cnn8rnn-w2vmean-audiocaps-grounding / hf_modeling_grounding.py
wsntxxn's picture
Upload model
acaefeb verified
raw
history blame
14 kB
import math
import json
import os
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchaudio import transforms
from transformers import PreTrainedModel, PretrainedConfig
from transformers.utils.hub import cached_file
def sum_with_lens(features, lens):
lens = torch.as_tensor(lens)
if max(lens) != features.size(1):
max_length = features.size(1)
mask = generate_length_mask(lens, max_length)
else:
mask = generate_length_mask(lens)
mask = mask.to(features.device) # [N, T]
while mask.ndim < features.ndim:
mask = mask.unsqueeze(-1)
feature_masked = features * mask
feature_sum = feature_masked.sum(1)
return feature_sum
def generate_length_mask(lens, max_length=None):
lens = torch.as_tensor(lens)
N = lens.size(0)
if max_length is None:
max_length = max(lens)
idxs = torch.arange(max_length).repeat(N).view(N, max_length).to(lens.device)
mask = (idxs < lens.view(-1, 1))
return mask
def mean_with_lens(features, lens):
"""
features: [N, T, ...] (assume the second dimension represents length)
lens: [N,]
"""
feature_sum = sum_with_lens(features, lens)
while lens.ndim < feature_sum.ndim:
lens = lens.unsqueeze(1)
feature_mean = feature_sum / lens.to(features.device)
return feature_mean
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False)
self.conv2 = nn.Conv2d(in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
x = input
x = F.relu_(self.bn1(self.conv1(x)))
x = F.relu_(self.bn2(self.conv2(x)))
if pool_type == 'max':
x = F.max_pool2d(x, kernel_size=pool_size)
elif pool_type == 'avg':
x = F.avg_pool2d(x, kernel_size=pool_size)
elif pool_type == 'avg+max':
x1 = F.avg_pool2d(x, kernel_size=pool_size)
x2 = F.max_pool2d(x, kernel_size=pool_size)
x = x1 + x2
else:
raise Exception('Incorrect argument!')
return x
class Cnn8Rnn(nn.Module):
def __init__(
self,
sample_rate,
):
super().__init__()
self.downsample_ratio = 4 # Downsampled ratio
self.time_resolution = 0.04
# Logmel spectrogram extractor
self.hop_length = int(0.010 * sample_rate)
self.win_length = int(0.032 * sample_rate)
if sample_rate == 32000:
f_max = 14000
else:
f_max = int(sample_rate / 2)
self.melspec_extractor = transforms.MelSpectrogram(
sample_rate=sample_rate,
n_fft=self.win_length,
win_length=self.win_length,
hop_length=self.hop_length,
f_min=50,
f_max=f_max,
n_mels=64,
norm="slaney",
mel_scale="slaney")
self.db_transform = transforms.AmplitudeToDB()
self.bn0 = nn.BatchNorm2d(64)
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
self.fc1 = nn.Linear(512, 512, bias=True)
self.rnn = nn.GRU(512, 256, bidirectional=True, batch_first=True)
self.embed_dim = 512
def forward(self, input_dict: Dict):
"""
Input: (batch_size, n_samples)"""
waveform = input_dict["waveform"]
x = self.melspec_extractor(waveform)
x = self.db_transform(x) # (batch_size, mel_bins, time_steps)
x = x.transpose(1, 2)
x = x.unsqueeze(1)
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg+max')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg+max')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block3(x, pool_size=(1, 2), pool_type='avg+max')
x = F.dropout(x, p=0.2, training=self.training)
x = self.conv_block4(x, pool_size=(1, 2), pool_type='avg+max')
x = F.dropout(x, p=0.2, training=self.training
) # (batch_size, 256, time_steps / 4, mel_bins / 16)
x = torch.mean(x, dim=3)
x = x.transpose(1, 2)
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu_(self.fc1(x))
x, _ = self.rnn(x)
length = torch.div(torch.as_tensor(input_dict["waveform_len"]),
self.hop_length,
rounding_mode="floor") + 1
length = torch.div(length,
self.downsample_ratio,
rounding_mode="floor")
return {"embedding": x, "length": length}
class EmbeddingLayer(nn.Module):
def __init__(
self,
vocab_size: int,
embed_dim: int,
):
super().__init__()
self.embed_dim = embed_dim
self.core = nn.Embedding(vocab_size, embed_dim)
def forward(self, input_dict: Dict):
tokens = input_dict["text"]
tokens = tokens.long()
embs = self.core(tokens)
return embs
class AttentionPooling(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.fc = nn.Linear(emb_dim, 1)
def forward(self, x, lens):
# x: [bs, seq_len, emb_dim]
score = self.fc(x).squeeze(-1)
mask = generate_length_mask(lens).to(x.device)
score = score.masked_fill(mask == 0, -1e10)
weight = torch.softmax(score, dim=1)
out = (x * weight.unsqueeze(-1)).sum(1)
return out
class EmbeddingAgg(nn.Module):
def __init__(self, vocab_size, embed_dim, aggregation: str = "mean"):
super().__init__()
self.embedding = EmbeddingLayer(vocab_size, embed_dim)
self.embed_dim = self.embedding.embed_dim
self.agg = aggregation
if aggregation == "attention":
self.attn = AttentionPooling(embed_dim)
def forward(self, input_dict):
embs = self.embedding(input_dict)
lens = torch.as_tensor(input_dict["text_len"])
if self.agg == "mean":
out = mean_with_lens(embs, lens)
elif self.agg == "attention":
out = self.attn(embs, lens)
else:
raise Exception(f"{self.agg} not supported")
return {"token_emb": embs, "seq_emb": out}
class DotProduct(nn.Module):
def __init__(self, l2norm=False, scaled=False, text_level="seq"):
super().__init__()
self.l2norm = l2norm
self.scaled = scaled
self.text_level = text_level
def forward(self, input_dict):
audio = input_dict["audio_emb"] # [bs, n_seg, dim]
text = input_dict["text_emb"]
if self.text_level == "seq": # [bs, dim]
text = text["seq_emb"]
elif self.text_level == "token":
text = text["token_emb"] # [bs, n_seg, dim]
if self.l2norm:
audio = F.normalize(audio, dim=-1)
text = F.normalize(text, dim=-1)
if text.ndim == 2:
text = text.unsqueeze(1)
score = (audio * text).sum(-1)
if self.scaled:
score = score / math.sqrt(audio.size(-1))
score = torch.sigmoid(score).clamp(1e-7, 1.0)
return score
class BiEncoder(nn.Module):
def __init__(self,
audio_encoder,
text_encoder,
match_fn,
shared_dim,
cross_encoder=None,
add_proj=False,
upsample=False,
freeze_audio_encoder=False,
freeze_text_encoder=False):
super().__init__()
self.audio_encoder = audio_encoder
self.text_encoder = text_encoder
self.match_fn = match_fn
self.cross_encoder = cross_encoder
if audio_encoder.embed_dim != text_encoder.embed_dim or add_proj:
self.audio_proj = nn.Linear(audio_encoder.embed_dim, shared_dim)
self.text_proj = nn.Linear(text_encoder.embed_dim, shared_dim)
self.interpolate_ratio = self.audio_encoder.downsample_ratio
self.upsample = upsample
if freeze_audio_encoder:
for param in self.audio_encoder.parameters():
param.requires_grad = False
if freeze_text_encoder:
for param in self.text_encoder.parameters():
param.requires_grad = False
def forward(self, input_dict):
"""
keys in input_dict:
waveform, waveform_len,
text, text_len
"""
audio_output = self.audio_encoder(input_dict)
audio_emb = audio_output["embedding"]
text_emb = self.text_encoder(input_dict) # [batch_size, emb_dim]
forward_dict = {
"audio_emb": audio_emb,
"text_emb": text_emb,
"audio_len": audio_output["length"]
}
if "text_len" in input_dict:
forward_dict["text_len"] = input_dict["text_len"]
if self.cross_encoder is not None:
cross_encoded = self.cross_encoder(forward_dict)
# cross_encoded: audio_emb, text_emb, ...
forward_dict.update(cross_encoded)
if hasattr(self, "audio_proj"):
forward_dict["audio_emb"] = self.audio_proj(
forward_dict["audio_emb"])
if hasattr(self, "text_proj"):
text_emb = forward_dict["text_emb"]
if "seq_emb" in text_emb:
text_emb["seq_emb"] = self.text_proj(text_emb["seq_emb"])
if "token_emb" in text_emb:
text_emb["token_emb"] = self.text_proj(text_emb["token_emb"])
frame_sim = self.match_fn(forward_dict) # [batch_size, max_len]
length = audio_output["length"]
if self.interpolate_ratio != 1 and self.upsample:
frame_sim = F.interpolate(frame_sim.unsqueeze(1),
frame_sim.size(1) *
self.interpolate_ratio,
mode="linear",
align_corners=False).squeeze(1)
length = length * self.interpolate_ratio
return {"frame_sim": frame_sim, "length": length}
class Cnn8RnnW2vMeanGroundingConfig(PretrainedConfig):
def __init__(self,
sample_rate: int = 32000,
vocab_size: int = 5221,
embed_dim: int = 512,
shared_dim: int = 512,
add_proj: bool = False,
**kwargs):
self.sample_rate = sample_rate
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.shared_dim = shared_dim
self.add_proj = add_proj
super().__init__(**kwargs)
class Cnn8RnnW2vMeanGroundingModel(PreTrainedModel):
config_class = Cnn8RnnW2vMeanGroundingConfig
def __init__(self, config):
super().__init__(config)
audio_encoder = Cnn8Rnn(sample_rate=config.sample_rate)
text_encoder = EmbeddingAgg(embed_dim=config.embed_dim,
vocab_size=config.vocab_size)
match_fn = DotProduct()
self.model = BiEncoder(
audio_encoder=audio_encoder,
text_encoder=text_encoder,
match_fn=match_fn,
shared_dim=config.shared_dim,
add_proj=config.add_proj,
)
self.vocab_mapping = {}
def forward(self, audio: torch.Tensor, audio_len: torch.Tensor,
text: List[str]):
device = self.device
text_len = torch.as_tensor([len(t.split()) for t in text]).to(device)
text_tensor = torch.zeros(len(text), text_len.max()).long().to(device)
for i, txt in enumerate(text):
token_list = []
for word in txt.split():
if not word in self.vocab_mapping:
token = self.vocab_mapping["<unk>"]
else:
token = self.vocab_mapping[word]
token_list.append(token)
text_tensor[i, :len(token_list)] = torch.tensor(token_list)
input_dict = {
"waveform": audio.to(device),
"waveform_len": audio_len,
"text": text_tensor,
"text_len": text_len
}
output = self.model(input_dict)
return output["frame_sim"]
def save_pretrained(self, save_directory, *args, **kwargs):
super().save_pretrained(save_directory, *args, **kwargs)
json.dump(self.vocab_mapping,
open(os.path.join(save_directory, "vocab.json"), "w"))
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args,
**kwargs):
model = super().from_pretrained(pretrained_model_name_or_path,
*model_args, **kwargs)
vocab_path = cached_file(pretrained_model_name_or_path, "vocab.json")
model.vocab_mapping = json.load(open(vocab_path))
return model