Upload folder using huggingface_hub
Browse files- README.md +202 -0
- adapter_model.safetensors +1 -1
- checkpoint-500/README.md +202 -0
- checkpoint-500/adapter_config.json +34 -0
- checkpoint-500/adapter_model.safetensors +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/latest +1 -0
- checkpoint-500/rng_state_0.pth +3 -0
- checkpoint-500/rng_state_1.pth +3 -0
- checkpoint-500/rng_state_2.pth +3 -0
- checkpoint-500/rng_state_3.pth +3 -0
- checkpoint-500/scheduler.pt +3 -0
- checkpoint-500/special_tokens_map.json +24 -0
- checkpoint-500/tokenizer.model +3 -0
- checkpoint-500/tokenizer_config.json +43 -0
- checkpoint-500/trainer_state.json +3641 -0
- checkpoint-500/training_args.bin +3 -0
- checkpoint-500/zero_to_fp32.py +587 -0
- config.json +49 -0
- non_lora_trainables.bin +3 -0
- trainer_state.json +3825 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.5-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.12.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 639692768
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afcc9dd6219dd4e03990d41d7adf04c1781ae9ccb04b7004512c76e33819e33b
|
3 |
size 639692768
|
checkpoint-500/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.5-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.12.0
|
checkpoint-500/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.5-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"o_proj",
|
24 |
+
"v_proj",
|
25 |
+
"up_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"down_proj",
|
28 |
+
"q_proj",
|
29 |
+
"k_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-500/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e0f1587acc7bfcf4ce7ff933de4aaa66c4bad91af226f117c13dcc937ec011b
|
3 |
+
size 639692768
|
checkpoint-500/global_step500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:915ae5376fe2f30965de47a0a4357122963d95eaac06e9a28ac33ad5d5d564ea
|
3 |
+
size 1022392370
|
checkpoint-500/global_step500/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae4b29d004bcea9a4cae3bd78dcd1fd469c6c1800ca999b1e0f1260208f40b28
|
3 |
+
size 1022392370
|
checkpoint-500/global_step500/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f5cbb69a0e15c47612833b62897d83b28a5ebbb5c17b3a2543eac80a97f0796
|
3 |
+
size 1022392370
|
checkpoint-500/global_step500/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cd82821cf0d2f5f37662845f6ddfbfde7927c2b9dc34e520b4e7260481f6f60
|
3 |
+
size 1022392370
|
checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccefde6b62dd0262d1b0232e8e65d3a9a8a42d330a1a9a84b3d63c05c401d48f
|
3 |
+
size 481762
|
checkpoint-500/global_step500/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3aec879d2d8fe9a2bd9f008044539f4ba863ae4e333a94fe056387f929035505
|
3 |
+
size 481762
|
checkpoint-500/global_step500/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e48d1f4c2ce62bfa80a19f2973d3677921afcf3f3632691691e8c32047c18025
|
3 |
+
size 481762
|
checkpoint-500/global_step500/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac4d544af741690cac7330bbf778ff222a3a2190b42dab492970e4e55997213c
|
3 |
+
size 481762
|
checkpoint-500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step500
|
checkpoint-500/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82370032e137f3f55b0507a17d8f9a6ba3e128250291084d7134592c694d011f
|
3 |
+
size 14960
|
checkpoint-500/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9831c46ec60268b43debb309dcdc1690fbf44f50726e5605cfd939ee9265e66d
|
3 |
+
size 14960
|
checkpoint-500/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bc8ec13e18a1ddde9e54fcc390912f7f549ad1ee5c0bc639e96249c36512207
|
3 |
+
size 14960
|
checkpoint-500/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:363553c1cb5470a4810e404d999c9b3a2e91a32a825d15d41194739e610933d5
|
3 |
+
size 14960
|
checkpoint-500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65938ca8bb140e91f88093d917db45c24de2ba39a5e01fc70571e5da0db42f8d
|
3 |
+
size 1064
|
checkpoint-500/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-500/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
