xXiaobuding
commited on
Commit
•
9e3d28f
1
Parent(s):
af4196f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: deberta-v3-base_ai4privacy_en
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# deberta-v3-base_ai4privacy_en
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1055
|
18 |
+
- Overall Precision: 0.8683
|
19 |
+
- Overall Recall: 0.8949
|
20 |
+
- Overall F1: 0.8814
|
21 |
+
- Overall Accuracy: 0.9609
|
22 |
+
- Accountname F1: 0.9898
|
23 |
+
- Accountnumber F1: 0.9939
|
24 |
+
- Age F1: 0.8397
|
25 |
+
- Amount F1: 0.9169
|
26 |
+
- Bic F1: 0.9012
|
27 |
+
- Bitcoinaddress F1: 0.9583
|
28 |
+
- Buildingnumber F1: 0.8109
|
29 |
+
- City F1: 0.8011
|
30 |
+
- Companyname F1: 0.9437
|
31 |
+
- County F1: 0.8752
|
32 |
+
- Creditcardcvv F1: 0.8635
|
33 |
+
- Creditcardissuer F1: 0.9738
|
34 |
+
- Creditcardnumber F1: 0.8771
|
35 |
+
- Currency F1: 0.6542
|
36 |
+
- Currencycode F1: 0.5566
|
37 |
+
- Currencyname F1: 0.2214
|
38 |
+
- Currencysymbol F1: 0.8640
|
39 |
+
- Date F1: 0.8365
|
40 |
+
- Dob F1: 0.5696
|
41 |
+
- Email F1: 0.9914
|
42 |
+
- Ethereumaddress F1: 0.9903
|
43 |
+
- Eyecolor F1: 0.9076
|
44 |
+
- Firstname F1: 0.8759
|
45 |
+
- Gender F1: 0.9324
|
46 |
+
- Height F1: 0.9046
|
47 |
+
- Iban F1: 0.9899
|
48 |
+
- Ip F1: 0.1137
|
49 |
+
- Ipv4 F1: 0.8118
|
50 |
+
- Ipv6 F1: 0.8091
|
51 |
+
- Jobarea F1: 0.7895
|
52 |
+
- Jobtitle F1: 0.9806
|
53 |
+
- Jobtype F1: 0.9056
|
54 |
+
- Lastname F1: 0.8179
|
55 |
+
- Litecoinaddress F1: 0.8739
|
56 |
+
- Mac F1: 1.0
|
57 |
+
- Maskednumber F1: 0.8319
|
58 |
+
- Middlename F1: 0.8419
|
59 |
+
- Nearbygpscoordinate F1: 1.0
|
60 |
+
- Ordinaldirection F1: 0.9682
|
61 |
+
- Password F1: 0.9595
|
62 |
+
- Phoneimei F1: 0.9930
|
63 |
+
- Phonenumber F1: 0.9807
|
64 |
+
- Pin F1: 0.7868
|
65 |
+
- Prefix F1: 0.9355
|
66 |
+
- Secondaryaddress F1: 0.9967
|
67 |
+
- Sex F1: 0.9692
|
68 |
+
- Ssn F1: 0.9898
|
69 |
+
- State F1: 0.7407
|
70 |
+
- Street F1: 0.7823
|
71 |
+
- Time F1: 0.9500
|
72 |
+
- Url F1: 0.9936
|
73 |
+
- Useragent F1: 0.9976
|
74 |
+
- Username F1: 0.9331
|
75 |
+
- Vehiclevin F1: 0.9713
|
76 |
+
- Vehiclevrm F1: 0.9493
|
77 |
+
- Zipcode F1: 0.8634
|
78 |
+
|
79 |
+
## Model description
|
80 |
+
|
81 |
+
More information needed
|
82 |
+
|
83 |
+
## Intended uses & limitations
|
84 |
+
|
85 |
+
More information needed
|
86 |
+
|
87 |
+
## Training and evaluation data
|
88 |
+
|
89 |
+
More information needed
|
90 |
+
|
91 |
+
## Training procedure
|
92 |
+
|
93 |
+
### Training hyperparameters
|
94 |
+
|
95 |
+
The following hyperparameters were used during training:
|
96 |
+
- learning_rate: 5e-05
|
97 |
+
- train_batch_size: 8
|
98 |
+
- eval_batch_size: 16
|
99 |
+
- seed: 42
|
100 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
101 |
+
- lr_scheduler_type: cosine_with_restarts
|
102 |
+
- lr_scheduler_warmup_ratio: 0.2
|
103 |
+
- num_epochs: 5
|
104 |
+
|
105 |
+
### Training results
|
106 |
+
|
107 |
+
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
|
108 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:------:|:---------:|:------:|:-----------------:|:-----------------:|:-------:|:--------------:|:---------:|:----------------:|:-------------------:|:-------------------:|:-----------:|:---------------:|:---------------:|:-----------------:|:-------:|:------:|:--------:|:------------------:|:-----------:|:------------:|:---------:|:---------:|:-------:|:------:|:-------:|:-------:|:----------:|:-----------:|:----------:|:-----------:|:------------------:|:------:|:---------------:|:-------------:|:----------------------:|:-------------------:|:-----------:|:------------:|:--------------:|:------:|:---------:|:-------------------:|:------:|:------:|:--------:|:---------:|:-------:|:------:|:------------:|:-----------:|:-------------:|:-------------:|:----------:|
