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
269
+
270
+ def forward(self, x: Tensor) -> Tensor:
271
+ if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
272
+ return _no_op(x)
273
+
274
+ count = self.cpu_count
275
+ self.cpu_count += 1
276
+
277
+ if random.random() < 0.01:
278
+ # Occasionally sync self.cpu_count with self.count.
279
+ # count affects the decay of 'prob'. don't do this on every iter,
280
+ # because syncing with the GPU is slow.
281
+ self.cpu_count = max(self.cpu_count, self.count.item())
282
+ self.count.fill_(self.cpu_count)
283
+
284
+ # the prob of doing some work exponentially decreases from 0.5 till it hits
285
+ # a floor at min_prob (==0.1, by default)
286
+ prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
287
+
288
+ if random.random() < prob:
289
+ sign_gain_factor = 0.5
290
+ if self.min_positive != 0.0 or self.max_positive != 1.0:
291
+ sign_factor = _compute_sign_factor(
292
+ x,
293
+ self.channel_dim,
294
+ self.min_positive,
295
+ self.max_positive,
296
+ gain_factor=self.sign_gain_factor / prob,
297
+ max_factor=self.max_factor,
298
+ )
299
+ else:
300
+ sign_factor = None
301
+
302
+ scale_factor = _compute_scale_factor(
303
+ x.detach(),
304
+ self.channel_dim,
305
+ min_abs=self.min_abs,
306
+ max_abs=self.max_abs,
307
+ gain_factor=self.scale_gain_factor / prob,
308
+ max_factor=self.max_factor,
309
+ )
310
+ return ActivationBalancerFunction.apply(
311
+ x,
312
+ scale_factor,
313
+ sign_factor,
314
+ self.channel_dim,
315
+ )
316
+ else:
317
+ return _no_op(x)
318
+
319
+
320
+ def BalancedDoubleSwish(
321
+ d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
322
+ ) -> nn.Sequential:
323
+ """
324
+ ActivationBalancer -> DoubleSwish
325
+ """
326
+ balancer = ActivationBalancer(
327
+ d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
328
+ )
329
+ return nn.Sequential(
330
+ balancer,
331
+ DoubleSwish(),
332
+ )
symbols.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # punctuation = ['!', '?', '…', ",", ".","@"]#@是SP停顿
2
+ punctuation = ["!", "?", "…", ",", "."] # @是SP停顿
3
+ punctuation.append("-")
4
+ pu_symbols = punctuation + ["SP", "SP2", "SP3", "UNK"]
5
+ # pu_symbols = punctuation + ["SP", 'SP2', 'SP3','SP4', "UNK"]
6
+ pad = "_"
7
+
8
+ c = [
9
+ "AA",
10
+ "EE",
11
+ "OO",
12
+ "b",
13
+ "c",
14
+ "ch",
15
+ "d",
16
+ "f",
17
+ "g",
18
+ "h",
19
+ "j",
20
+ "k",
21
+ "l",
22
+ "m",
23
+ "n",
24
+ "p",
25
+ "q",
26
+ "r",
27
+ "s",
28
+ "sh",
29
+ "t",
30
+ "w",
31
+ "x",
32
+ "y",
33
+ "z",
34
+ "zh",
35
+ ]
36
+ v = [
37
+ "E1",
38
+ "En1",
39
+ "a1",
40
+ "ai1",
41
+ "an1",
42
+ "ang1",
43
+ "ao1",
44
+ "e1",
45
+ "ei1",
46
+ "en1",
47
+ "eng1",
48
+ "er1",
49
+ "i1",
50
+ "i01",
51
+ "ia1",
52
+ "ian1",
53
+ "iang1",
54
+ "iao1",
55
+ "ie1",
56
+ "in1",
57
+ "ing1",
58
+ "iong1",
59
+ "ir1",
60
+ "iu1",
61
+ "o1",
62
+ "ong1",
63
+ "ou1",
64
+ "u1",
65
+ "ua1",
66
+ "uai1",
67
+ "uan1",
68
+ "uang1",
69
+ "ui1",
70
+ "un1",
71
+ "uo1",
72
+ "v1",
73
+ "van1",
74
+ "ve1",
75
+ "vn1",
76
+ "E2",
77
+ "En2",
78
+ "a2",
79
+ "ai2",
80
+ "an2",
81
+ "ang2",
82
+ "ao2",
83
+ "e2",
84
+ "ei2",
85
+ "en2",
86
+ "eng2",
87
+ "er2",
88
+ "i2",
89
+ "i02",
90
+ "ia2",
91
+ "ian2",
92
+ "iang2",
93
+ "iao2",
94
+ "ie2",
95
+ "in2",
96
+ "ing2",
97
+ "iong2",
98
+ "ir2",
99
+ "iu2",
100
+ "o2",
101
+ "ong2",
102
+ "ou2",
103
+ "u2",
104
+ "ua2",
105
+ "uai2",
106
+ "uan2",
107
+ "uang2",
108
+ "ui2",
109
+ "un2",
110
+ "uo2",
111
+ "v2",
112
+ "van2",
113
+ "ve2",
114
+ "vn2",
115
+ "E3",
116
+ "En3",
117
+ "a3",
118
+ "ai3",
119
+ "an3",
120
+ "ang3",
121
+ "ao3",
122
+ "e3",
123
+ "ei3",
124
+ "en3",
125
+ "eng3",
126
+ "er3",
127
+ "i3",
128
+ "i03",
129
+ "ia3",
130
+ "ian3",
131
+ "iang3",
132
+ "iao3",
133
+ "ie3",
134
+ "in3",
135
+ "ing3",
136
+ "iong3",
137
+ "ir3",
138
+ "iu3",
139
+ "o3",
140
+ "ong3",
141
+ "ou3",
142
+ "u3",
143
+ "ua3",
144
+ "uai3",
145
+ "uan3",
146
+ "uang3",
147
+ "ui3",
148
+ "un3",
149
+ "uo3",
150
+ "v3",
151
+ "van3",
152
+ "ve3",
153
+ "vn3",
154
+ "E4",
155
+ "En4",
156
+ "a4",
157
+ "ai4",
158
+ "an4",
159
+ "ang4",
160
+ "ao4",
161
+ "e4",
162
+ "ei4",
163
+ "en4",
164
+ "eng4",
165
+ "er4",
166
+ "i4",
167
+ "i04",
168
+ "ia4",
169
+ "ian4",
170
+ "iang4",
171
+ "iao4",
172
+ "ie4",
173
+ "in4",
174
+ "ing4",
175
+ "iong4",
176
+ "ir4",
177
+ "iu4",
178
+ "o4",
179
+ "ong4",
180
+ "ou4",
181
+ "u4",
182
+ "ua4",
183
+ "uai4",
184
+ "uan4",
185
+ "uang4",
186
+ "ui4",
187
+ "un4",
188
+ "uo4",
189
+ "v4",
190
+ "van4",
191
+ "ve4",
192
+ "vn4",
193
+ "E5",
194
+ "En5",
195
+ "a5",
196
+ "ai5",
197
+ "an5",
198
+ "ang5",
199
+ "ao5",
200
+ "e5",
201
+ "ei5",
202
+ "en5",
203
+ "eng5",
204
+ "er5",
205
+ "i5",
206
+ "i05",
207
+ "ia5",
208
+ "ian5",
209
+ "iang5",
210
+ "iao5",
211
+ "ie5",
212
+ "in5",
213
+ "ing5",
214
+ "iong5",
215
+ "ir5",
216
+ "iu5",
217
+ "o5",
218
+ "ong5",
219
+ "ou5",
220
+ "u5",
221
+ "ua5",
222
+ "uai5",
223
+ "uan5",
224
+ "uang5",
225
+ "ui5",
226
+ "un5",
227
+ "uo5",
228
+ "v5",
229
+ "van5",
230
+ "ve5",
231
+ "vn5",
232
+ ]
233
+
234
+ v_without_tone = [
235
+ "E",
236
+ "En",
237
+ "a",
238
+ "ai",
239
+ "an",
240
+ "ang",
241
+ "ao",
242
+ "e",
243
+ "ei",
244
+ "en",
245
+ "eng",
246
+ "er",
247
+ "i",
248
+ "i0",
249
+ "ia",