checkpoint-500/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 2048,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,3641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 4.750593824228028,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 4.008147055910771,
|
14 |
+
"learning_rate": 1.25e-05,
|
15 |
+
"loss": 4.2415,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.02,
|
20 |
+
"grad_norm": 4.04569203441769,
|
21 |
+
"learning_rate": 2.5e-05,
|
22 |
+
"loss": 4.3121,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.03,
|
27 |
+
"grad_norm": 3.865746651377984,
|
28 |
+
"learning_rate": 3.7500000000000003e-05,
|
29 |
+
"loss": 4.3208,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.04,
|
34 |
+
"grad_norm": 2.6407193073379105,
|
35 |
+
"learning_rate": 5e-05,
|
36 |
+
"loss": 3.8848,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.05,
|
41 |
+
"grad_norm": 2.451159328560232,
|
42 |
+
"learning_rate": 6.25e-05,
|
43 |
+
"loss": 3.4391,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.06,
|
48 |
+
"grad_norm": 1.8259504797317525,
|
49 |
+
"learning_rate": 7.500000000000001e-05,
|
50 |
+
"loss": 3.0656,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07,
|
55 |
+
"grad_norm": 1.1881779175566867,
|
56 |
+
"learning_rate": 8.75e-05,
|
57 |
+
"loss": 2.8135,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.08,
|
62 |
+
"grad_norm": 1.614839668966139,
|
63 |
+
"learning_rate": 0.0001,
|
64 |
+
"loss": 2.7319,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.09,
|
69 |
+
"grad_norm": 1.5198673994210212,
|
70 |
+
"learning_rate": 0.00011250000000000001,
|
71 |
+
"loss": 2.6903,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.1,
|
76 |
+
"grad_norm": 1.0044025931610727,
|
77 |
+
"learning_rate": 0.000125,
|
78 |
+
"loss": 2.584,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1,
|
83 |
+
"grad_norm": 1.1531821793787296,
|
84 |
+
"learning_rate": 0.0001375,
|
85 |
+
"loss": 2.586,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.11,
|
90 |
+
"grad_norm": 0.6210600474209341,
|
91 |
+
"learning_rate": 0.00015000000000000001,
|
92 |
+
"loss": 2.5298,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.12,
|
97 |
+
"grad_norm": 0.5025244204180619,
|
98 |
+
"learning_rate": 0.00016250000000000002,
|
99 |
+
"loss": 2.4665,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.13,
|
104 |
+
"grad_norm": 0.5058788641352842,
|
105 |
+
"learning_rate": 0.000175,
|
106 |
+
"loss": 2.4194,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.14,
|
111 |
+
"grad_norm": 0.44571801666869537,
|
112 |
+
"learning_rate": 0.0001875,
|
113 |
+
"loss": 2.3531,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.15,
|
118 |
+
"grad_norm": 0.44028009268534757,
|
119 |
+
"learning_rate": 0.0002,
|
120 |
+
"loss": 2.2749,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.16,
|
125 |
+
"grad_norm": 0.42473118020142525,
|
126 |
+
"learning_rate": 0.00019999809527270051,
|
127 |
+
"loss": 2.2587,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.17,
|
132 |
+
"grad_norm": 0.465029302165452,
|
133 |
+
"learning_rate": 0.0001999923811633618,
|
134 |
+
"loss": 2.2196,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.18,
|
139 |
+
"grad_norm": 0.49040381415815754,
|
140 |
+
"learning_rate": 0.00019998285788966027,
|
141 |
+
"loss": 2.2061,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.19,
|
146 |
+
"grad_norm": 0.4160855034634493,
|
147 |
+
"learning_rate": 0.00019996952581438068,
|
148 |
+
"loss": 2.1173,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.2,
|
153 |
+
"grad_norm": 0.45625369964232165,
|
154 |
+
"learning_rate": 0.00019995238544540241,
|
155 |
+
"loss": 2.1267,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.21,
|
160 |
+
"grad_norm": 0.42551849567803673,
|
161 |
+
"learning_rate": 0.00019993143743568,
|
162 |
+
"loss": 2.0976,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.22,
|
167 |
+
"grad_norm": 0.5100052595965069,
|
168 |
+
"learning_rate": 0.0001999066825832184,
|
169 |
+
"loss": 2.0428,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.23,
|
174 |
+
