xianchaowu
commited on
Commit
·
39a4b83
1
Parent(s):
e3763fe
lazy lora for llama2-7bhf
Browse files- README.md +72 -0
- adapter_config.json +260 -0
- adapter_model.bin +3 -0
- usage.py +51 -0
README.md
CHANGED
@@ -1,3 +1,75 @@
|
|
1 |
---
|
2 |
license: llama2
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama2
|
3 |
---
|
4 |
+
|
5 |
+
##Lazy LoRA
|
6 |
+
Determine the rank of LoRA layers by the singular values of pretrained weight matrices.
|
7 |
+
Also, combines:
|
8 |
+
1. LoRA: [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/abs/2106.09685)
|
9 |
+
2. Prefix Tuning: [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://aclanthology.org/2021.acl-long.3
|
10 |
+
53/), [P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks](https://arxiv.or
|
11 |
+
g/pdf/2110.07602.pdf)
|
12 |
+
3. Prompt Tuning: [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/abs/2104.08691)
|
13 |
+
4. LLaMA adapter: [] ()
|
14 |
+
in one model.
|
15 |
+
|
16 |
+
This allows you to perform LoRA (additional low rank adapters inserted to each linear layer), and prompt learning (additional virtual tokens attached to the input and to the attention layers acting as `past_key_values`)
|
17 |
+
|
18 |
+
##Usage:
|
19 |
+
```python
|
20 |
+
import sys
|
21 |
+
sys.path.insert(1, '/workspace/asr/peft/src')
|
22 |
+
# TODO set this path to the lazy-lora source code path, or you can install it from source code:
|
23 |
+
# TODO, please install lazylora for usage:
|
24 |
+
# git clone git@github.com:Xianchao-Wu/peft.git
|
25 |
+
# cd peft
|
26 |
+
# python setup.py install
|
27 |
+
|
28 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
29 |
+
from peft import PeftModel, PeftConfig
|
30 |
+
import os
|
31 |
+
import torch
|
32 |
+
|
33 |
+
#import ipdb; ipdb.set_trace()
|
34 |
+
cache_dir="/workspace/asr/peft/qlora"
|
35 |
+
# TODO set this cache_dir to the path where you stored (or, want to store) llama2-7bhf model
|
36 |
+
|
37 |
+
lazylora_dir=os.getcwd() # the path that contains 'adapter_config.json' and 'adapter_model.bin'
|
38 |
+
|
39 |
+
config = PeftConfig.from_pretrained(lazylora_dir)
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
42 |
+
config.base_model_name_or_path,
|
43 |
+
cache_dir=cache_dir,
|
44 |
+
use_auth_token=True
|
45 |
+
)
|
46 |
+
|
47 |
+
bnb_config = BitsAndBytesConfig(
|
48 |
+
load_in_4bit=True,
|
49 |
+
bnb_4bit_use_double_quant=True,
|
50 |
+
bnb_4bit_quant_type='nf4',
|
51 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
52 |
+
)
|
53 |
+
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
config.base_model_name_or_path,
|
56 |
+
quantization_config=bnb_config,
|
57 |
+
device_map="auto",
|
58 |
+
cache_dir=cache_dir,
|
59 |
+
use_auth_token=True
|
60 |
+
)
|
61 |
+
#model.print_trainable_parameters()
|
62 |
+
print(sum(p.numel() for p in model.parameters()))
|
63 |
+
# 3,500,412,928 -> half-size of 7B due to 4-bit loading
|
64 |
+