250
+ "ian",
251
+ "iang",
252
+ "iao",
253
+ "ie",
254
+ "in",
255
+ "ing",
256
+ "iong",
257
+ "ir",
258
+ "iu",
259
+ "o",
260
+ "ong",
261
+ "ou",
262
+ "u",
263
+ "ua",
264
+ "uai",
265
+ "uan",
266
+ "uang",
267
+ "ui",
268
+ "un",
269
+ "uo",
270
+ "v",
271
+ "van",
272
+ "ve",
273
+ "vn",
274
+ ]
275
+
276
+ # japanese
277
+ ja_symbols = [
278
+ "I",
279
+ "N",
280
+ "U",
281
+ "a",
282
+ "b",
283
+ "by",
284
+ "ch",
285
+ "cl",
286
+ "d",
287
+ "dy",
288
+ "e",
289
+ "f",
290
+ "g",
291
+ "gy",
292
+ "h",
293
+ "hy",
294
+ "i",
295
+ "j",
296
+ "k",
297
+ "ky",
298
+ "m",
299
+ "my",
300
+ "n",
301
+ "ny",
302
+ "o",
303
+ "p",
304
+ "py",
305
+ "r",
306
+ "ry",
307
+ "s",
308
+ "sh",
309
+ "t",
310
+ "ts",
311
+ "u",
312
+ "v",
313
+ "w",
314
+ "y",
315
+ "z",
316
+ # "[", #上升调型
317
+ # "]", #下降调型
318
+ # "$", #结束符
319
+ # "^", #开始符
320
+ ]
321
+
322
+ arpa = {
323
+ "AH0",
324
+ "S",
325
+ "AH1",
326
+ "EY2",
327
+ "AE2",
328
+ "EH0",
329
+ "OW2",
330
+ "UH0",
331
+ "NG",
332
+ "B",
333
+ "G",
334
+ "AY0",
335
+ "M",
336
+ "AA0",
337
+ "F",
338
+ "AO0",
339
+ "ER2",
340
+ "UH1",
341
+ "IY1",
342
+ "AH2",
343
+ "DH",
344
+ "IY0",
345
+ "EY1",
346
+ "IH0",
347
+ "K",
348
+ "N",
349
+ "W",
350
+ "IY2",
351
+ "T",
352
+ "AA1",
353
+ "ER1",
354
+ "EH2",
355
+ "OY0",
356
+ "UH2",
357
+ "UW1",
358
+ "Z",
359
+ "AW2",
360
+ "AW1",
361
+ "V",
362
+ "UW2",
363
+ "AA2",
364
+ "ER",
365
+ "AW0",
366
+ "UW0",
367
+ "R",
368
+ "OW1",
369
+ "EH1",
370
+ "ZH",
371
+ "AE0",
372
+ "IH2",
373
+ "IH",
374
+ "Y",
375
+ "JH",
376
+ "P",
377
+ "AY1",
378
+ "EY0",
379
+ "OY2",
380
+ "TH",
381
+ "HH",
382
+ "D",
383
+ "ER0",
384
+ "CH",
385
+ "AO1",
386
+ "AE1",
387
+ "AO2",
388
+ "OY1",
389
+ "AY2",
390
+ "IH1",
391
+ "OW0",
392
+ "L",
393
+ "SH",
394
+ }
395
+
396
+ symbols = [pad] + c + v + ja_symbols + pu_symbols + list(arpa)
397
+ symbols = sorted(set(symbols))
398
+
399
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
400
+
401
+ def cleaned_text_to_sequence(cleaned_text):
402
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
403
+ Args:
404
+ text: string to convert to a sequence
405
+ Returns:
406
+ List of integers corresponding to the symbols in the text
407
+ '''
408
+ phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
409
+ return phones
410
+
411
+ if __name__ == "__main__":
412
+ print(len(symbols))
t2s_lightning_module.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
2
+ import os, sys
3
+
4
+ now_dir = os.getcwd()
5
+ sys.path.append(now_dir)
6
+ from typing import Dict
7
+
8
+ import torch
9
+ from pytorch_lightning import LightningModule
10
+ from .t2s_model import Text2SemanticDecoder
11
+ from .lr_schedulers import WarmupCosineLRSchedule
12
+ from .optim import ScaledAdam
13
+
14
+ class Text2SemanticLightningModule(LightningModule):
15
+ def __init__(self, config, output_dir, is_train=True):
16
+ super().__init__()
17
+ self.config = config
18
+ self.top_k = 3
19
+ self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
20
+ pretrained_s1 = config.get("pretrained_s1")
21
+ if pretrained_s1 and is_train:
22
+ # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
23
+ print(
24
+ self.load_state_dict(
25
+ torch.load(pretrained_s1, map_location="cpu")["weight"]
26
+ )
27
+ )
28
+ if is_train:
29
+ self.automatic_optimization = False
30
+ self.save_hyperparameters()
31
+ self.eval_dir = output_dir / "eval"
32
+ self.eval_dir.mkdir(parents=True, exist_ok=True)
33
+
34
+ def training_step(self, batch: Dict, batch_idx: int):
35
+ opt = self.optimizers()
36
+ scheduler = self.lr_schedulers()
37
+ forward=self.model.forward if self.config["train"].get("if_dpo",False)==True else self.model.forward_old
38
+ loss, acc = forward(
39
+ batch["phoneme_ids"],
40
+ batch["phoneme_ids_len"],
41
+ batch["semantic_ids"],
42
+ batch["semantic_ids_len"],
43
+ batch["bert_feature"],
44
+ )
45
+ self.manual_backward(loss)
46
+ if batch_idx > 0 and batch_idx % 4 == 0:
47
+ opt.step()
48
+ opt.zero_grad()
49
+ scheduler.step()
50
+
51
+ self.log(
52
+ "total_loss",
53
+ loss,
54
+ on_step=True,
55
+ on_epoch=True,
56
+ prog_bar=True,
57
+ sync_dist=True,
58
+ )
59
+ self.log(
60
+ "lr",
61
+ scheduler.get_last_lr()[0],
62
+ on_epoch=True,
63
+ prog_bar=True,
64
+ sync_dist=True,
65
+ )
66
+ self.log(
67
+ f"top_{self.top_k}_acc",
68
+ acc,
69
+ on_step=True,
70
+ on_epoch=True,
71
+ prog_bar=True,
72
+ sync_dist=True,
73
+ )
74
+
75
+ def validation_step(self, batch: Dict, batch_idx: int):
76
+ return
77
+
78
+ # # get loss
79
+ # loss, acc = self.model.forward(
80
+ # batch['phoneme_ids'], batch['phoneme_ids_len'],
81
+ # batch['semantic_ids'], batch['semantic_ids_len'],
82
+ # batch['bert_feature']
83
+ # )
84
+ #
85
+ # self.log(
86
+ # "val_total_loss",
87
+ # loss,
88
+ # on_step=True,
89
+ # on_epoch=True,
90
+ # prog_bar=True,
91
+ # sync_dist=True)
92
+ # self.log(
93
+ # f"val_top_{self.top_k}_acc",
94
+ # acc,
95
+ # on_step=True,
96
+ # on_epoch=True,
97
+ # prog_bar=True,
98
+ # sync_dist=True)
99
+ #
100
+ # # get infer output
101
+ # semantic_len = batch['semantic_ids'].size(1)
102
+ # prompt_len = min(int(semantic_len * 0.5), 150)
103
+ # prompt = batch['semantic_ids'][:, :prompt_len]
104
+ # pred_semantic = self.model.infer(batch['phoneme_ids'],
105