|
109 |
+
| 0.463 | 1.0 | 4350 | 0.3229 | 0.5378 | 0.5277 | 0.5327 | 0.8941 | 0.8722 | 0.7667 | 0.5849 | 0.2284 | 0.5391 | 0.7502 | 0.3143 | 0.1514 | 0.2844 | 0.2640 | 0.0086 | 0.5288 | 0.0 | 0.0956 | 0.0 | 0.0 | 0.3410 | 0.7146 | 0.0169 | 0.8043 | 0.9458 | 0.0090 | 0.4894 | 0.1550 | 0.0 | 0.8653 | 0.0 | 0.8168 | 0.7474 | 0.1611 | 0.4548 | 0.0035 | 0.3781 | 0.1472 | 0.8989 | 0.4641 | 0.0035 | 0.9955 | 0.0 | 0.7959 | 0.9464 | 0.7831 | 0.2258 | 0.7847 | 0.8639 | 0.5481 | 0.7480 | 0.0643 | 0.1795 | 0.7463 | 0.9683 | 0.9080 | 0.4569 | 0.8724 | 0.5152 | 0.5458 |
|
110 |
+
| 0.1944 | 2.0 | 8700 | 0.1709 | 0.7179 | 0.7495 | 0.7334 | 0.9387 | 0.9789 | 0.9718 | 0.6535 | 0.4640 | 0.6039 | 0.9240 | 0.6723 | 0.4777 | 0.8654 | 0.6234 | 0.7241 | 0.8713 | 0.6077 | 0.4598 | 0.0698 | 0.0104 | 0.6163 | 0.7518 | 0.4439 | 0.9803 | 0.9848 | 0.6276 | 0.6714 | 0.7937 | 0.6295 | 0.9538 | 0.0 | 0.8285 | 0.7976 | 0.5304 | 0.9253 | 0.6957 | 0.4694 | 0.7181 | 0.9892 | 0.6301 | 0.2027 | 0.9865 | 0.8016 | 0.7931 | 0.9888 | 0.9658 | 0.3231 | 0.8959 | 0.9721 | 0.8506 | 0.9692 | 0.3841 | 0.4389 | 0.9064 | 0.9905 | 0.9670 | 0.8341 | 0.9563 | 0.8449 | 0.7487 |
|
111 |
+
| 0.1275 | 3.0 | 13050 | 0.1174 | 0.8276 | 0.8506 | 0.8390 | 0.9559 | 0.9881 | 0.9896 | 0.7347 | 0.8484 | 0.8214 | 0.9571 | 0.7815 | 0.7437 | 0.9289 | 0.7794 | 0.8323 | 0.9754 | 0.8624 | 0.4890 | 0.4318 | 0.2006 | 0.8043 | 0.8066 | 0.5459 | 0.9858 | 0.9903 | 0.8511 | 0.8071 | 0.8187 | 0.8657 | 0.9486 | 0.0 | 0.8396 | 0.8049 | 0.7326 | 0.9720 | 0.8699 | 0.6714 | 0.8655 | 0.9957 | 0.8194 | 0.6478 | 1.0 | 0.9660 | 0.9331 | 0.9916 | 0.9711 | 0.6899 | 0.9302 | 0.9902 | 0.9413 | 0.9847 | 0.5684 | 0.7259 | 0.9381 | 0.9929 | 0.9953 | 0.9094 | 0.9598 | 0.9115 | 0.8324 |
|
112 |
+
| 0.0976 | 4.0 | 17400 | 0.1065 | 0.8624 | 0.8877 | 0.8749 | 0.9598 | 0.9907 | 0.9939 | 0.8312 | 0.9141 | 0.8689 | 0.9511 | 0.8027 | 0.8014 | 0.9538 | 0.8827 | 0.8599 | 0.9701 | 0.8634 | 0.6637 | 0.5488 | 0.1181 | 0.8541 | 0.8224 | 0.5333 | 0.9926 | 0.9876 | 0.9041 | 0.8664 | 0.9303 | 0.9207 | 0.9861 | 0.0591 | 0.8174 | 0.8098 | 0.7798 | 0.9686 | 0.9013 | 0.7845 | 0.8661 | 1.0 | 0.8091 | 0.8103 | 1.0 | 0.9785 | 0.9430 | 0.9916 | 0.9806 | 0.7778 | 0.9354 | 0.9913 | 0.9692 | 0.9885 | 0.7476 | 0.7658 | 0.9427 | 0.9889 | 0.9976 | 0.9346 | 0.9797 | 0.9570 | 0.8362 |
|
113 |
+
| 0.0886 | 5.0 | 21750 | 0.1055 | 0.8683 | 0.8949 | 0.8814 | 0.9609 | 0.9898 | 0.9939 | 0.8397 | 0.9169 | 0.9012 | 0.9583 | 0.8109 | 0.8011 | 0.9437 | 0.8752 | 0.8635 | 0.9738 | 0.8771 | 0.6542 | 0.5566 | 0.2214 | 0.8640 | 0.8365 | 0.5696 | 0.9914 | 0.9903 | 0.9076 | 0.8759 | 0.9324 | 0.9046 | 0.9899 | 0.1137 | 0.8118 | 0.8091 | 0.7895 | 0.9806 | 0.9056 | 0.8179 | 0.8739 | 1.0 | 0.8319 | 0.8419 | 1.0 | 0.9682 | 0.9595 | 0.9930 | 0.9807 | 0.7868 | 0.9355 | 0.9967 | 0.9692 | 0.9898 | 0.7407 | 0.7823 | 0.9500 | 0.9936 | 0.9976 | 0.9331 | 0.9713 | 0.9493 | 0.8634 |
|
114 |
+
|
115 |
+
|
116 |
+
### Framework versions
|
117 |
+
|
118 |
+
- Transformers 4.26.1
|
119 |
+
- Pytorch 2.0.0.post101
|
120 |
+
- Datasets 2.10.1
|
121 |
+
- Tokenizers 0.13.3
|