|
65 |
+
model = PeftModel.from_pretrained(model, lazylora_dir)
|
66 |
+
print('after adding lazy lora parameters:')
|
67 |
+
model.print_trainable_parameters()
|
68 |
+
# trainable params: 0 || all params: 3,660,359,168 || trainable%: 0.0
|
69 |
+
|
70 |
+
|
71 |
+
```
|
72 |
+
|
73 |
+
##MMLU result:
|
74 |
+
|
75 |
+
{'mmlu_loss': 1.8361594152170253, 'mmlu_eval_accuracy_us_foreign_policy': 0.6363636363636364, 'mmlu_eval_accuracy_world_religions': 0.7368421052631579, 'mmlu_eval_accuracy_high_school_us_history': 0.6363636363636364, 'mmlu_eval_accuracy_high_school_psychology': 0.6166666666666667, 'mmlu_eval_accuracy_public_relations': 0.3333333333333333, 'mmlu_eval_accuracy_high_school_european_history': 0.6666666666666666, 'mmlu_eval_accuracy_econometrics': 0.16666666666666666, 'mmlu_eval_accuracy_high_school_microeconomics': 0.34615384615384615, 'mmlu_eval_accuracy_machine_learning': 0.18181818181818182, 'mmlu_eval_accuracy_high_school_mathematics': 0.3448275862068966, 'mmlu_eval_accuracy_high_school_computer_science': 0.5555555555555556, 'mmlu_eval_accuracy_professional_accounting': 0.3548387096774194, 'mmlu_eval_accuracy_high_school_world_history': 0.5, 'mmlu_eval_accuracy_marketing': 0.72, 'mmlu_eval_accuracy_sociology': 0.7272727272727273, 'mmlu_eval_accuracy_nutrition': 0.5454545454545454, 'mmlu_eval_accuracy_high_school_chemistry': 0.4090909090909091, 'mmlu_eval_accuracy_logical_fallacies': 0.5555555555555556, 'mmlu_eval_accuracy_college_mathematics': 0.18181818181818182, 'mmlu_eval_accuracy_computer_security': 0.2727272727272727, 'mmlu_eval_accuracy_miscellaneous': 0.6046511627906976, 'mmlu_eval_accuracy_high_school_statistics': 0.2608695652173913, 'mmlu_eval_accuracy_philosophy': 0.4117647058823529, 'mmlu_eval_accuracy_global_facts': 0.4, 'mmlu_eval_accuracy_management': 0.2727272727272727, 'mmlu_eval_accuracy_human_aging': 0.6956521739130435, 'mmlu_eval_accuracy_moral_scenarios': 0.25, 'mmlu_eval_accuracy_human_sexuality': 0.5, 'mmlu_eval_accuracy_abstract_algebra': 0.36363636363636365, 'mmlu_eval_accuracy_high_school_macroeconomics': 0.3488372093023256, 'mmlu_eval_accuracy_electrical_engineering': 0.375, 'mmlu_eval_accuracy_professional_medicine': 0.45161290322580644, 'mmlu_eval_accuracy_high_school_government_and_politics': 0.6666666666666666, 'mmlu_eval_accuracy_high_school_biology': 0.3125, 'mmlu_eval_accuracy_astronomy': 0.4375, 'mmlu_eval_accuracy_security_studies': 0.4074074074074074, 'mmlu_eval_accuracy_prehistory': 0.42857142857142855, 'mmlu_eval_accuracy_conceptual_physics': 0.3076923076923077, 'mmlu_eval_accuracy_college_medicine': 0.36363636363636365, 'mmlu_eval_accuracy_moral_disputes': 0.39473684210526316, 'mmlu_eval_accuracy_anatomy': 0.5, 'mmlu_eval_accuracy_clinical_knowledge': 0.41379310344827586, 'mmlu_eval_accuracy_college_computer_science': 0.5454545454545454, 'mmlu_eval_accuracy_high_school_geography': 0.5909090909090909, 