+ # batch['phoneme_ids_len'], prompt,
106
+ # batch['bert_feature']
107
+ # )
108
+ # save_name = f'semantic_toks_{batch_idx}.pt'
109
+ # save_path = os.path.join(self.eval_dir, save_name)
110
+ # torch.save(pred_semantic.detach().cpu(), save_path)
111
+
112
+ def configure_optimizers(self):
113
+ model_parameters = self.model.parameters()
114
+ parameters_names = []
115
+ parameters_names.append(
116
+ [name_param_pair[0] for name_param_pair in self.model.named_parameters()]
117
+ )
118
+ lm_opt = ScaledAdam(
119
+ model_parameters,
120
+ lr=0.01,
121
+ betas=(0.9, 0.95),
122
+ clipping_scale=2.0,
123
+ parameters_names=parameters_names,
124
+ show_dominant_parameters=False,
125
+ clipping_update_period=1000,
126
+ )
127
+
128
+ return {
129
+ "optimizer": lm_opt,
130
+ "lr_scheduler": {
131
+ "scheduler": WarmupCosineLRSchedule(
132
+ lm_opt,
133
+ init_lr=self.config["optimizer"]["lr_init"],
134
+ peak_lr=self.config["optimizer"]["lr"],
135
+ end_lr=self.config["optimizer"]["lr_end"],
136
+ warmup_steps=self.config["optimizer"]["warmup_steps"],
137
+ total_steps=self.config["optimizer"]["decay_steps"],
138
+ )
139
+ },
140
+ }
t2s_model.py ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
2
+ import torch
3
+ from tqdm import tqdm
4
+
5
+ from .model_utils import make_pad_mask
6
+ from .model_utils import (
7
+ topk_sampling,
8
+ sample,
9
+ dpo_loss,
10
+ make_reject_y,
11
+ get_batch_logps
12
+ )
13
+ from .embedding import SinePositionalEmbedding
14
+ from .embedding import TokenEmbedding
15
+ from.transformer import LayerNorm
16
+ from .transformer import TransformerEncoder
17
+ from .transformer import TransformerEncoderLayer
18
+ from torch import nn
19
+ from torch.nn import functional as F
20
+ from torchmetrics.classification import MulticlassAccuracy
21
+
22
+ default_config = {
23
+ "embedding_dim": 512,
24
+ "hidden_dim": 512,
25
+ "num_head": 8,
26
+ "num_layers": 12,
27
+ "num_codebook": 8,
28
+ "p_dropout": 0.0,
29
+ "vocab_size": 1024 + 1,
30
+ "phoneme_vocab_size": 512,
31
+ "EOS": 1024,
32
+ }
33
+
34
+
35
+ class Text2SemanticDecoder(nn.Module):
36
+ def __init__(self, config, norm_first=False, top_k=3):
37
+ super(Text2SemanticDecoder, self).__init__()
38
+ self.model_dim = config["model"]["hidden_dim"]
39
+ self.embedding_dim = config["model"]["embedding_dim"]
40
+ self.num_head = config["model"]["head"]
41
+ self.num_layers = config["model"]["n_layer"]
42
+ self.norm_first = norm_first
43
+ self.vocab_size = config["model"]["vocab_size"]
44
+ self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
45
+ self.p_dropout = config["model"]["dropout"]
46
+ self.EOS = config["model"]["EOS"]
47
+ self.norm_first = norm_first
48
+ assert self.EOS == self.vocab_size - 1
49
+ # should be same as num of kmeans bin
50
+ # assert self.EOS == 1024
51
+ self.bert_proj = nn.Linear(1024, self.embedding_dim)
52
+ self.ar_text_embedding = TokenEmbedding(
53
+ self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
54
+ )
55
+ self.ar_text_position = SinePositionalEmbedding(
56
+ self.embedding_dim, dropout=0.1, scale=False, alpha=True
57
+ )
58
+ self.ar_audio_embedding = TokenEmbedding(
59
+ self.embedding_dim, self.vocab_size, self.p_dropout
60
+ )
61
+ self.ar_audio_position = SinePositionalEmbedding(
62
+ self.embedding_dim, dropout=0.1, scale=False, alpha=True
63
+ )
64
+
65
+ self.h = TransformerEncoder(
66
+ TransformerEncoderLayer(
67
+ d_model=self.model_dim,
68
+ nhead=self.num_head,
69
+ dim_feedforward=self.model_dim * 4,
70
+ dropout=0.1,
71
+ batch_first=True,
72
+ norm_first=norm_first,
73
+ ),
74
+ num_layers=self.num_layers,
75
+ norm=LayerNorm(self.model_dim) if norm_first else None,
76
+ )
77
+
78
+ self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
79
+ self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
80
+
81
+ self.ar_accuracy_metric = MulticlassAccuracy(
82
+ self.vocab_size,
83
+ top_k=top_k,
84
+ average="micro",
85
+ multidim_average="global",
86
+ ignore_index=self.EOS,
87
+ )
88
+
89
+ def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
90
+ x = self.ar_text_embedding(x)
91
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
92
+ x = self.ar_text_position(x)
93
+ x_mask = make_pad_mask(x_lens)
94
+
95
+ y_mask = make_pad_mask(y_lens)
96
+ y_mask_int = y_mask.type(torch.int64)
97
+ codes = y.type(torch.int64) * (1 - y_mask_int)
98
+
99
+ # Training
100
+ # AR Decoder
101
+ y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
102
+ x_len = x_lens.max()
103
+ y_len = y_lens.max()
104
+ y_emb = self.ar_audio_embedding(y)
105
+ y_pos = self.ar_audio_position(y_emb)
106
+
107
+ xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
108
+
109
+ ar_xy_padding_mask = xy_padding_mask
110
+
111
+ x_attn_mask = F.pad(
112
+ torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
113
+ (0, y_len),
114
+ value=True,
115
+ )
116
+
117
+ y_attn_mask = F.pad(
118
+ torch.triu(
119
+ torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
120
+ diagonal=1,
121
+ ),
122
+ (x_len, 0),
123
+ value=False,
124
+ )
125
+
126
+ xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
127
+ bsz, src_len = x.shape[0], x_len + y_len
128
+ _xy_padding_mask = (
129
+ ar_xy_padding_mask.view(bsz, 1, 1, src_len)
130
+ .expand(-1, self.num_head, -1, -1)
131