"grad_norm": 0.4717525078599394,
|
175 |
+
"learning_rate": 0.00019987812183104247,
|
176 |
+
"loss": 2.0068,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.24,
|
181 |
+
"grad_norm": 0.5596905853419681,
|
182 |
+
"learning_rate": 0.0001998457562671611,
|
183 |
+
"loss": 2.0303,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.25,
|
188 |
+
"grad_norm": 0.4931645550169434,
|
189 |
+
"learning_rate": 0.00019980958712452577,
|
190 |
+
"loss": 1.9722,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.26,
|
195 |
+
"grad_norm": 0.4433810930704678,
|
196 |
+
"learning_rate": 0.0001997696157809835,
|
197 |
+
"loss": 1.957,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.27,
|
202 |
+
"grad_norm": 0.5522396650266582,
|
203 |
+
"learning_rate": 0.0001997258437592245,
|
204 |
+
"loss": 1.915,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.28,
|
209 |
+
"grad_norm": 0.49861222066728145,
|
210 |
+
"learning_rate": 0.00019967827272672408,
|
211 |
+
"loss": 1.8303,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.29,
|
216 |
+
"grad_norm": 0.6169911964169147,
|
217 |
+
"learning_rate": 0.00019962690449567912,
|
218 |
+
"loss": 1.8454,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.29,
|
223 |
+
"grad_norm": 0.5639780725078123,
|
224 |
+
"learning_rate": 0.000199571741022939,
|
225 |
+
"loss": 1.8068,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.3,
|
230 |
+
"grad_norm": 0.6302805853808786,
|
231 |
+
"learning_rate": 0.0001995127844099313,
|
232 |
+
"loss": 1.7166,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.31,
|
237 |
+
"grad_norm": 0.6494693483139545,
|
238 |
+
"learning_rate": 0.00019945003690258125,
|
239 |
+
"loss": 1.6433,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.32,
|
244 |
+
"grad_norm": 0.7598443409498918,
|
245 |
+
"learning_rate": 0.00019938350089122682,
|
246 |
+
"loss": 1.7081,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.33,
|
251 |
+
"grad_norm": 0.6512764391881087,
|
252 |
+
"learning_rate": 0.00019931317891052708,
|
253 |
+
"loss": 1.6436,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.34,
|
258 |
+
"grad_norm": 0.6953537359048508,
|
259 |
+
"learning_rate": 0.00019923907363936593,
|
260 |
+
"loss": 1.5862,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.35,
|
265 |
+
"grad_norm": 0.6011387829084072,
|
266 |
+
"learning_rate": 0.00019916118790075008,
|
267 |
+
"loss": 1.5432,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.36,
|
272 |
+
"grad_norm": 0.659130437748028,
|
273 |
+
"learning_rate": 0.00019907952466170138,
|
274 |
+
"loss": 1.5132,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.37,
|
279 |
+
"grad_norm": 0.7211467253555573,
|
280 |
+
"learning_rate": 0.00019899408703314385,
|
281 |
+
"loss": 1.506,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.38,
|
286 |
+
"grad_norm": 0.7006890038987398,
|
287 |
+
"learning_rate": 0.0001989048782697851,
|
288 |
+
"loss": 1.4498,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.39,
|
293 |
+
"grad_norm": 0.64642158324997,
|
294 |
+
"learning_rate": 0.00019881190176999255,
|
295 |
+
"loss": 1.4478,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.4,
|
300 |
+
"grad_norm": 0.6608085069521318,
|
301 |
+
"learning_rate": 0.00019871516107566366,
|
302 |
+
"loss": 1.3542,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.41,
|
307 |
+
"grad_norm": 0.7707478188072372,
|
308 |
+
"learning_rate": 0.0001986146598720913,
|
309 |
+
"loss": 1.3309,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.42,
|
314 |
+
"grad_norm": 0.8119298049916807,
|
315 |
+
"learning_rate": 0.00019851040198782326,
|
316 |
+
"loss": 1.345,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.43,
|
321 |
+
"grad_norm": 0.7712308653234212,
|
322 |
+
"learning_rate": 0.0001984023913945162,
|
323 |
+
"loss": 1.3076,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.44,
|
328 |
+
"grad_norm": 0.682341709525683,
|
329 |
+
"learning_rate": 0.0001982906322067847,
|
330 |
+
"loss": 1.2565,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.45,
|
335 |
+
"grad_norm": 0.7071991083514119,
|