'mmlu_eval_accuracy_college_chemistry': 0.125, 'mmlu_eval_accuracy_professional_psychology': 0.36231884057971014, 'mmlu_eval_accuracy_virology': 0.4444444444444444, 'mmlu_eval_accuracy_international_law': 0.8461538461538461, 'mmlu_eval_accuracy_medical_genetics': 0.8181818181818182, 'mmlu_eval_accuracy_formal_logic': 0.14285714285714285, 'mmlu_eval_accuracy_professional_law': 0.34705882352941175, 'mmlu_eval_accuracy_college_biology': 0.25, 'mmlu_eval_accuracy_jurisprudence': 0.45454545454545453, 'mmlu_eval_accuracy_business_ethics': 0.5454545454545454, 'mmlu_eval_accuracy_college_physics': 0.5454545454545454, 'mmlu_eval_accuracy_high_school_physics': 0.29411764705882354, 'mmlu_eval_accuracy_elementary_mathematics': 0.3170731707317073, 'mmlu_eval_accuracy': 0.4435841258637352, 'epoch': 1.36}
|
adapter_config.json
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
|
3 |
+
"bias": "none",
|
4 |
+
"fan_in_fan_out": false,
|
5 |
+
"inference_mode": true,
|
6 |
+
"init_lazy_lora_weights": true,
|
7 |
+
"is_r_by_svd": true,
|
8 |
+
"is_r_reuse": true,
|
9 |
+
"lazy_lora_alpha": 16.0,
|
10 |
+
"lazy_lora_dropout": 0.05,
|
11 |
+
"lazy_pre_adapter_type": "none",
|
12 |
+
"lazy_pre_lora_alpha": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_layers": 32,
|
16 |
+
"num_transformer_submodules": 1,
|
17 |
+
"num_virtual_tokens": null,
|
18 |
+
"peft_type": "LAZY_LORA",
|
19 |
+
"prefix_tuning_config": null,
|
20 |
+
"prompt_tuning_config": null,
|
21 |
+
"r": 64,
|
22 |
+
"r_by_module_dict": {
|
23 |
+
"model.layers.0.mlp.down_proj": 58,
|
24 |
+
"model.layers.0.mlp.gate_proj": 50,
|
25 |
+
"model.layers.0.mlp.up_proj": 52,
|
26 |
+
"model.layers.0.self_attn.k_proj": 17,
|
27 |
+
"model.layers.0.self_attn.o_proj": 24,
|
28 |
+
"model.layers.0.self_attn.q_proj": 15,
|
29 |
+
"model.layers.0.self_attn.v_proj": 36,
|
30 |
+
"model.layers.1.mlp.down_proj": 62,
|
31 |
+
"model.layers.1.mlp.gate_proj": 55,
|
32 |
+
"model.layers.1.mlp.up_proj": 58,
|
33 |
+
"model.layers.1.self_attn.k_proj": 46,
|
34 |
+
"model.layers.1.self_attn.o_proj": 30,
|
35 |
+
"model.layers.1.self_attn.q_proj": 48,
|
36 |
+
"model.layers.1.self_attn.v_proj": 36,
|
37 |
+
"model.layers.10.mlp.down_proj": 62,
|
38 |
+
"model.layers.10.mlp.gate_proj": 63,
|
39 |
+
"model.layers.10.mlp.up_proj": 63,
|
40 |
+
"model.layers.10.self_attn.k_proj": 69,
|
41 |
+
"model.layers.10.self_attn.o_proj": 55,
|
42 |
+
"model.layers.10.self_attn.q_proj": 68,
|
43 |
+
"model.layers.10.self_attn.v_proj": 54,
|
44 |
+
"model.layers.11.mlp.down_proj": 63,
|
45 |
+
"model.layers.11.mlp.gate_proj": 62,
|
46 |
+
"model.layers.11.mlp.up_proj": 64,
|
47 |
+
"model.layers.11.self_attn.k_proj": 63,
|
48 |
+
"model.layers.11.self_attn.o_proj": 56,
|
49 |
+
"model.layers.11.self_attn.q_proj": 63,
|
50 |
+
"model.layers.11.self_attn.v_proj": 56,
|
51 |
+
"model.layers.12.mlp.down_proj": 63,
|
52 |
+
"model.layers.12.mlp.gate_proj": 62,
|
53 |
+