+ .reshape(bsz * self.num_head, 1, src_len)
132
+ )
133
+ xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
134
+ new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
135
+ new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
136
+ xy_attn_mask = new_attn_mask
137
+ # x 和完整的 y 一次性输入模型
138
+ xy_pos = torch.concat([x, y_pos], dim=1)
139
+
140
+ return xy_pos, xy_attn_mask, targets
141
+
142
+ def forward(self, x, x_lens, y, y_lens, bert_feature):
143
+ """
144
+ x: phoneme_ids
145
+ y: semantic_ids
146
+ """
147
+
148
+ reject_y, reject_y_lens = make_reject_y(y, y_lens)
149
+
150
+ xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
151
+
152
+ xy_dec, _ = self.h(
153
+ (xy_pos, None),
154
+ mask=xy_attn_mask,
155
+ )
156
+ x_len = x_lens.max()
157
+ logits = self.ar_predict_layer(xy_dec[:, x_len:])
158
+
159
+ ###### DPO #############
160
+ reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature)
161
+
162
+ reject_xy_dec, _ = self.h(
163
+ (reject_xy_pos, None),
164
+ mask=reject_xy_attn_mask,
165
+ )
166
+ x_len = x_lens.max()
167
+ reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
168
+
169
+ # loss
170
+ # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
171
+
172
+ loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
173
+ acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
174
+
175
+ A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
176
+ loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
177
+
178
+ loss = loss_1 + loss_2
179
+
180
+ return loss, acc
181
+
182
+ def forward_old(self, x, x_lens, y, y_lens, bert_feature):
183
+ """
184
+ x: phoneme_ids
185
+ y: semantic_ids
186
+ """
187
+ x = self.ar_text_embedding(x)
188
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
189
+ x = self.ar_text_position(x)
190
+ x_mask = make_pad_mask(x_lens)
191
+
192
+ y_mask = make_pad_mask(y_lens)
193
+ y_mask_int = y_mask.type(torch.int64)
194
+ codes = y.type(torch.int64) * (1 - y_mask_int)
195
+
196
+ # Training
197
+ # AR Decoder
198
+ y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
199
+ x_len = x_lens.max()
200
+ y_len = y_lens.max()
201
+ y_emb = self.ar_audio_embedding(y)
202
+ y_pos = self.ar_audio_position(y_emb)
203
+
204
+ xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
205
+ ar_xy_padding_mask = xy_padding_mask
206
+
207
+ x_attn_mask = F.pad(
208
+ torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
209
+ (0, y_len),
210
+ value=True,
211
+ )
212
+ y_attn_mask = F.pad(
213
+ torch.triu(
214
+ torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
215
+ diagonal=1,
216
+ ),
217
+ (x_len, 0),
218
+ value=False,
219
+ )
220
+ xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
221
+ bsz, src_len = x.shape[0], x_len + y_len
222
+ _xy_padding_mask = (
223
+ ar_xy_padding_mask.view(bsz, 1, 1, src_len)
224
+ .expand(-1, self.num_head, -1, -1)
225
+ .reshape(bsz * self.num_head, 1, src_len)
226
+ )
227
+ xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
228
+ new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
229
+ new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
230
+ xy_attn_mask = new_attn_mask
231
+ # x 和完整的 y 一次性输入模型
232
+ xy_pos = torch.concat([x, y_pos], dim=1)
233
+ xy_dec, _ = self.h(
234
+ (xy_pos, None),
235
+ mask=xy_attn_mask,
236
+ )
237
+ logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
238
+ # loss
239
+ # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
240
+ loss = F.cross_entropy(logits, targets, reduction="sum")
241
+ acc = self.ar_accuracy_metric(logits.detach(), targets).item()
242
+ return loss, acc
243
+
244
+ # 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
245
+ def infer(
246
+ self,
247
+ x,
248
+ x_lens,
249
+ prompts,
250
+ bert_feature,
251
+ top_k: int = -100,
252
+ early_stop_num: int = -1,
253
+ temperature: float = 1.0,
254
+ ):
255
+ x = self.ar_text_embedding(x)
256
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
257
+ x = self.ar_text_position(x)
258
+
259
+ # AR Decoder
260
+ y = prompts
261
+ prefix_len = y.shape[1]
262
+ x_len = x.shape[1]
263
+ x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
264
+ stop = False
265
+ for _ in tqdm(range(1500)):
266
+ y_emb = self.ar_audio_embedding(y)
267
+ y_pos = self.ar_audio_position(y_emb)
268
+ # x 和逐渐增长的 y 一起输入给模型
269
+ xy_pos = torch.concat([x, y_pos], dim=1)
270
+ y_len = y.shape[1]
271
+ x_attn_mask_pad = F.pad(
272
+ x_attn_mask,
273
+ (0, y_len),
274
+ value=True,
275
+ )
276
+ y_attn_mask = F.pad(
277
+ torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
278
+ (x_len, 0),
279
+ value=False,
280
+ )
281
+ xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
282
+ y.device
283
+ )
284
+
285
+ xy_dec, _ = self.h(
286
+ (xy_pos, None),
287
+ mask=xy_attn_mask,
288
+ )
289
+ logits = self.ar_predict_layer(xy_dec[:, -1])
290
+ samples = topk_sampling(
291
+ logits, top_k=top_k, top_p=1.0, temperature=temperature
292
+ )
293
+
294
+ if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
295
+ print("use early stop num:", early_stop_num)
296
+ stop = True
297
+
298
+ if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
299
+ # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
300
+ stop = True
301
+ if stop:
302
+ if prompts.shape[1] == y.shape[1]:
303