336 |
+
"learning_rate": 0.00019817512868204425,
|
337 |
+
"loss": 1.1796,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.46,
|
342 |
+
"grad_norm": 0.745222014713615,
|
343 |
+
"learning_rate": 0.00019805588522034916,
|
344 |
+
"loss": 1.1649,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.47,
|
349 |
+
"grad_norm": 0.7158459299510994,
|
350 |
+
"learning_rate": 0.00019793290636422505,
|
351 |
+
"loss": 1.2109,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.48,
|
356 |
+
"grad_norm": 0.7335821144549012,
|
357 |
+
"learning_rate": 0.00019780619679849552,
|
358 |
+
"loss": 1.1475,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.48,
|
363 |
+
"grad_norm": 0.7804306024320766,
|
364 |
+
"learning_rate": 0.000197675761350104,
|
365 |
+
"loss": 1.1068,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.49,
|
370 |
+
"grad_norm": 0.8274924156959725,
|
371 |
+
"learning_rate": 0.00019754160498792965,
|
372 |
+
"loss": 1.1839,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.5,
|
377 |
+
"grad_norm": 0.8840482383868431,
|
378 |
+
"learning_rate": 0.0001974037328225982,
|
379 |
+
"loss": 1.0928,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.51,
|
384 |
+
"grad_norm": 0.7224652999279871,
|
385 |
+
"learning_rate": 0.00019726215010628718,
|
386 |
+
"loss": 1.0299,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.52,
|
391 |
+
"grad_norm": 0.7109288879933862,
|
392 |
+
"learning_rate": 0.0001971168622325259,
|
393 |
+
"loss": 1.0436,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.53,
|
398 |
+
"grad_norm": 0.7650325966583326,
|
399 |
+
"learning_rate": 0.00019696787473598993,
|
400 |
+
"loss": 1.041,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.54,
|
405 |
+
"grad_norm": 0.7307809391946058,
|
406 |
+
"learning_rate": 0.00019681519329229033,
|
407 |
+
"loss": 1.0195,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.55,
|
412 |
+
"grad_norm": 0.6873943623441443,
|
413 |
+
"learning_rate": 0.00019665882371775733,
|
414 |
+
"loss": 0.972,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.56,
|
419 |
+
"grad_norm": 0.8185924734616268,
|
420 |
+
"learning_rate": 0.00019649877196921896,
|
421 |
+
"loss": 0.9986,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.57,
|
426 |
+
"grad_norm": 0.7907558585543373,
|
427 |
+
"learning_rate": 0.00019633504414377388,
|
428 |
+
"loss": 0.9201,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.58,
|
433 |
+
"grad_norm": 0.7216280408288712,
|
434 |
+
"learning_rate": 0.00019616764647855926,
|
435 |
+
"loss": 0.9976,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.59,
|
440 |
+
"grad_norm": 0.6946470891456141,
|
441 |
+
"learning_rate": 0.00019599658535051314,
|
442 |
+
"loss": 0.9008,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.6,
|
447 |
+
"grad_norm": 0.6470248283451219,
|
448 |
+
"learning_rate": 0.00019582186727613152,
|
449 |
+
"loss": 0.8226,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.61,
|
454 |
+
"grad_norm": 0.8297915622585336,
|
455 |
+
"learning_rate": 0.00019564349891122018,
|
456 |
+
"loss": 0.8825,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.62,
|
461 |
+
"grad_norm": 0.7018515834126928,
|
462 |
+
"learning_rate": 0.00019546148705064097,
|
463 |
+
"loss": 0.8521,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.63,
|
468 |
+
"grad_norm": 0.6119835758734723,
|
469 |
+
"learning_rate": 0.00019527583862805303,
|
470 |
+
"loss": 0.7872,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.64,
|
475 |
+
"grad_norm": 0.6396036538427098,
|
476 |
+
"learning_rate": 0.00019508656071564882,
|
477 |
+
"loss": 0.7887,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.65,
|
482 |
+
"grad_norm": 0.6712059239435435,
|
483 |
+
"learning_rate": 0.00019489366052388441,
|
484 |
+
"loss": 0.8406,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.66,
|
489 |
+
"grad_norm": 0.6498227189328728,
|
490 |
+
"learning_rate": 0.00019469714540120507,
|
491 |
+
"loss": 0.7109,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.67,
|
496 |
+
"grad_norm": 0.6950957852561941,
|
497 |
+