"model.layers.12.mlp.up_proj": 64,
|
54 |
+
"model.layers.12.self_attn.k_proj": 68,
|
55 |
+
"model.layers.12.self_attn.o_proj": 57,
|
56 |
+
"model.layers.12.self_attn.q_proj": 67,
|
57 |
+
"model.layers.12.self_attn.v_proj": 56,
|
58 |
+
"model.layers.13.mlp.down_proj": 64,
|
59 |
+
"model.layers.13.mlp.gate_proj": 62,
|
60 |
+
"model.layers.13.mlp.up_proj": 65,
|
61 |
+
"model.layers.13.self_attn.k_proj": 68,
|
62 |
+
"model.layers.13.self_attn.o_proj": 59,
|
63 |
+
"model.layers.13.self_attn.q_proj": 67,
|
64 |
+
"model.layers.13.self_attn.v_proj": 60,
|
65 |
+
"model.layers.14.mlp.down_proj": 64,
|
66 |
+
"model.layers.14.mlp.gate_proj": 62,
|
67 |
+
"model.layers.14.mlp.up_proj": 65,
|
68 |
+
"model.layers.14.self_attn.k_proj": 65,
|
69 |
+
"model.layers.14.self_attn.o_proj": 58,
|
70 |
+
"model.layers.14.self_attn.q_proj": 65,
|
71 |
+
"model.layers.14.self_attn.v_proj": 58,
|
72 |
+
"model.layers.15.mlp.down_proj": 65,
|
73 |
+
"model.layers.15.mlp.gate_proj": 63,
|
74 |
+
"model.layers.15.mlp.up_proj": 65,
|
75 |
+
"model.layers.15.self_attn.k_proj": 67,
|
76 |
+
"model.layers.15.self_attn.o_proj": 61,
|
77 |
+
"model.layers.15.self_attn.q_proj": 66,
|
78 |
+
"model.layers.15.self_attn.v_proj": 61,
|
79 |
+
"model.layers.16.mlp.down_proj": 65,
|
80 |
+
"model.layers.16.mlp.gate_proj": 63,
|
81 |
+
"model.layers.16.mlp.up_proj": 65,
|
82 |
+
"model.layers.16.self_attn.k_proj": 66,
|
83 |
+
"model.layers.16.self_attn.o_proj": 65,
|
84 |
+
"model.layers.16.self_attn.q_proj": 65,
|
85 |
+
"model.layers.16.self_attn.v_proj": 65,
|
86 |
+
"model.layers.17.mlp.down_proj": 65,
|
87 |
+
"model.layers.17.mlp.gate_proj": 64,
|
88 |
+
"model.layers.17.mlp.up_proj": 65,
|
89 |
+
"model.layers.17.self_attn.k_proj": 67,
|
90 |
+
"model.layers.17.self_attn.o_proj": 65,
|
91 |
+
"model.layers.17.self_attn.q_proj": 67,
|
92 |
+
"model.layers.17.self_attn.v_proj": 65,
|
93 |
+
"model.layers.18.mlp.down_proj": 65,
|
94 |
+
"model.layers.18.mlp.gate_proj": 64,
|
95 |
+
"model.layers.18.mlp.up_proj": 65,
|
96 |
+
"model.layers.18.self_attn.k_proj": 67,
|
97 |
+
"model.layers.18.self_attn.o_proj": 69,
|
98 |
+
"model.layers.18.self_attn.q_proj": 67,
|
99 |
+
"model.layers.18.self_attn.v_proj": 68,
|
100 |
+
"model.layers.19.mlp.down_proj": 65,
|
101 |
+
"model.layers.19.mlp.gate_proj": 65,
|
102 |
+
"model.layers.19.mlp.up_proj": 65,
|
103 |
+
"model.layers.19.self_attn.k_proj": 64,
|
104 |
+
"model.layers.19.self_attn.o_proj": 69,
|
105 |
+
"model.layers.19.self_attn.q_proj": 65,
|
106 |
+
"model.layers.19.self_attn.v_proj": 68,
|
107 |
+
"model.layers.2.mlp.down_proj": 63,
|
108 |
+
"model.layers.2.mlp.gate_proj": 60,
|
109 |
+
"model.layers.2.mlp.up_proj": 60,
|
110 |
+
"model.layers.2.self_attn.k_proj": 65,
|
111 |
+
"model.layers.2.self_attn.o_proj": 56,
|
112 |
+
"model.layers.2.self_attn.q_proj": 64,
|
113 |
+
"model.layers.2.self_attn.v_proj": 55,
|
114 |
+