+ y = torch.concat([y, torch.zeros_like(samples)], dim=1)
304
+ print("bad zero prediction")
305
+ print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
306
+ break
307
+ # 本次生成的 semantic_ids 和之前的 y 构成新的 y
308
+ # print(samples.shape)#[1,1]#第一个1是bs
309
+ # import os
310
+ # os._exit(2333)
311
+ y = torch.concat([y, samples], dim=1)
312
+ return y
313
+
314
+ def pad_y_eos(self, y, y_mask_int, eos_id):
315
+ targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
316
+ y_mask_int, (0, 1), value=1
317
+ )
318
+ # 错位
319
+ return targets[:, :-1], targets[:, 1:]
320
+
321
+ def infer_panel(
322
+ self,
323
+ x, #####全部文本token
324
+ x_lens,
325
+ prompts, ####参考音频token
326
+ bert_feature,
327
+ top_k: int = -100,
328
+ top_p: int = 100,
329
+ early_stop_num: int = -1,
330
+ temperature: float = 1.0,
331
+ ):
332
+ x = self.ar_text_embedding(x)
333
+ x = x + self.bert_proj(bert_feature.transpose(1, 2))
334
+ x = self.ar_text_position(x)
335
+
336
+ # AR Decoder
337
+ y = prompts
338
+
339
+ x_len = x.shape[1]
340
+ x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
341
+ stop = False
342
+ # print(1111111,self.num_layers)
343
+ cache = {
344
+ "all_stage": self.num_layers,
345
+ "k": [None] * self.num_layers, ###根据配置自己手写
346
+ "v": [None] * self.num_layers,
347
+ # "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
348
+ "y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
349
+ # "logits":None,###原版就已经只对结尾求再拼接了,不用管
350
+ # "xy_dec":None,###不需要,本来只需要最后一个做logits
351
+ "first_infer": 1,
352
+ "stage": 0,
353
+ }
354
+ ################### first step ##########################
355
+ if y is not None:
356
+ y_emb = self.ar_audio_embedding(y)
357
+ y_len = y_emb.shape[1]
358
+ prefix_len = y.shape[1]
359
+ y_pos = self.ar_audio_position(y_emb)
360
+ xy_pos = torch.concat([x, y_pos], dim=1)
361
+ cache["y_emb"] = y_emb
362
+ ref_free = False
363
+ else:
364
+ y_emb = None
365
+ y_len = 0
366
+ prefix_len = 0
367
+ y_pos = None
368
+ xy_pos = x
369
+ y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
370
+ ref_free = True
371
+
372
+ x_attn_mask_pad = F.pad(
373
+ x_attn_mask,
374
+ (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
375
+ value=True,
376
+ )
377
+ y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
378
+ torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
379
+ (x_len, 0),
380
+ value=False,
381
+ )
382
+ xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
383
+ x.device
384
+ )
385
+
386
+
387
+ for idx in tqdm(range(1500)):
388
+
389
+ xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
390
+ logits = self.ar_predict_layer(
391
+ xy_dec[:, -1]
392
+ ) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
393
+ # samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
394
+ if(idx==0):###第一次跑不能EOS否则没有了
395
+ logits = logits[:, :-1] ###刨除1024终止符号的概率
396
+ samples = sample(
397
+ logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
398
+ )[0].unsqueeze(0)
399
+ # 本次生成的 semantic_ids 和之前的 y 构成新的 y
400
+ # print(samples.shape)#[1,1]#第一个1是bs
401
+ y = torch.concat([y, samples], dim=1)
402
+
403
+ if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
404
+ print("use early stop num:", early_stop_num)
405
+ stop = True
406
+
407
+ if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
408
+ # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
409
+ stop = True
410
+ if stop:
411
+ # if prompts.shape[1] == y.shape[1]:
412
+ # y = torch.concat([y, torch.zeros_like(samples)], dim=1)
413
+ # print("bad zero prediction")
414
+ if y.shape[1]==0:
415
+ y = torch.concat([y, torch.zeros_like(samples)], dim=1)
416
+ print("bad zero prediction")
417
+ print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
418
+ break
419
+
420
+ ####################### update next step ###################################
421
+ cache["first_infer"] = 0
422
+ if cache["y_emb"] is not None:
423
+ y_emb = torch.cat(
424
+ [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
425
+ )
426
+ cache["y_emb"] = y_emb
427
+ y_pos = self.ar_audio_position(y_emb)
428
+ xy_pos = y_pos[:, -1:]
429
+ else:
430
+ y_emb = self.ar_audio_embedding(y[:, -1:])
431
+ cache["y_emb"] = y_emb
432
+ y_pos = self.ar_audio_position(y_emb)
433
+ xy_pos = y_pos
434
+ y_len = y_pos.shape[1]
435
+
436
+ ###最右边一列(是错的)
437
+ # xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
438
+ # xy_attn_mask[:,-1]=False
439
+ ###最下面一行(是对的)
440
+ xy_attn_mask = torch.zeros(
441
+ (1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
442
+ )
443
+ if ref_free:
444
+ return y[:, :-1], 0
445
+ return y[:, :-1], idx-1
transformer.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
2
+ import copy
3
+ import numbers
4
+ from functools import partial
5
+ from typing import Any
6
+ from typing import Callable
7
+ from typing import List
8
+ from typing import Optional
9
+ from typing import Tuple
10
+ from typing import Union
11
+
12
+ import torch
13
+ from .activation import MultiheadAttention
14
+ from .scaling import BalancedDoubleSwish
15
+ from torch import nn
16
+ from torch import Tensor
17
+ from torch.nn import functional as F
18
+
19
+ _shape_t = Union[int, List[int], torch.Size]
20
+
21
+
22
+ class LayerNorm(nn.Module):
23
+ __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
24
+ normalized_shape: Tuple[int, ...]
