|
import inspect |
|
import warnings |
|
from typing import Callable, List, Optional, Union, Dict, Any |
|
import PIL |
|
import torch |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel |
|
from diffusers.utils.import_utils import is_accelerate_available |
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.models.embeddings import get_timestep_embedding |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import deprecate, logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer |
|
import os |
|
import torchvision.transforms.functional as TF |
|
from einops import rearrange |
|
logger = logging.get_logger(__name__) |
|
|
|
class StableUnCLIPImg2ImgPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for text-guided image to image generation using stable unCLIP. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
feature_extractor ([`CLIPFeatureExtractor`]): |
|
Feature extractor for image pre-processing before being encoded. |
|
image_encoder ([`CLIPVisionModelWithProjection`]): |
|
CLIP vision model for encoding images. |
|
image_normalizer ([`StableUnCLIPImageNormalizer`]): |
|
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image |
|
embeddings after the noise has been applied. |
|
image_noising_scheduler ([`KarrasDiffusionSchedulers`]): |
|
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined |
|
by `noise_level` in `StableUnCLIPPipeline.__call__`. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`KarrasDiffusionSchedulers`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
""" |
|
|
|
feature_extractor: CLIPFeatureExtractor |
|
image_encoder: CLIPVisionModelWithProjection |
|
|
|
image_normalizer: StableUnCLIPImageNormalizer |
|
image_noising_scheduler: KarrasDiffusionSchedulers |
|
|
|
tokenizer: CLIPTokenizer |
|
text_encoder: CLIPTextModel |
|
unet: UNet2DConditionModel |
|
scheduler: KarrasDiffusionSchedulers |
|
vae: AutoencoderKL |
|
|
|
def __init__( |
|
self, |
|
|
|
feature_extractor: CLIPFeatureExtractor, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
|
|
image_normalizer: StableUnCLIPImageNormalizer, |
|
image_noising_scheduler: KarrasDiffusionSchedulers, |
|
|
|
tokenizer: CLIPTokenizer, |
|
text_encoder: CLIPTextModel, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
|
|
vae: AutoencoderKL, |
|
num_views: int = 4, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
image_normalizer=image_normalizer, |
|
image_noising_scheduler=image_noising_scheduler, |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.num_views: int = num_views |
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's |
|
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only |
|
when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
|
|
models = [ |
|
self.image_encoder, |
|
self.text_encoder, |
|
self.unet, |
|
self.vae, |
|
] |
|
for cpu_offloaded_model in models: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
|
|
|
|
normal_prompt_embeds, color_prompt_embeds = torch.chunk(prompt_embeds, 2, dim=0) |
|
|
|
prompt_embeds = torch.cat([normal_prompt_embeds, normal_prompt_embeds, color_prompt_embeds, color_prompt_embeds], 0) |
|
|
|
return prompt_embeds |
|
|
|
def _encode_image( |
|
self, |
|
image_pil, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
noise_level: int=0, |
|
generator: Optional[torch.Generator] = None |
|
): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
image = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values |
|
image = image.to(device=device, dtype=dtype) |
|
image_embeds = self.image_encoder(image).image_embeds |
|
|
|
image_embeds = self.noise_image_embeddings( |
|
image_embeds=image_embeds, |
|
noise_level=noise_level, |
|
generator=generator, |
|
) |
|
|
|
|
|
|
|
image_embeds = image_embeds.repeat(num_images_per_prompt, 1) |
|
|
|
if do_classifier_free_guidance: |
|
normal_image_embeds, color_image_embeds = torch.chunk(image_embeds, 2, dim=0) |
|
negative_prompt_embeds = torch.zeros_like(normal_image_embeds) |
|
|
|
|
|
|
|
|
|
image_embeds = torch.cat([negative_prompt_embeds, normal_image_embeds, negative_prompt_embeds, color_image_embeds], 0) |
|
|
|
|
|
image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(dtype=self.vae.dtype, device=device) |
|
image_pt = image_pt * 2.0 - 1.0 |
|
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor |
|
|
|
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1) |
|
|
|
if do_classifier_free_guidance: |
|
normal_image_latents, color_image_latents = torch.chunk(image_latents, 2, dim=0) |
|
image_latents = torch.cat([torch.zeros_like(normal_image_latents), normal_image_latents, |
|
torch.zeros_like(color_image_latents), color_image_latents], 0) |
|
|
|
return image_embeds, image_latents |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
height, |
|
width, |
|
callback_steps, |
|
noise_level, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
|
|
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def noise_image_embeddings( |
|
self, |
|
image_embeds: torch.Tensor, |
|
noise_level: int, |
|
noise: Optional[torch.FloatTensor] = None, |
|
generator: Optional[torch.Generator] = None, |
|
): |
|
""" |
|
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher |
|
`noise_level` increases the variance in the final un-noised images. |
|
|
|
The noise is applied in two ways |
|
1. A noise schedule is applied directly to the embeddings |
|
2. A vector of sinusoidal time embeddings are appended to the output. |
|
|
|
In both cases, the amount of noise is controlled by the same `noise_level`. |