"model.layers.20.mlp.down_proj": 66,
|
115 |
+
"model.layers.20.mlp.gate_proj": 65,
|
116 |
+
"model.layers.20.mlp.up_proj": 65,
|
117 |
+
"model.layers.20.self_attn.k_proj": 65,
|
118 |
+
"model.layers.20.self_attn.o_proj": 71,
|
119 |
+
"model.layers.20.self_attn.q_proj": 65,
|
120 |
+
"model.layers.20.self_attn.v_proj": 70,
|
121 |
+
"model.layers.21.mlp.down_proj": 66,
|
122 |
+
"model.layers.21.mlp.gate_proj": 66,
|
123 |
+
"model.layers.21.mlp.up_proj": 65,
|
124 |
+
"model.layers.21.self_attn.k_proj": 64,
|
125 |
+
"model.layers.21.self_attn.o_proj": 73,
|
126 |
+
"model.layers.21.self_attn.q_proj": 64,
|
127 |
+
"model.layers.21.self_attn.v_proj": 71,
|
128 |
+
"model.layers.22.mlp.down_proj": 66,
|
129 |
+
"model.layers.22.mlp.gate_proj": 66,
|
130 |
+
"model.layers.22.mlp.up_proj": 65,
|
131 |
+
"model.layers.22.self_attn.k_proj": 66,
|
132 |
+
"model.layers.22.self_attn.o_proj": 73,
|
133 |
+
"model.layers.22.self_attn.q_proj": 66,
|
134 |
+
"model.layers.22.self_attn.v_proj": 72,
|
135 |
+
"model.layers.23.mlp.down_proj": 66,
|
136 |
+
"model.layers.23.mlp.gate_proj": 66,
|
137 |
+
"model.layers.23.mlp.up_proj": 65,
|
138 |
+
"model.layers.23.self_attn.k_proj": 67,
|
139 |
+
"model.layers.23.self_attn.o_proj": 77,
|
140 |
+
"model.layers.23.self_attn.q_proj": 68,
|
141 |
+
"model.layers.23.self_attn.v_proj": 76,
|
142 |
+
"model.layers.24.mlp.down_proj": 66,
|
143 |
+
"model.layers.24.mlp.gate_proj": 67,
|
144 |
+
"model.layers.24.mlp.up_proj": 66,
|
145 |
+
"model.layers.24.self_attn.k_proj": 62,
|
146 |
+
"model.layers.24.self_attn.o_proj": 76,
|
147 |
+
"model.layers.24.self_attn.q_proj": 63,
|
148 |
+
"model.layers.24.self_attn.v_proj": 75,
|
149 |
+
"model.layers.25.mlp.down_proj": 66,
|
150 |
+
"model.layers.25.mlp.gate_proj": 67,
|
151 |
+
"model.layers.25.mlp.up_proj": 66,
|
152 |
+
"model.layers.25.self_attn.k_proj": 65,
|
153 |
+
"model.layers.25.self_attn.o_proj": 79,
|
154 |
+
"model.layers.25.self_attn.q_proj": 66,
|
155 |
+
"model.layers.25.self_attn.v_proj": 78,
|
156 |
+
"model.layers.26.mlp.down_proj": 66,
|
157 |
+
"model.layers.26.mlp.gate_proj": 67,
|
158 |
+
"model.layers.26.mlp.up_proj": 66,
|
159 |
+
"model.layers.26.self_attn.k_proj": 63,
|
160 |
+
"model.layers.26.self_attn.o_proj": 80,
|
161 |
+
"model.layers.26.self_attn.q_proj": 63,
|
162 |
+
"model.layers.26.self_attn.v_proj": 79,
|
163 |
+
"model.layers.27.mlp.down_proj": 66,
|
164 |
+
"model.layers.27.mlp.gate_proj": 67,
|
165 |
+
"model.layers.27.mlp.up_proj": 67,
|
166 |
+
"model.layers.27.self_attn.k_proj": 68,
|
167 |
+
"model.layers.27.self_attn.o_proj": 81,
|
168 |
+
"model.layers.27.self_attn.q_proj": 68,
|
169 |
+
"model.layers.27.self_attn.v_proj": 80,
|
170 |
+
"model.layers.28.mlp.down_proj": 67,
|
171 |
+
"model.layers.28.mlp.gate_proj": 67,
|
172 |
+
"model.layers.28.mlp.up_proj": 67,
|
173 |
+
"model.layers.28.self_attn.k_proj": 65,
|
174 |
+
"model.layers.28.self_attn.o_proj": 83,