25
+ eps: float
26
+ elementwise_affine: bool
27
+
28
+ def __init__(
29
+ self,
30
+ normalized_shape: _shape_t,
31
+ eps: float = 1e-5,
32
+ elementwise_affine: bool = True,
33
+ device=None,
34
+ dtype=None,
35
+ ) -> None:
36
+ factory_kwargs = {"device": device, "dtype": dtype}
37
+ super(LayerNorm, self).__init__()
38
+ if isinstance(normalized_shape, numbers.Integral):
39
+ # mypy error: incompatible types in assignment
40
+ normalized_shape = (normalized_shape,) # type: ignore[assignment]
41
+ self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
42
+ self.eps = eps
43
+ self.elementwise_affine = elementwise_affine
44
+ if self.elementwise_affine:
45
+ self.weight = nn.Parameter(
46
+ torch.empty(self.normalized_shape, **factory_kwargs)
47
+ )
48
+ self.bias = nn.Parameter(
49
+ torch.empty(self.normalized_shape, **factory_kwargs)
50
+ )
51
+ else:
52
+ self.register_parameter("weight", None)
53
+ self.register_parameter("bias", None)
54
+
55
+ self.reset_parameters()
56
+
57
+ def reset_parameters(self) -> None:
58
+ if self.elementwise_affine:
59
+ nn.init.ones_(self.weight)
60
+ nn.init.zeros_(self.bias)
61
+
62
+ def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
63
+ if isinstance(input, tuple):
64
+ input, embedding = input
65
+ return (
66
+ F.layer_norm(
67
+ input,
68
+ self.normalized_shape,
69
+ self.weight,
70
+ self.bias,
71
+ self.eps,
72
+ ),
73
+ embedding,
74
+ )
75
+
76
+ assert embedding is None
77
+ return F.layer_norm(
78
+ input, self.normalized_shape, self.weight, self.bias, self.eps
79
+ )
80
+
81
+ def extra_repr(self) -> str:
82
+ return (
83
+ "{normalized_shape}, eps={eps}, "
84
+ "elementwise_affine={elementwise_affine}".format(**self.__dict__)
85
+ )
86
+
87
+
88
+ class IdentityNorm(nn.Module):
89
+ def __init__(
90
+ self,
91
+ d_model: int,
92
+ eps: float = 1e-5,
93
+ device=None,
94
+ dtype=None,
95
+ ) -> None:
96
+ super(IdentityNorm, self).__init__()
97
+
98
+ def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
99
+ if isinstance(input, tuple):
100
+ return input
101
+
102
+ assert embedding is None
103
+ return input
104
+
105
+
106
+ class TransformerEncoder(nn.Module):
107
+ r"""TransformerEncoder is a stack of N encoder layers. Users can build the
108
+ BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
109
+
110
+ Args:
111
+ encoder_layer: an instance of the TransformerEncoderLayer() class (required).
112
+ num_layers: the number of sub-encoder-layers in the encoder (required).
113
+ norm: the layer normalization component (optional).
114
+ enable_nested_tensor: if True, input will automatically convert to nested tensor
115
+ (and convert back on output). This will improve the overall performance of
116
+ TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
117
+
118
+ Examples::
119
+ >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
120
+ >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
121
+ >>> src = torch.rand(10, 32, 512)
122
+ >>> out = transformer_encoder(src)
123
+ """
124
+ __constants__ = ["norm"]
125
+
126
+ def __init__(self, encoder_layer, num_layers, norm=None):
127
+ super(TransformerEncoder, self).__init__()
128
+ self.layers = _get_clones(encoder_layer, num_layers)
129
+ self.num_layers = num_layers
130
+ self.norm = norm
131
+
132
+ def forward(
133
+ self,
134
+ src: Tensor,
135
+ mask: Optional[Tensor] = None,
136
+ src_key_padding_mask: Optional[Tensor] = None,
137
+ return_layer_states: bool = False,
138
+ cache=None,
139
+ ) -> Tensor:
140
+ r"""Pass the input through the encoder layers in turn.
141
+
142
+ Args:
143
+ src: the sequence to the encoder (required).
144
+ mask: the mask for the src sequence (optional).
145
+ src_key_padding_mask: the mask for the src keys per batch (optional).
146
+ return_layer_states: return layers' state (optional).
147
+
148
+ Shape:
149
+ see the docs in Transformer class.