|
|
|
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. |
|
""" |
|
if noise is None: |
|
noise = randn_tensor( |
|
image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype |
|
) |
|
|
|
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) |
|
|
|
image_embeds = self.image_normalizer.scale(image_embeds) |
|
|
|
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) |
|
|
|
image_embeds = self.image_normalizer.unscale(image_embeds) |
|
|
|
noise_level = get_timestep_embedding( |
|
timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0 |
|
) |
|
|
|
|
|
|
|
|
|
noise_level = noise_level.to(image_embeds.dtype) |
|
|
|
image_embeds = torch.cat((image_embeds, noise_level), 1) |
|
|
|
return image_embeds |
|
|
|
@torch.no_grad() |
|
|
|
def __call__( |
|
self, |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
prompt: Union[str, List[str]], |
|
prompt_embeds: torch.FloatTensor = None, |
|
dino_feature: torch.FloatTensor = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 20, |
|
guidance_scale: float = 10, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
noise_level: int = 0, |
|
image_embeds: Optional[torch.FloatTensor] = None, |
|
return_elevation_focal: Optional[bool] = False, |
|
gt_img_in: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch. The image will be encoded to its CLIP embedding which |
|
the unet will be conditioned on. Note that the image is _not_ encoded by the vae and then used as the |
|
latents in the denoising process such as in the standard stable diffusion text guided image variation |
|
process. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 20): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 10.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
noise_level (`int`, *optional*, defaults to `0`): |
|
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in |
|
the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details. |
|
image_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated CLIP embeddings to condition the unet on. Note that these are not latents to be used in |
|
the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as |
|
`latents`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt=prompt, |
|
image=image, |
|
height=height, |
|
width=width, |
|
callback_steps=callback_steps, |
|
noise_level=noise_level |
|
) |
|
|
|
|
|
if isinstance(image, list): |
|
batch_size = len(image) |
|
elif isinstance(image, torch.Tensor): |
|
batch_size = image.shape[0] |
|
assert batch_size >= self.num_views and batch_size % self.num_views == 0 |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image]*self.num_views*2 |
|
batch_size = self.num_views*2 |
|
|
|
if isinstance(prompt, str): |
|
prompt = [prompt] * self.num_views * 2 |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale != 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds = self._encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
|
|
if isinstance(image, list): |
|
image_pil = image |
|
elif isinstance(image, torch.Tensor): |
|
image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] |
|
noise_level = torch.tensor([noise_level], device=device) |
|
image_embeds, image_latents = self._encode_image( |
|
image_pil=image_pil, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
noise_level=noise_level, |
|
generator=generator, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.out_channels |
|
if gt_img_in is not None: |
|
latents = gt_img_in * self.scheduler.init_noise_sigma |
|
else: |
|
latents = self.prepare_latents( |
|
batch_size=batch_size, |
|
num_channels_latents=num_channels_latents, |
|
height=height, |
|
width=width, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
latents=latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
eles, focals = [], [] |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
if do_classifier_free_guidance: |
|
normal_latents, color_latents = torch.chunk(latents, 2, dim=0) |
|
latent_model_input = torch.cat([normal_latents, normal_latents, color_latents, color_latents], 0) |
|
else: |
|
latent_model_input = latents |
|
latent_model_input = torch.cat([ |
|
latent_model_input, image_latents |
|
], dim=1) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
unet_out = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
dino_feature=dino_feature, |
|
class_labels=image_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False) |
|
|
|
noise_pred = unet_out[0] |
|
if return_elevation_focal: |
|
uncond_pose, pose = torch.chunk(unet_out[1], 2, 0) |
|
pose = uncond_pose + guidance_scale * (pose - uncond_pose) |
|
ele = pose[:, 0].detach().cpu().numpy() |
|
eles.append(ele) |
|
focal = pose[:, 1].detach().cpu().numpy() |
|
focals.append(focal) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
normal_noise_pred_uncond, normal_noise_pred_text, color_noise_pred_uncond, color_noise_pred_text = torch.chunk(noise_pred, 4, dim=0) |
|
|
|
noise_pred_uncond, noise_pred_text = torch.cat([normal_noise_pred_uncond, color_noise_pred_uncond], 0), torch.cat([normal_noise_pred_text, color_noise_pred_text], 0) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
if not output_type == "latent": |
|
if num_channels_latents == 8: |
|
latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0) |
|
with torch.no_grad(): |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
return (image, ) |
|
if return_elevation_focal: |
|
return ImagePipelineOutput(images=image), eles, focals |
|
else: |
|
return ImagePipelineOutput(images=image) |
|
|