|
175 |
+
"model.layers.28.self_attn.q_proj": 66,
|
176 |
+
"model.layers.28.self_attn.v_proj": 82,
|
177 |
+
"model.layers.29.mlp.down_proj": 68,
|
178 |
+
"model.layers.29.mlp.gate_proj": 67,
|
179 |
+
"model.layers.29.mlp.up_proj": 68,
|
180 |
+
"model.layers.29.self_attn.k_proj": 62,
|
181 |
+
"model.layers.29.self_attn.o_proj": 84,
|
182 |
+
"model.layers.29.self_attn.q_proj": 62,
|
183 |
+
"model.layers.29.self_attn.v_proj": 82,
|
184 |
+
"model.layers.3.mlp.down_proj": 62,
|
185 |
+
"model.layers.3.mlp.gate_proj": 63,
|
186 |
+
"model.layers.3.mlp.up_proj": 62,
|
187 |
+
"model.layers.3.self_attn.k_proj": 70,
|
188 |
+
"model.layers.3.self_attn.o_proj": 53,
|
189 |
+
"model.layers.3.self_attn.q_proj": 68,
|
190 |
+
"model.layers.3.self_attn.v_proj": 53,
|
191 |
+
"model.layers.30.mlp.down_proj": 67,
|
192 |
+
"model.layers.30.mlp.gate_proj": 68,
|
193 |
+
"model.layers.30.mlp.up_proj": 68,
|
194 |
+
"model.layers.30.self_attn.k_proj": 64,
|
195 |
+
"model.layers.30.self_attn.o_proj": 87,
|
196 |
+
"model.layers.30.self_attn.q_proj": 64,
|
197 |
+
"model.layers.30.self_attn.v_proj": 85,
|
198 |
+
"model.layers.31.mlp.down_proj": 67,
|
199 |
+
"model.layers.31.mlp.gate_proj": 71,
|
200 |
+
"model.layers.31.mlp.up_proj": 70,
|
201 |
+
"model.layers.31.self_attn.k_proj": 63,
|
202 |
+
"model.layers.31.self_attn.o_proj": 78,
|
203 |
+
"model.layers.31.self_attn.q_proj": 61,
|
204 |
+
"model.layers.31.self_attn.v_proj": 77,
|
205 |
+
"model.layers.4.mlp.down_proj": 61,
|
206 |
+
"model.layers.4.mlp.gate_proj": 64,
|
207 |
+
"model.layers.4.mlp.up_proj": 62,
|
208 |
+
"model.layers.4.self_attn.k_proj": 71,
|
209 |
+
"model.layers.4.self_attn.o_proj": 56,
|
210 |
+
"model.layers.4.self_attn.q_proj": 70,
|
211 |
+
"model.layers.4.self_attn.v_proj": 56,
|
212 |
+
"model.layers.5.mlp.down_proj": 61,
|
213 |
+
"model.layers.5.mlp.gate_proj": 64,
|
214 |
+
"model.layers.5.mlp.up_proj": 62,
|
215 |
+
"model.layers.5.self_attn.k_proj": 73,
|
216 |
+
"model.layers.5.self_attn.o_proj": 57,
|
217 |
+
"model.layers.5.self_attn.q_proj": 72,
|
218 |
+
"model.layers.5.self_attn.v_proj": 58,
|
219 |
+
"model.layers.6.mlp.down_proj": 61,
|
220 |
+
"model.layers.6.mlp.gate_proj": 65,
|
221 |
+
"model.layers.6.mlp.up_proj": 62,
|
222 |
+
"model.layers.6.self_attn.k_proj": 67,
|
223 |
+
"model.layers.6.self_attn.o_proj": 53,
|
224 |
+
"model.layers.6.self_attn.q_proj": 67,
|
225 |
+
"model.layers.6.self_attn.v_proj": 53,
|
226 |
+
"model.layers.7.mlp.down_proj": 61,
|
227 |
+
"model.layers.7.mlp.gate_proj": 65,
|
228 |
+
"model.layers.7.mlp.up_proj": 62,
|
229 |
+
"model.layers.7.self_attn.k_proj": 66,
|
230 |
+
"model.layers.7.self_attn.o_proj": 53,
|
231 |
+
"model.layers.7.self_attn.q_proj": 67,
|
232 |
+
"model.layers.7.self_attn.v_proj": 53,
|
233 |
+
"model.layers.8.mlp.down_proj": 61,
|
234 |
+
"model.layers.8.mlp.gate_proj": 64,
|
235 |
+
"model.layers.8.mlp.up_proj": 62,