150
+ """
151
+ if return_layer_states:
152
+ layer_states = [] # layers' output
153
+ output = src
154
+ for mod in self.layers:
155
+ output = mod(
156
+ output,
157
+ src_mask=mask,
158
+ src_key_padding_mask=src_key_padding_mask,
159
+ cache=cache,
160
+ )
161
+ layer_states.append(output[0])
162
+
163
+ if self.norm is not None:
164
+ output = self.norm(output)
165
+
166
+ return layer_states, output
167
+
168
+ output = src
169
+ for mod in self.layers:
170
+ output = mod(
171
+ output,
172
+ src_mask=mask,
173
+ src_key_padding_mask=src_key_padding_mask,
174
+ cache=cache,
175
+ )
176
+
177
+ if self.norm is not None:
178
+ output = self.norm(output)
179
+
180
+ return output
181
+
182
+
183
+ class TransformerEncoderLayer(nn.Module):
184
+ __constants__ = ["batch_first", "norm_first"]
185
+
186
+ def __init__(
187
+ self,
188
+ d_model: int,
189
+ nhead: int,
190
+ dim_feedforward: int = 2048,
191
+ dropout: float = 0.1,
192
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
193
+ batch_first: bool = False,
194
+ norm_first: bool = False,
195
+ device=None,
196
+ dtype=None,
197
+ linear1_self_attention_cls: nn.Module = nn.Linear,
198
+ linear2_self_attention_cls: nn.Module = nn.Linear,
199
+ linear1_feedforward_cls: nn.Module = nn.Linear,
200
+ linear2_feedforward_cls: nn.Module = nn.Linear,
201
+ layer_norm_cls: nn.Module = LayerNorm,
202
+ layer_norm_eps: float = 1e-5,
203
+ adaptive_layer_norm=False,
204
+ ) -> None:
205
+ factory_kwargs = {"device": device, "dtype": dtype}
206
+ super(TransformerEncoderLayer, self).__init__()
207
+ # print(233333333333,d_model,nhead)
208
+ # import os
209
+ # os._exit(2333333)
210
+ self.self_attn = MultiheadAttention(
211
+ d_model, # 512 16
212
+ nhead,
213
+ dropout=dropout,
214
+ batch_first=batch_first,
215
+ linear1_cls=linear1_self_attention_cls,
216
+ linear2_cls=linear2_self_attention_cls,
217
+ **factory_kwargs,
218
+ )
219
+
220
+ # Implementation of Feedforward model
221
+ self.linear1 = linear1_feedforward_cls(
222
+ d_model, dim_feedforward, **factory_kwargs
223
+ )
224
+ self.dropout = nn.Dropout(dropout)
225
+ self.linear2 = linear2_feedforward_cls(
226
+ dim_feedforward, d_model, **factory_kwargs
227
+ )
228
+
229
+ self.norm_first = norm_first
230
+ self.dropout1 = nn.Dropout(dropout)
231
+ self.dropout2 = nn.Dropout(dropout)
232
+
233
+ # Legacy string support for activation function.
234
+ if isinstance(activation, str):
235
+ activation = _get_activation_fn(activation)
236
+ elif isinstance(activation, partial):
237
+ activation = activation(d_model)
238
+ elif activation == BalancedDoubleSwish:
239
+ activation = BalancedDoubleSwish(d_model)
240
+
241
+ # # We can't test self.activation in forward() in TorchScript,
242
+ # # so stash some information about it instead.
243
+ # if activation is F.relu or isinstance(activation, torch.nn.ReLU):
244
+ # self.activation_relu_or_gelu = 1
245
+ # elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
246
+ # self.activation_relu_or_gelu = 2
247
+ # else:
248
+ # self.activation_relu_or_gelu = 0
249
+ self.activation = activation
250
+
251
+ norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
252
+ if layer_norm_cls == IdentityNorm:
253
+ norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
254
+ else:
255
+ norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
256
+
257
+ if adaptive_layer_norm:
258
+ self.norm1 = AdaptiveLayerNorm(d_model, norm1)
259
+ self.norm2 = AdaptiveLayerNorm(d_model, norm2)
260
+ else:
261
+ self.norm1 = norm1
262
+ self.norm2 = norm2
263
+
264
+ def __setstate__(self, state):
265
+ super(TransformerEncoderLayer, self).__setstate__(state)
266
+ if not hasattr(self, "activation"):
267
+ self.activation = F.relu
268
+
269
+ def forward(
270
+ self,
271
+ src: Tensor,
272
+ src_mask: Optional[Tensor] = None,
273
+ src_key_padding_mask: Optional[Tensor] = None,
274
+ cache=None,
275
+ ) -> Tensor:
276
+ r"""Pass the input through the encoder layer.
277
+
278
+ Args:
279
+ src: the sequence to the encoder layer (required).
280
+ src_mask: the mask for the src sequence (optional).
281
+ src_key_padding_mask: the mask for the src keys per batch (optional).
282
+
283
+ Shape:
284
+ see the docs in Transformer class.
285
+ """
286
+ x, stage_embedding = src, None
287
+ is_src_tuple = False
288
+ if isinstance(src, tuple):
289
+ x, stage_embedding = src
290
+ is_src_tuple = True
291
+
292
+ if src_key_padding_mask is not None:
293
+ _skpm_dtype = src_key_padding_mask.dtype
294
+ if _skpm_dtype != torch.bool and not torch.is_floating_point(
295
+ src_key_padding_mask
296
+ ):
297
+ raise AssertionError(
298
+ "only bool and floating types of key_padding_mask are supported"
299
+ )
300
+
301
+ if self.norm_first:
302
+ x = x + self._sa_block(
303
+ self.norm1(x, stage_embedding),
304
+ src_mask,
305
+ src_key_padding_mask,
306
+ cache=cache,
307
+ )
308
+ x = x + self._ff_block(self.norm2(x, stage_embedding))
309
+ else:
310
+ x = self.norm1(
311
+ x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
312
+ stage_embedding,
313
+ )
314
+ x = self.norm2(x + self._ff_block(x), stage_embedding)
315
+
316
+ if is_src_tuple:
317
+ return (x, stage_embedding)
318
+ return x
319
+
320
+ # self-attention block
321
+ def _sa_block(
322
+ self,
323
+ x: Tensor,
324
+ attn_mask: Optional[Tensor],
325
+ key_padding_mask: Optional[Tensor],
326
+ cache=None,
327
+ ) -> Tensor:
328
+ # print(x.shape,attn_mask.shape,key_padding_mask)
329
+ # torch.Size([1, 188, 512]) torch.Size([188, 188]) None
330
+ # import os
331
+ # os._exit(23333)
332
+ x = self.self_attn(
333
+ x,
334
+ x,
335
+ x,
336
+ attn_mask=attn_mask,
337
+ key_padding_mask=key_padding_mask,
338
+ need_weights=False,
339
+ cache=cache,
340
+ )[0]
341
+ return self.dropout1(x)
342
+
343
+ # feed forward block
344
+ def _ff_block(self, x: Tensor) -> Tensor:
345
+ x = self.linear2(self.dropout(self.activation(self.linear1(x))))
346
+ return self.dropout2(x)
347
+
348
+
349
+ class AdaptiveLayerNorm(nn.Module):
350
+ r"""Adaptive Layer Normalization"""
351
+
352
+ def __init__(self, d_model, norm) -> None:
353
+ super(AdaptiveLayerNorm, self).__init__()
354
+ self.project_layer = nn.Linear(d_model, 2 * d_model)
355
+ self.norm = norm
356
+ self.d_model = d_model
357
+ self.eps = self.norm.eps
358
+
359
+ def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
360
+ if isinstance(input, tuple):
361
+ input, embedding = input
362
+ weight, bias = torch.split(
363
+ self.project_layer(embedding),
364
+ split_size_or_sections=self.d_model,
365
+ dim=-1,
366
+ )
367
+ return (weight * self.norm(input) + bias, embedding)
368
+
369
+ weight, bias = torch.split(
370
+ self.project_layer(embedding),
371
+ split_size_or_sections=self.d_model,
