xXiaobuding commited on
Commit
9e3d28f
1 Parent(s): af4196f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: deberta-v3-base_ai4privacy_en
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # deberta-v3-base_ai4privacy_en
14
+
15
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.1055
18
+ - Overall Precision: 0.8683
19
+ - Overall Recall: 0.8949
20
+ - Overall F1: 0.8814
21
+ - Overall Accuracy: 0.9609
22
+ - Accountname F1: 0.9898
23
+ - Accountnumber F1: 0.9939
24
+ - Age F1: 0.8397
25
+ - Amount F1: 0.9169
26
+ - Bic F1: 0.9012
27
+ - Bitcoinaddress F1: 0.9583
28
+ - Buildingnumber F1: 0.8109
29
+ - City F1: 0.8011
30
+ - Companyname F1: 0.9437
31
+ - County F1: 0.8752
32
+ - Creditcardcvv F1: 0.8635
33
+ - Creditcardissuer F1: 0.9738
34
+ - Creditcardnumber F1: 0.8771
35
+ - Currency F1: 0.6542
36
+ - Currencycode F1: 0.5566
37
+ - Currencyname F1: 0.2214
38
+ - Currencysymbol F1: 0.8640
39
+ - Date F1: 0.8365
40
+ - Dob F1: 0.5696
41
+ - Email F1: 0.9914
42
+ - Ethereumaddress F1: 0.9903
43
+ - Eyecolor F1: 0.9076
44
+ - Firstname F1: 0.8759
45
+ - Gender F1: 0.9324
46
+ - Height F1: 0.9046
47
+ - Iban F1: 0.9899
48
+ - Ip F1: 0.1137
49
+ - Ipv4 F1: 0.8118
50
+ - Ipv6 F1: 0.8091
51
+ - Jobarea F1: 0.7895
52
+ - Jobtitle F1: 0.9806
53
+ - Jobtype F1: 0.9056
54
+ - Lastname F1: 0.8179
55
+ - Litecoinaddress F1: 0.8739
56
+ - Mac F1: 1.0
57
+ - Maskednumber F1: 0.8319
58
+ - Middlename F1: 0.8419
59
+ - Nearbygpscoordinate F1: 1.0
60
+ - Ordinaldirection F1: 0.9682
61
+ - Password F1: 0.9595
62
+ - Phoneimei F1: 0.9930
63
+ - Phonenumber F1: 0.9807
64
+ - Pin F1: 0.7868
65
+ - Prefix F1: 0.9355
66
+ - Secondaryaddress F1: 0.9967
67
+ - Sex F1: 0.9692
68
+ - Ssn F1: 0.9898
69
+ - State F1: 0.7407
70
+ - Street F1: 0.7823
71
+ - Time F1: 0.9500
72
+ - Url F1: 0.9936
73
+ - Useragent F1: 0.9976
74
+ - Username F1: 0.9331
75
+ - Vehiclevin F1: 0.9713
76
+ - Vehiclevrm F1: 0.9493
77
+ - Zipcode F1: 0.8634
78
+
79
+ ## Model description
80
+
81
+ More information needed
82
+
83
+ ## Intended uses & limitations
84
+
85
+ More information needed
86
+
87
+ ## Training and evaluation data
88
+
89
+ More information needed
90
+
91
+ ## Training procedure
92
+
93
+ ### Training hyperparameters
94
+
95
+ The following hyperparameters were used during training:
96
+ - learning_rate: 5e-05
97
+ - train_batch_size: 8
98
+ - eval_batch_size: 16
99
+ - seed: 42
100
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
101
+ - lr_scheduler_type: cosine_with_restarts
102
+ - lr_scheduler_warmup_ratio: 0.2
103
+ - num_epochs: 5
104
+
105
+ ### Training results
106
+
107
+ | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
108
+ |:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:------:|:---------:|:------:|:-----------------:|:-----------------:|:-------:|:--------------:|:---------:|:----------------:|:-------------------:|:-------------------:|:-----------:|:---------------:|:---------------:|:-----------------:|:-------:|:------:|:--------:|:------------------:|:-----------:|:------------:|:---------:|:---------:|:-------:|:------:|:-------:|:-------:|:----------:|:-----------:|:----------:|:-----------:|:------------------:|:------:|:---------------:|:-------------:|:----------------------:|:-------------------:|:-----------:|:------------:|:--------------:|:------:|:---------:|:-------------------:|:------:|:------:|:--------:|:---------:|:-------:|:------:|:------------:|:-----------:|:-------------:|:-------------:|:----------:|