"learning_rate": 0.00019449702283376517,
|
498 |
+
"loss": 0.7008,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.67,
|
503 |
+
"grad_norm": 0.6415745385783075,
|
504 |
+
"learning_rate": 0.00019429330044514305,
|
505 |
+
"loss": 0.6808,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.68,
|
510 |
+
"grad_norm": 0.6774461765802887,
|
511 |
+
"learning_rate": 0.0001940859859960506,
|
512 |
+
"loss": 0.7122,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.69,
|
517 |
+
"grad_norm": 0.6335543398879422,
|
518 |
+
"learning_rate": 0.00019387508738403768,
|
519 |
+
"loss": 0.6826,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.7,
|
524 |
+
"grad_norm": 0.6455659601218003,
|
525 |
+
"learning_rate": 0.0001936606126431911,
|
526 |
+
"loss": 0.7342,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.71,
|
531 |
+
"grad_norm": 0.6804108080708727,
|
532 |
+
"learning_rate": 0.00019344256994382878,
|
533 |
+
"loss": 0.6983,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.72,
|
538 |
+
"grad_norm": 0.6233570198373359,
|
539 |
+
"learning_rate": 0.00019322096759218836,
|
540 |
+
"loss": 0.6426,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.73,
|
545 |
+
"grad_norm": 0.6354196060962453,
|
546 |
+
"learning_rate": 0.00019299581403011082,
|
547 |
+
"loss": 0.6978,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.74,
|
552 |
+
"grad_norm": 0.6723728632702363,
|
553 |
+
"learning_rate": 0.0001927671178347189,
|
554 |
+
"loss": 0.6449,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.75,
|
559 |
+
"grad_norm": 0.6055794839258588,
|
560 |
+
"learning_rate": 0.00019253488771809024,
|
561 |
+
"loss": 0.6608,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.76,
|
566 |
+
"grad_norm": 0.6032563228830964,
|
567 |
+
"learning_rate": 0.0001922991325269258,
|
568 |
+
"loss": 0.6691,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.77,
|
573 |
+
"grad_norm": 0.5917538532836075,
|
574 |
+
"learning_rate": 0.00019205986124221251,
|
575 |
+
"loss": 0.6418,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.78,
|
580 |
+
"grad_norm": 0.6558132078005496,
|
581 |
+
"learning_rate": 0.00019181708297888133,
|
582 |
+
"loss": 0.6562,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.79,
|
587 |
+
"grad_norm": 0.6110330049943966,
|
588 |
+
"learning_rate": 0.00019157080698546,
|
589 |
+
"loss": 0.5855,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.8,
|
594 |
+
"grad_norm": 0.6481622083495842,
|
595 |
+
"learning_rate": 0.00019132104264372063,
|
596 |
+
"loss": 0.628,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.81,
|
601 |
+
"grad_norm": 0.5730813607452849,
|
602 |
+
"learning_rate": 0.0001910677994683225,
|
603 |
+
"loss": 0.5476,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.82,
|
608 |
+
"grad_norm": 0.6938507563801335,
|
609 |
+
"learning_rate": 0.00019081108710644932,
|
610 |
+
"loss": 0.6018,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.83,
|
615 |
+
"grad_norm": 0.625439427503205,
|
616 |
+
"learning_rate": 0.00019055091533744202,
|
617 |
+
"loss": 0.5735,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.84,
|
622 |
+
"grad_norm": 0.6628596764324554,
|
623 |
+
"learning_rate": 0.00019028729407242597,
|
624 |
+
"loss": 0.5389,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.85,
|
629 |
+
"grad_norm": 0.6112099968245533,
|
630 |
+
"learning_rate": 0.00019002023335393364,
|
631 |
+
"loss": 0.5235,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.86,
|
636 |
+
"grad_norm": 0.6098216223216336,
|
637 |
+
"learning_rate": 0.0001897497433555218,
|
638 |
+
"loss": 0.6058,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.86,
|
643 |
+
"grad_norm": 0.6469247467013166,
|
644 |
+
"learning_rate": 0.0001894758343813842,
|
645 |
+
"loss": 0.5524,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.87,
|
650 |
+
"grad_norm": 0.6344920759870597,
|
651 |
+
"learning_rate": 0.00018919851686595874,
|
652 |
+
"loss": 0.5605,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.88,
|
657 |
+
"grad_norm": 0.6756355159547938,
|
658 |
+
"learning_rate": 0.00018891780137353034,
