wykonos commited on
Commit
9f1553d
·
1 Parent(s): 3e12a4c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2290.46 +/- 34.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23781a0f333a021d4e4cdb0df2b30ff74a0cf4d4d1474b1d4d7d83899c707013
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbcf933250>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbcf9332e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbcf933370>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbcf933400>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdbcf933490>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdbcf933520>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdbcf9335b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbcf933640>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdbcf9336d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbcf933760>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbcf9337f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbcf933880>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fdbcf923f40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1686169850864807927,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL9zlj+B2JU+BR1/PpJhhD8suKE/UHiKv4OILD+hOEC/ABsDv8xSvT8lD2E7QBJTvsH4oz+Psfq+LY4LPrLoYj/GIPe9/zcVP5htjj6+RxW//2qHv9sGnD9bF6K8SBgPv4ciTb+byL2/8p+MPu54u7/H29e9Fiaev+SpXD+SPQq+pplEPoRhHj9TU9w+sotNu2f8qD490i+/SpSRPxZUoz4Z7nW/gvqJPxNuhb9kdI++CNRFP1egSz/bVhI//oqyO8spPD8H2rC9p1L5PWFkOz6HIk2/6KgsP/KfjD7VyS4/vBuNPw15ij6Wbok+r6K4P7Ri2z8xbAU+USNLP3Vqbb81+QO/h12qv3+ZTT7xQau/xgO4P817K73XWAA+vqW6PN76cb66T+S/bLIMPyFauL1bvLO/jkG/v0y6vzxaYt6/hyJNv+ioLD/yn4w+1ckuP7ZSnD8UESE/2WLPvS5elT/zpQRAAIMPP5JwYD8YaGy/c2wJv9f5j78vwhk/vWiovwTMuD+GSZy9TWAQvtzFLz80erA92sfVv4ylET98Mcs9P/iTvzUMsL880po+3Xtov4ciTb/oqCw/8p+MPtXJLj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0R9a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlenTPQAAAABWb+C/AAAAACKC7b0AAAAAL3L+PwAAAAAJoMm9AAAAAD2R2j8AAAAAqtMgvQAAAADiTt2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiLBtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDuUkD0AAAAAJ+3fvwAAAABGsWi9AAAAAOCd6D8AAAAA2m0LvgAAAACGwPU/AAAAACaInLwAAAAAifPzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHPVDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB+n+89AAAAAMT08L8AAAAADYLaPQAAAAD1APY/AAAAAAP/hj0AAAAAbcLkPwAAAADY65u9AAAAAHqS4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5Uh22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPnvEPAAAAAAYAfu/AAAAAGEOCj4AAAAAkG75PwAAAACIfcu9AAAAALoj4j8AAAAAjsPjPQAAAACfyeG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiI5mkFfRiMAWyUTegDjAF0lEdAq6vNdqtYCHV9lChoBkdAnIKFkH2RJWgHTegDaAhHQKuwGM7U5Ml1fZQoaAZHQKHAQsmv4dpoB03oA2gIR0Crt8N6HCXQdX2UKGgGR0CiaTLDhtLtaAdN6ANoCEdAq7xX8ZUDMnV9lChoBkdAoraOGEf1YmgHTegDaAhHQKu9Ba6BiCt1fZQoaAZHQKE2RyfcvdxoB03oA2gIR0CrwDCRW912dX2UKGgGR0CfmvJoCdSVaAdN6ANoCEdAq8USy4Wk8HV9lChoBkdAoGweexwAEWgHTegDaAhHQKvJU2CNCJJ1fZQoaAZHQKFQtv99+gFoB03oA2gIR0Cryfno5ggHdX2UKGgGR0CjS77vw3HaaAdN6ANoCEdAq82df7aZhXV9lChoBkdAoweOPq9oOGgHTegDaAhHQKvVEORT0g91fZQoaAZHQKIUPiOvMbFoB03oA2gIR0Cr2omfXf65dX2UKGgGR0ChwoKmsNlRaAdN6ANoCEdAq9s2qzZ6EHV9lChoBkdAonnRsyi22GgHTegDaAhHQKvecKl54W11fZQoaAZHQKJ+1ZCfHxVoB03oA2gIR0Cr42JiqhlEdX2UKGgGR0Cg6mRceKbbaAdN6ANoCEdAq+e2GIsRQXV9lChoBkdAoUdKuU2UCGgHTegDaAhHQKvoXlAeJYV1fZQoaAZHQKHUhgqmTDBoB03oA2gIR0Cr65MQd0aIdX2UKGgGR0CSSu1wo9cKaAdN6ANoCEdAq/Jzfxc3VHV9lChoBkdAoCT2+RHPNWgHTegDaAhHQKv418CxNZh1fZQoaAZHQKBYBo+Ofd1oB03oA2gIR0Cr+YqbSZ0CdX2UKGgGR0CgC5YbsF+vaAdN6ANoCEdAq/zzdJrckHV9lChoBkdAob5XT5O8CmgHTegDaAhHQKwCEmaYu011fZQoaAZHQKKZRdGiHqNoB03oA2gIR0CsBmuh9LHudX2UKGgGR0CizBYNAkcCaAdN6ANoCEdArAcimGdqcnV9lChoBkdAosr6DZlFt2gHTegDaAhHQKwKUo3Jgb91fZQoaAZHQKKCo5OJtSBoB03oA2gIR0CsEMr+HaexdX2UKGgGR0CgiqXYtg8baAdN6ANoCEdArBeBaLXL/3V9lChoBkdAoR2pacI7eWgHTegDaAhHQKwYMv+wTuh1fZQoaAZHQJ5JjYdyT6loB03oA2gIR0CsG2xGMGX5dX2UKGgGR0CarnK2a2F4aAdN6ANoCEdArCB/Q2MsH3V9lChoBkdAmX4TfzjFQ2gHTegDaAhHQKwk5YRNATt1fZQoaAZHQJi9eIxgy/NoB03oA2gIR0CsJZ81wYLtdX2UKGgGR0CZnjHWSU1RaAdN6ANoCEdArCjPxhDw6XV9lChoBkdAnqwMmOU+tGgHTegDaAhHQKwujCPZIxx1fZQoaAZHQJ/i47GNrCZoB03oA2gIR0CsNQ9aEBbOdX2UKGgGR0CdZ4CVKPGRaAdN6ANoCEdArDYgUN8VpXV9lChoBkdAn4fQNwzch2gHTegDaAhHQKw5sXwb2lF1fZQoaAZHQKB5M0oBq9JoB03oA2gIR0CsPuLdepn6dX2UKGgGR0ChnArbYbsGaAdN6ANoCEdArENQhKUVz3V9lChoBkdAoZO3wLE1mGgHTegDaAhHQKxD/xFRYRx1fZQoaAZHQKHiM9Jz1btoB03oA2gIR0CsR0+tSydGdX2UKGgGR0Ci0bLAHmihaAdN6ANoCEdArEzeXTmW+3V9lChoBkdAoiPWhqTKT2gHTegDaAhHQKxTQNfgJkZ1fZQoaAZHQKH0v8HfMwFoB03oA2gIR0CsVEg6U7jldX2UKGgGR0ChKEIUBXCCaAdN6ANoCEdArFh3aJyhjHV9lChoBkdAoC8uvwEyL2gHTegDaAhHQKxdcIZ62OR1fZQoaAZHQKExPwOOKfpoB03oA2gIR0CsYbHUtqYadX2UKGgGR0ChmjCpFTegaAdN6ANoCEdArGJeCf6Gg3V9lChoBkdAoWwSd6LOzWgHTegDaAhHQKxlqrwvxpd1fZQoaAZHQKF7gVgQYk5oB03oA2gIR0CsapY7zTWodX2UKGgGR0ChvPisGPgfaAdN6ANoCEdArHDVdHDrJXV9lChoBkdAoa/ZpN9H+mgHTegDaAhHQKxx4MaS9uh1fZQoaAZHQKIC9WZJCjVoB03oA2gIR0CsdrlEZzgddX2UKGgGR0Chtjj5TIeYaAdN6ANoCEdArHudb5dnkHV9lChoBkdAoRVFSIgvDmgHTegDaAhHQKx/3uzhP0t1fZQoaAZHQKCaDjpcHGFoB03oA2gIR0CsgIZNGmUGdX2UKGgGR0Cg3Fb3Gn4xaAdN6ANoCEdArIOw2S+xnnV9lChoBkdAoLxQ+nqFAWgHTegDaAhHQKyIrpGnXNF1fZQoaAZHQKA/+TURWcVoB03oA2gIR0Csjg2j4593dX2UKGgGR0Cf+xcbiqACaAdN6ANoCEdArI8aCpWFOHV9lChoBkdAoLSXbuc+aGgHTegDaAhHQKyUMtW+49Z1fZQoaAZHQJ7kp9kSVW1oB03oA2gIR0Csme8Jlar4dX2UKGgGR0Cah5/m1YyPaAdN6ANoCEdArJ4x6Skj5nV9lChoBkdAnsEa3/givGgHTegDaAhHQKye3uvUz9F1fZQoaAZHQJltx2gWac9oB03oA2gIR0CsogK8cuJ2dX2UKGgGR0CbVt5T6zmfaAdN6ANoCEdArKb55s0pE3V9lChoBkdAntxvXsgMdGgHTegDaAhHQKyr3flZHNJ1fZQoaAZHQJ/znYDklu5oB03oA2gIR0CsrOcQI2OydX2UKGgGR0CeNpjkuHvdaAdN6ANoCEdArLHk/bCaZ3V9lChoBkdAnNDpsGgSOGgHTegDaAhHQKy4lnX/YJ51fZQoaAZHQJtA1HoX9BNoB03oA2gIR0CsvOnim2srdX2UKGgGR0Ced/6/7BO6aAdN6ANoCEdArL2Z4D9wWHV9lChoBkdAmlJlQQ+UyGgHTegDaAhHQKzA2A93bEh1fZQoaAZHQJUHth4MWoFoB03oA2gIR0CsxeEZR8+idX2UKGgGR0Cbg9BrN4Z/aAdN6ANoCEdArMot/rjYI3V9lChoBkdAne8bpV0cO2gHTegDaAhHQKzLHukUKzB1fZQoaAZHQJyihzZHuqpoB03oA2gIR0Csz+/D1oQGdX2UKGgGR0Cg+MZlOGj9aAdN6ANoCEdArNdJq0tyxXV9lChoBkdAodIZpHqeLGgHTegDaAhHQKzbofthNM51fZQoaAZHQKIWbTQVsUJoB03oA2gIR0Cs3FM2m52AdX2UKGgGR0CidFrGaQV9aAdN6ANoCEdArN+BwwTM7nV9lChoBkdAoqqhsANoamgHTegDaAhHQKzkZvOQhfV1fZQoaAZHQKKnZwz+FURoB03oA2gIR0Cs6JIMa0hNdX2UKGgGR0Ci9/fmDDjzaAdN6ANoCEdArOk/BWPtD3V9lChoBkdAorJb4i5d4WgHTegDaAhHQKztYEPlMh51fZQoaAZHQKLZ6/ub7TFoB03oA2gIR0Cs9Pm+TNdJdX2UKGgGR0CiJQv+fh/BaAdN6ANoCEdArPmllum78XV9lChoBkdAofb2uTzNEGgHTegDaAhHQKz6UNUfgaZ1fZQoaAZHQKDVqcPvrnloB03oA2gIR0Cs/Zh+F10UdX2UKGgGR0ChIjKXOW0JaAdN6ANoCEdArQKZRTCLuXV9lChoBkdAoankNc4YJmgHTegDaAhHQK0G4PmxMWZ1fZQoaAZHQKGo0yO7xutoB03oA2gIR0CtB4rwF1SwdX2UKGgGR0Ch8sLmhdt3aAdN6ANoCEdArQskBZIQOHV9lChoBkdAojloKYzBRGgHTegDaAhHQK0Sp2qT8pF1fZQoaAZHQKE/8e4kNWloB03oA2gIR0CtF/JEhJRPdX2UKGgGR0CgtLV09yLiaAdN6ANoCEdArRif9gnc+XV9lChoBkdAoSp8srd30WgHTegDaAhHQK0b5BiTdLx1fZQoaAZHQKBZxtTkyUNoB03oA2gIR0CtIONsvZh8dX2UKGgGR0CgvyDgqEvkaAdN6ANoCEdArSVFa0QbuXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:372f02a5b825e7c94019d34ffb2e1c62d6e89b01cca59c6ada72c594ca9ddecd
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e9abea0a4ccb805cbb28eec391fe96f058a558bfc0d27158ca333a87703f309