109
+ | 0.463 | 1.0 | 4350 | 0.3229 | 0.5378 | 0.5277 | 0.5327 | 0.8941 | 0.8722 | 0.7667 | 0.5849 | 0.2284 | 0.5391 | 0.7502 | 0.3143 | 0.1514 | 0.2844 | 0.2640 | 0.0086 | 0.5288 | 0.0 | 0.0956 | 0.0 | 0.0 | 0.3410 | 0.7146 | 0.0169 | 0.8043 | 0.9458 | 0.0090 | 0.4894 | 0.1550 | 0.0 | 0.8653 | 0.0 | 0.8168 | 0.7474 | 0.1611 | 0.4548 | 0.0035 | 0.3781 | 0.1472 | 0.8989 | 0.4641 | 0.0035 | 0.9955 | 0.0 | 0.7959 | 0.9464 | 0.7831 | 0.2258 | 0.7847 | 0.8639 | 0.5481 | 0.7480 | 0.0643 | 0.1795 | 0.7463 | 0.9683 | 0.9080 | 0.4569 | 0.8724 | 0.5152 | 0.5458 |
110
+ | 0.1944 | 2.0 | 8700 | 0.1709 | 0.7179 | 0.7495 | 0.7334 | 0.9387 | 0.9789 | 0.9718 | 0.6535 | 0.4640 | 0.6039 | 0.9240 | 0.6723 | 0.4777 | 0.8654 | 0.6234 | 0.7241 | 0.8713 | 0.6077 | 0.4598 | 0.0698 | 0.0104 | 0.6163 | 0.7518 | 0.4439 | 0.9803 | 0.9848 | 0.6276 | 0.6714 | 0.7937 | 0.6295 | 0.9538 | 0.0 | 0.8285 | 0.7976 | 0.5304 | 0.9253 | 0.6957 | 0.4694 | 0.7181 | 0.9892 | 0.6301 | 0.2027 | 0.9865 | 0.8016 | 0.7931 | 0.9888 | 0.9658 | 0.3231 | 0.8959 | 0.9721 | 0.8506 | 0.9692 | 0.3841 | 0.4389 | 0.9064 | 0.9905 | 0.9670 | 0.8341 | 0.9563 | 0.8449 | 0.7487 |
111
+ | 0.1275 | 3.0 | 13050 | 0.1174 | 0.8276 | 0.8506 | 0.8390 | 0.9559 | 0.9881 | 0.9896 | 0.7347 | 0.8484 | 0.8214 | 0.9571 | 0.7815 | 0.7437 | 0.9289 | 0.7794 | 0.8323 | 0.9754 | 0.8624 | 0.4890 | 0.4318 | 0.2006 | 0.8043 | 0.8066 | 0.5459 | 0.9858 | 0.9903 | 0.8511 | 0.8071 | 0.8187 | 0.8657 | 0.9486 | 0.0 | 0.8396 | 0.8049 | 0.7326 | 0.9720 | 0.8699 | 0.6714 | 0.8655 | 0.9957 | 0.8194 | 0.6478 | 1.0 | 0.9660 | 0.9331 | 0.9916 | 0.9711 | 0.6899 | 0.9302 | 0.9902 | 0.9413 | 0.9847 | 0.5684 | 0.7259 | 0.9381 | 0.9929 | 0.9953 | 0.9094 | 0.9598 | 0.9115 | 0.8324 |
112
+ | 0.0976 | 4.0 | 17400 | 0.1065 | 0.8624 | 0.8877 | 0.8749 | 0.9598 | 0.9907 | 0.9939 | 0.8312 | 0.9141 | 0.8689 | 0.9511 | 0.8027 | 0.8014 | 0.9538 | 0.8827 | 0.8599 | 0.9701 | 0.8634 | 0.6637 | 0.5488 | 0.1181 | 0.8541 | 0.8224 | 0.5333 | 0.9926 | 0.9876 | 0.9041 | 0.8664 | 0.9303 | 0.9207 | 0.9861 | 0.0591 | 0.8174 | 0.8098 | 0.7798 | 0.9686 | 0.9013 | 0.7845 | 0.8661 | 1.0 | 0.8091 | 0.8103 | 1.0 | 0.9785 | 0.9430 | 0.9916 | 0.9806 | 0.7778 | 0.9354 | 0.9913 | 0.9692 | 0.9885 | 0.7476 | 0.7658 | 0.9427 | 0.9889 | 0.9976 | 0.9346 | 0.9797 | 0.9570 | 0.8362 |
113
+ | 0.0886 | 5.0 | 21750 | 0.1055 | 0.8683 | 0.8949 | 0.8814 | 0.9609 | 0.9898 | 0.9939 | 0.8397 | 0.9169 | 0.9012 | 0.9583 | 0.8109 | 0.8011 | 0.9437 | 0.8752 | 0.8635 | 0.9738 | 0.8771 | 0.6542 | 0.5566 | 0.2214 | 0.8640 | 0.8365 | 0.5696 | 0.9914 | 0.9903 | 0.9076 | 0.8759 | 0.9324 | 0.9046 | 0.9899 | 0.1137 | 0.8118 | 0.8091 | 0.7895 | 0.9806 | 0.9056 | 0.8179 | 0.8739 | 1.0 | 0.8319 | 0.8419 | 1.0 | 0.9682 | 0.9595 | 0.9930 | 0.9807 | 0.7868 | 0.9355 | 0.9967 | 0.9692 | 0.9898 | 0.7407 | 0.7823 | 0.9500 | 0.9936 | 0.9976 | 0.9331 | 0.9713 | 0.9493 | 0.8634 |
114
+
115
+
116
+ ### Framework versions
117
+
118
+ - Transformers 4.26.1
119
+ - Pytorch 2.0.0.post101
120
+ - Datasets 2.10.1
121
+ - Tokenizers 0.13.3