|
236 |
+
"model.layers.8.self_attn.k_proj": 68,
|
237 |
+
"model.layers.8.self_attn.o_proj": 55,
|
238 |
+
"model.layers.8.self_attn.q_proj": 69,
|
239 |
+
"model.layers.8.self_attn.v_proj": 54,
|
240 |
+
"model.layers.9.mlp.down_proj": 62,
|
241 |
+
"model.layers.9.mlp.gate_proj": 63,
|
242 |
+
"model.layers.9.mlp.up_proj": 63,
|
243 |
+
"model.layers.9.self_attn.k_proj": 70,
|
244 |
+
"model.layers.9.self_attn.o_proj": 56,
|
245 |
+
"model.layers.9.self_attn.q_proj": 70,
|
246 |
+
"model.layers.9.self_attn.v_proj": 55
|
247 |
+
},
|
248 |
+
"rank_file": "",
|
249 |
+
"target_modules": [
|
250 |
+
"down_proj",
|
251 |
+
"v_proj",
|
252 |
+
"q_proj",
|
253 |
+
"o_proj",
|
254 |
+
"up_proj",
|
255 |
+
"gate_proj",
|
256 |
+
"k_proj"
|
257 |
+
],
|
258 |
+
"task_type": "CAUSAL_LM",
|
259 |
+
"token_dim": 4096
|
260 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3aa846c06af3188a3d7b7c3e0a32ad4c1ecb48b1d02353610425c192c3ae4182
|
3 |
+
size 320063949
|
usage.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.insert(1, '/workspace/asr/peft/src')
|
3 |
+
# TODO set this path to the lazy-lora source code path, or you can install it from source code:
|
4 |
+
# TODO, please install lazylora for usage:
|
5 |
+
# git clone git@github.com:Xianchao-Wu/peft.git
|
6 |
+
# cd peft
|
7 |
+
# python setup.py install
|
8 |
+
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
10 |
+
from peft import PeftModel, PeftConfig
|
11 |
+
import os
|
12 |
+
import torch
|
13 |
+
|
14 |
+
#import ipdb; ipdb.set_trace()
|
15 |
+
cache_dir="/workspace/asr/peft/qlora"
|
16 |
+
# TODO set this cache_dir to the path where you stored (or, want to store) llama2-7bhf model
|
17 |
+
|
18 |
+
lazylora_dir=os.getcwd() # the path that contains 'adapter_config.json' and 'adapter_model.bin'
|
19 |
+
|
20 |
+
config = PeftConfig.from_pretrained(lazylora_dir)
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
23 |
+
config.base_model_name_or_path,
|
24 |
+
cache_dir=cache_dir,
|
25 |
+
use_auth_token=True
|
26 |
+
)
|
27 |
+
|
28 |
+
bnb_config = BitsAndBytesConfig(
|
29 |
+
load_in_4bit=True,
|
30 |
+
bnb_4bit_use_double_quant=True,
|
31 |
+
bnb_4bit_quant_type='nf4',
|
32 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
33 |
+
)
|
34 |
+
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
config.base_model_name_or_path,
|
37 |
+
quantization_config=bnb_config,
|
38 |
+
device_map="auto",
|
39 |
+
cache_dir=cache_dir,
|
40 |
+
use_auth_token=True
|
41 |
+
)
|
42 |
+
#model.print_trainable_parameters()
|
43 |
+
print(sum(p.numel() for p in model.parameters()))
|
44 |
+
# 3,500,412,928 -> half-size of 7B due to 4-bit loading
|
45 |
+
|
46 |
+
model = PeftModel.from_pretrained(model, lazylora_dir)
|
47 |
+
print('after adding lazy lora parameters:')
|
48 |
+
model.print_trainable_parameters()
|
49 |
+
# trainable params: 0 || all params: 3,660,359,168 || trainable%: 0.0
|
50 |
+
|
51 |
+
|