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbcf933250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbcf9332e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbcf933370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbcf933400>", "_build": "<function ActorCriticPolicy._build at 0x7fdbcf933490>", "forward": "<function ActorCriticPolicy.forward at 0x7fdbcf933520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdbcf9335b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbcf933640>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdbcf9336d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbcf933760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbcf9337f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbcf933880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdbcf923f40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686169850864807927, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL9zlj+B2JU+BR1/PpJhhD8suKE/UHiKv4OILD+hOEC/ABsDv8xSvT8lD2E7QBJTvsH4oz+Psfq+LY4LPrLoYj/GIPe9/zcVP5htjj6+RxW//2qHv9sGnD9bF6K8SBgPv4ciTb+byL2/8p+MPu54u7/H29e9Fiaev+SpXD+SPQq+pplEPoRhHj9TU9w+sotNu2f8qD490i+/SpSRPxZUoz4Z7nW/gvqJPxNuhb9kdI++CNRFP1egSz/bVhI//oqyO8spPD8H2rC9p1L5PWFkOz6HIk2/6KgsP/KfjD7VyS4/vBuNPw15ij6Wbok+r6K4P7Ri2z8xbAU+USNLP3Vqbb81+QO/h12qv3+ZTT7xQau/xgO4P817K73XWAA+vqW6PN76cb66T+S/bLIMPyFauL1bvLO/jkG/v0y6vzxaYt6/hyJNv+ioLD/yn4w+1ckuP7ZSnD8UESE/2WLPvS5elT/zpQRAAIMPP5JwYD8YaGy/c2wJv9f5j78vwhk/vWiovwTMuD+GSZy9TWAQvtzFLz80erA92sfVv4ylET98Mcs9P/iTvzUMsL880po+3Xtov4ciTb/oqCw/8p+MPtXJLj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0R9a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlenTPQAAAABWb+C/AAAAACKC7b0AAAAAL3L+PwAAAAAJoMm9AAAAAD2R2j8AAAAAqtMgvQAAAADiTt2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPiLBtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDuUkD0AAAAAJ+3fvwAAAABGsWi9AAAAAOCd6D8AAAAA2m0LvgAAAACGwPU/AAAAACaInLwAAAAAifPzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHPVDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB+n+89AAAAAMT08L8AAAAADYLaPQAAAAD1APY/AAAAAAP/hj0AAAAAbcLkPwAAAADY65u9AAAAAHqS4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5Uh22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPnvEPAAAAAAYAfu/AAAAAGEOCj4AAAAAkG75PwAAAACIfcu9AAAAALoj4j8AAAAAjsPjPQAAAACfyeG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiI5mkFfRiMAWyUTegDjAF0lEdAq6vNdqtYCHV9lChoBkdAnIKFkH2RJWgHTegDaAhHQKuwGM7U5Ml1fZQoaAZHQKHAQsmv4dpoB03oA2gIR0Crt8N6HCXQdX2UKGgGR0CiaTLDhtLtaAdN6ANoCEdAq7xX8ZUDMnV9lChoBkdAoraOGEf1YmgHTegDaAhHQKu9Ba6BiCt1fZQoaAZHQKE2RyfcvdxoB03oA2gIR0CrwDCRW912dX2UKGgGR0CfmvJoCdSVaAdN6ANoCEdAq8USy4Wk8HV9lChoBkdAoGweexwAEWgHTegDaAhHQKvJU2CNCJJ1fZQoaAZHQKFQtv99+gFoB03oA2gIR0Cryfno5ggHdX2UKGgGR0CjS77vw3HaaAdN6ANoCEdAq82df7aZhXV9lChoBkdAoweOPq9oOGgHTegDaAhHQKvVEORT0g91fZQoaAZHQKIUPiOvMbFoB03oA2gIR0Cr2omfXf65dX2UKGgGR0ChwoKmsNlRaAdN6ANoCEdAq9s2qzZ6EHV9lChoBkdAonnRsyi22GgHTegDaAhHQKvecKl54W11fZQoaAZHQKJ+1ZCfHxVoB03oA2gIR0Cr42JiqhlEdX2UKGgGR0Cg6mRceKbbaAdN6ANoCEdAq+e2GIsRQXV9lChoBkdAoUdKuU2UCGgHTegDaAhHQKvoXlAeJYV1fZQoaAZHQKHUhgqmTDBoB03oA2gIR0Cr65MQd0aIdX2UKGgGR0CSSu1wo9cKaAdN6ANoCEdAq/Jzfxc3VHV9lChoBkdAoCT2+RHPNWgHTegDaAhHQKv418CxNZh1fZQoaAZHQKBYBo+Ofd1oB03oA2gIR0Cr+YqbSZ0CdX2UKGgGR0CgC5YbsF+vaAdN6ANoCEdAq/zzdJrckHV9lChoBkdAob5XT5O8CmgHTegDaAhHQKwCEmaYu011fZQoaAZHQKKZRdGiHqNoB03oA2gIR0CsBmuh9LHudX2UKGgGR0CizBYNAkcCaAdN6ANoCEdArAcimGdqcnV9lChoBkdAosr6DZlFt2gHTegDaAhHQKwKUo3Jgb91fZQoaAZHQKKCo5OJtSBoB03oA2gIR0CsEMr+HaexdX2UKGgGR0CgiqXYtg8baAdN6ANoCEdArBeBaLXL/3V9lChoBkdAoR2pacI7eWgHTegDaAhHQKwYMv+wTuh1fZQoaAZHQJ5JjYdyT6loB03oA2gIR0CsG2xGMGX5dX2UKGgGR0CarnK2a2F4aAdN6ANoCEdArCB/Q2MsH3V9lChoBkdAmX4TfzjFQ2gHTegDaAhHQKwk5YRNATt1fZQoaAZHQJi9eIxgy/NoB03oA2gIR0CsJZ81wYLtdX2UKGgGR0CZnjHWSU1RaAdN6ANoCEdArCjPxhDw6XV9lChoBkdAnqwMmOU+tGgHTegDaAhHQKwujCPZIxx1fZQoaAZHQJ/i47GNrCZoB03oA2gIR0CsNQ9aEBbOdX2UKGgGR0CdZ4CVKPGRaAdN6ANoCEdArDYgUN8VpXV9lChoBkdAn4fQNwzch2gHTegDaAhHQKw5sXwb2lF1fZQoaAZHQKB5M0oBq9JoB03oA2gIR0CsPuLdepn6dX2UKGgGR0ChnArbYbsGaAdN6ANoCEdArENQhKUVz3V9lChoBkdAoZO3wLE1mGgHTegDaAhHQKxD/xFRYRx1fZQoaAZHQKHiM9Jz1btoB03oA2gIR0CsR0+tSydGdX2UKGgGR0Ci0bLAHmihaAdN6ANoCEdArEzeXTmW+3V9lChoBkdAoiPWhqTKT2gHTegDaAhHQKxTQNfgJkZ1fZQoaAZHQKH0v8HfMwFoB03oA2gIR0CsVEg6U7jldX2UKGgGR0ChKEIUBXCCaAdN6ANoCEdArFh3aJyhjHV9lChoBkdAoC8uvwEyL2gHTegDaAhHQKxdcIZ62OR1fZQoaAZHQKExPwOOKfpoB03oA2gIR0CsYbHUtqYadX2UKGgGR0ChmjCpFTegaAdN6ANoCEdArGJeCf6Gg3V9lChoBkdAoWwSd6LOzWgHTegDaAhHQKxlqrwvxpd1fZQoaAZHQKF7gVgQYk5oB03oA2gIR0CsapY7zTWodX2UKGgGR0ChvPisGPgfaAdN6ANoCEdArHDVdHDrJXV9lChoBkdAoa/ZpN9H+mgHTegDaAhHQKxx4MaS9uh1fZQoaAZHQKIC9WZJCjVoB03oA2gIR0CsdrlEZzgddX2UKGgGR0Chtjj5TIeYaAdN6ANoCEdArHudb5dnkHV9lChoBkdAoRVFSIgvDmgHTegDaAhHQKx/3uzhP0t1fZQoaAZHQKCaDjpcHGFoB03oA2gIR0CsgIZNGmUGdX2UKGgGR0Cg3Fb3Gn4xaAdN6ANoCEdArIOw2S+xnnV9lChoBkdAoLxQ+nqFAWgHTegDaAhHQKyIrpGnXNF1fZQoaAZHQKA/+TURWcVoB03oA2gIR0Csjg2j4593dX2UKGgGR0Cf+xcbiqACaAdN6ANoCEdArI8aCpWFOHV9lChoBkdAoLSXbuc+aGgHTegDaAhHQKyUMtW+49Z1fZQoaAZHQJ7kp9kSVW1oB03oA2gIR0Csme8Jlar4dX2UKGgGR0Cah5/m1YyPaAdN6ANoCEdArJ4x6Skj5nV9lChoBkdAnsEa3/givGgHTegDaAhHQKye3uvUz9F1fZQoaAZHQJltx2gWac9oB03oA2gIR0CsogK8cuJ2dX2UKGgGR0CbVt5T6zmfaAdN6ANoCEdArKb55s0pE3V9lChoBkdAntxvXsgMdGgHTegDaAhHQKyr3flZHNJ1fZQoaAZHQJ/znYDklu5oB03oA2gIR0CsrOcQI2OydX2UKGgGR0CeNpjkuHvdaAdN6ANoCEdArLHk/bCaZ3V9lChoBkdAnNDpsGgSOGgHTegDaAhHQKy4lnX/YJ51fZQoaAZHQJtA1HoX9BNoB03oA2gIR0CsvOnim2srdX2UKGgGR0Ced/6/7BO6aAdN6ANoCEdArL2Z4D9wWHV9lChoBkdAmlJlQQ+UyGgHTegDaAhHQKzA2A93bEh1fZQoaAZHQJUHth4MWoFoB03oA2gIR0CsxeEZR8+idX2UKGgGR0Cbg9BrN4Z/aAdN6ANoCEdArMot/rjYI3V9lChoBkdAne8bpV0cO2gHTegDaAhHQKzLHukUKzB1fZQoaAZHQJyihzZHuqpoB03oA2gIR0Csz+/D1oQGdX2UKGgGR0Cg+MZlOGj9aAdN6ANoCEdArNdJq0tyxXV9lChoBkdAodIZpHqeLGgHTegDaAhHQKzbofthNM51fZQoaAZHQKIWbTQVsUJoB03oA2gIR0Cs3FM2m52AdX2UKGgGR0CidFrGaQV9aAdN6ANoCEdArN+BwwTM7nV9lChoBkdAoqqhsANoamgHTegDaAhHQKzkZvOQhfV1fZQoaAZHQKKnZwz+FURoB03oA2gIR0Cs6JIMa0hNdX2UKGgGR0Ci9/fmDDjzaAdN6ANoCEdArOk/BWPtD3V9lChoBkdAorJb4i5d4WgHTegDaAhHQKztYEPlMh51fZQoaAZHQKLZ6/ub7TFoB03oA2gIR0Cs9Pm+TNdJdX2UKGgGR0CiJQv+fh/BaAdN6ANoCEdArPmllum78XV9lChoBkdAofb2uTzNEGgHTegDaAhHQKz6UNUfgaZ1fZQoaAZHQKDVqcPvrnloB03oA2gIR0Cs/Zh+F10UdX2UKGgGR0ChIjKXOW0JaAdN6ANoCEdArQKZRTCLuXV9lChoBkdAoankNc4YJmgHTegDaAhHQK0G4PmxMWZ1fZQoaAZHQKGo0yO7xutoB03oA2gIR0CtB4rwF1SwdX2UKGgGR0Ch8sLmhdt3aAdN6ANoCEdArQskBZIQOHV9lChoBkdAojloKYzBRGgHTegDaAhHQK0Sp2qT8pF1fZQoaAZHQKE/8e4kNWloB03oA2gIR0CtF/JEhJRPdX2UKGgGR0CgtLV09yLiaAdN6ANoCEdArRif9gnc+XV9lChoBkdAoSp8srd30WgHTegDaAhHQK0b5BiTdLx1fZQoaAZHQKBZxtTkyUNoB03oA2gIR0CtIONsvZh8dX2UKGgGR0CgvyDgqEvkaAdN6ANoCEdArSVFa0QbuXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c7712c6c4e5b3dc929db12ef2e7893fa2ecf6c245d667e4d7b673bae6e16737
3
+ size 1283493
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2290.456280568434, "std_reward": 34.41395424334187, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-07T21:37:44.831814"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d178140bd29716f0fb0bf5b6e520d44e1484e351cfb8adac5f6b736a310e13
3
+ size 2176