372
+ dim=-1,
373
+ )
374
+ return weight * self.norm(input) + bias
375
+
376
+
377
+ def _get_clones(module, N):
378
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
transforms.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(
13
+ inputs,
14
+ unnormalized_widths,
15
+ unnormalized_heights,
16
+ unnormalized_derivatives,
17
+ inverse=False,
18
+ tails=None,
19
+ tail_bound=1.0,
20
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
23
+ ):
24
+ if tails is None:
25
+ spline_fn = rational_quadratic_spline
26
+ spline_kwargs = {}
27
+ else:
28
+ spline_fn = unconstrained_rational_quadratic_spline
29
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
30
+
31
+ outputs, logabsdet = spline_fn(
32
+ inputs=inputs,
33
+ unnormalized_widths=unnormalized_widths,
34
+ unnormalized_heights=unnormalized_heights,
35
+ unnormalized_derivatives=unnormalized_derivatives,
36
+ inverse=inverse,
37
+ min_bin_width=min_bin_width,
38
+ min_bin_height=min_bin_height,
39
+ min_derivative=min_derivative,
40
+ **spline_kwargs
41
+ )
42
+ return outputs, logabsdet
43
+
44
+
45
+ def searchsorted(bin_locations, inputs, eps=1e-6):
46
+ bin_locations[..., -1] += eps
47
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
48
+
49
+
50
+ def unconstrained_rational_quadratic_spline(
51
+ inputs,
52
+ unnormalized_widths,
53
+ unnormalized_heights,
54
+ unnormalized_derivatives,
55
+ inverse=False,
56
+ tails="linear",
57
+ tail_bound=1.0,
58
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
59
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
60
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
61
+ ):
62
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
63
+ outside_interval_mask = ~inside_interval_mask
64
+
65
+ outputs = torch.zeros_like(inputs)
66
+ logabsdet = torch.zeros_like(inputs)
67
+
68
+ if tails == "linear":
69
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
70
+ constant = np.log(np.exp(1 - min_derivative) - 1)
71
+ unnormalized_derivatives[..., 0] = constant
72
+ unnormalized_derivatives[..., -1] = constant
73
+
74
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
75
+ logabsdet[outside_interval_mask] = 0
76
+ else:
77
+ raise RuntimeError("{} tails are not implemented.".format(tails))
78
+
79
+ (
80
+ outputs[inside_interval_mask],
81
+ logabsdet[inside_interval_mask],
82
+ ) = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound,
89
+ right=tail_bound,
90
+ bottom=-tail_bound,
91
+ top=tail_bound,
92
+ min_bin_width=min_bin_width,
93
+ min_bin_height=min_bin_height,
94
+ min_derivative=min_derivative,
95
+ )
96
+
97
+ return outputs, logabsdet
98
+
99
+
100
+ def rational_quadratic_spline(
101
+ inputs,
102
+ unnormalized_widths,
103
+ unnormalized_heights,
104
+ unnormalized_derivatives,
105
+ inverse=False,
106
+ left=0.0,
107
+ right=1.0,
108
+ bottom=0.0,
109
+ top=1.0,
110
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
111
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
112
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
113
+ ):
114
+ if torch.min(inputs) < left or torch.max(inputs) > right:
115
+ raise ValueError("Input to a transform is not within its domain")
116
+
117
+ num_bins = unnormalized_widths.shape[-1]
118
+
119
+ if min_bin_width * num_bins > 1.0:
120
+ raise ValueError("Minimal bin width too large for the number of bins")
121
+ if min_bin_height * num_bins > 1.0:
122
+ raise ValueError("Minimal bin height too large for the number of bins")
123
+
124
+ widths = F.softmax(unnormalized_widths, dim=-1)
125
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
126
+ cumwidths = torch.cumsum(widths, dim=-1)
127
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
128
+ cumwidths = (right - left) * cumwidths + left
129
+ cumwidths[..., 0] = left
130
+ cumwidths[..., -1] = right
131
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
132
+
133
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
134
+
135
+ heights = F.softmax(unnormalized_heights, dim=-1)
136
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
137
+ cumheights = torch.cumsum(heights, dim=-1)
138
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
139
+ cumheights = (top - bottom) * cumheights + bottom
140
+ cumheights[..., 0] = bottom
141
+ cumheights[..., -1] = top
142
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
143
+
144
+ if inverse:
145
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
146
+ else:
147
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
148
+
149
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
150
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
151
+
152
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
153
+ delta = heights / widths
154
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
155
+
156
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
157
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
158
+
159
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
160
+
161
+ if inverse:
162
+ a = (inputs - input_cumheights) * (
163
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
164
+ ) + input_heights * (input_delta - input_derivatives)
165
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
166
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
167
+ )
168
+ c = -input_delta * (inputs - input_cumheights)
169
+
170
+ discriminant = b.pow(2) - 4 * a * c
171
+ assert (discriminant >= 0).all()
172
+
173
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
174
+ outputs = root * input_bin_widths + input_cumwidths
175
+
176
+ theta_one_minus_theta = root * (1 - root)
177
+ denominator = input_delta + (
178
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
179
+ * theta_one_minus_theta
180
+ )
181
+ derivative_numerator = input_delta.pow(2) * (
182
+ input_derivatives_plus_one * root.pow(2)
183
+ + 2 * input_delta * theta_one_minus_theta
184
+ + input_derivatives * (1 - root).pow(2)
185
+ )
186
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
187
+
188
+ return outputs, -logabsdet
189
+ else:
190
+ theta = (inputs - input_cumwidths) / input_bin_widths
191
+ theta_one_minus_theta = theta * (1 - theta)
192
+
193
+ numerator = input_heights * (
194
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
195
+ )
196
+ denominator = input_delta + (
197
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
198
+ * theta_one_minus_theta
199
+ )
200
+ outputs = input_cumheights + numerator / denominator
201
+
202
+ derivative_numerator = input_delta.pow(2) * (
203
+ input_derivatives_plus_one * theta.pow(2)
204
+ + 2 * input_delta * theta_one_minus_theta
205
+ + input_derivatives * (1 - theta).pow(2)
206
+ )
207
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
208
+
209
+ return outputs, logabsdet