|
659 |
+
"loss": 0.5096,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.89,
|
664 |
+
"grad_norm": 0.6439314455537293,
|
665 |
+
"learning_rate": 0.00018863369859782825,
|
666 |
+
"loss": 0.5516,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.9,
|
671 |
+
"grad_norm": 0.5567728554741562,
|
672 |
+
"learning_rate": 0.0001883462193616187,
|
673 |
+
"loss": 0.4576,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.91,
|
678 |
+
"grad_norm": 0.553595533418767,
|
679 |
+
"learning_rate": 0.00018805537461629265,
|
680 |
+
"loss": 0.4947,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.92,
|
685 |
+
"grad_norm": 0.6200223910647112,
|
686 |
+
"learning_rate": 0.00018776117544144863,
|
687 |
+
"loss": 0.5073,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.93,
|
692 |
+
"grad_norm": 0.6294322114297511,
|
693 |
+
"learning_rate": 0.00018746363304447073,
|
694 |
+
"loss": 0.4938,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.94,
|
699 |
+
"grad_norm": 0.6000145257745209,
|
700 |
+
"learning_rate": 0.00018716275876010135,
|
701 |
+
"loss": 0.473,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.95,
|
706 |
+
"grad_norm": 0.5927861897994469,
|
707 |
+
"learning_rate": 0.00018685856405000983,
|
708 |
+
"loss": 0.4724,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.95,
|
713 |
+
"eval_blimp_filtered_avg": 0.7155223880597015,
|
714 |
+
"eval_blimp_filtered_std": 0.005000433138834185,
|
715 |
+
"step": 100
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.95,
|
719 |
+
"eval_blimp_supplement_avg": 0.8405172413793104,
|
720 |
+
"eval_blimp_supplement_std": 0.016486001732879434,
|
721 |
+
"step": 100
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.95,
|
725 |
+
"eval_vqa_filtered_avg": 0.52,
|
726 |
+
"eval_vqa_filtered_std": 0.05021167315686779,
|
727 |
+
"step": 100
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.95,
|
731 |
+
"eval_winoground_filtered_avg": 0.64,
|
732 |
+
"eval_winoground_filtered_std": 0.04824181513244218,
|
733 |
+
"step": 100
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.96,
|
737 |
+
"grad_norm": 0.5504516732077648,
|
738 |
+
"learning_rate": 0.00018655106050235548,
|
739 |
+
"loss": 0.4393,
|
740 |
+
"step": 101
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.97,
|
744 |
+
"grad_norm": 0.5801589113252366,
|
745 |
+
"learning_rate": 0.00018624025983134644,
|
746 |
+
"loss": 0.468,
|
747 |
+
"step": 102
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.98,
|
751 |
+
"grad_norm": 0.5273944337529535,
|
752 |
+
"learning_rate": 0.00018592617387679306,
|
753 |
+
"loss": 0.439,
|
754 |
+
"step": 103
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.99,
|
758 |
+
"grad_norm": 0.508609381383424,
|
759 |
+
"learning_rate": 0.00018560881460365724,
|
760 |
+
"loss": 0.4272,
|
761 |
+
"step": 104
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 1.0,
|
765 |
+
"grad_norm": 0.5396859577867195,
|
766 |
+
"learning_rate": 0.0001852881941015964,
|
767 |
+
"loss": 0.4362,
|
768 |
+
"step": 105
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 1.01,
|
772 |
+
"grad_norm": 0.5122858999271028,
|
773 |
+
"learning_rate": 0.00018496432458450294,
|
774 |
+
"loss": 0.3893,
|
775 |
+
"step": 106
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 1.02,
|
779 |
+
"grad_norm": 0.49626561438760436,
|
780 |
+
"learning_rate": 0.00018463721839003915,
|
781 |
+
"loss": 0.3498,
|
782 |
+
"step": 107
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 1.03,
|
786 |
+
"grad_norm": 0.48748413013987063,
|
787 |
+
"learning_rate": 0.000184306887979167,
|
788 |
+
"loss": 0.3256,
|
789 |
+
"step": 108
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.04,
|
793 |
+
"grad_norm": 0.5310280563857716,
|
794 |
+
"learning_rate": 0.00018397334593567348,
|
795 |
+
"loss": 0.3225,
|
796 |
+
"step": 109
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 1.05,
|
800 |
+
"grad_norm": 0.6232514021230662,
|
801 |
+
"learning_rate": 0.00018363660496569127,
|
802 |
+
"loss": 0.3489,
|
803 |
+
"step": 110
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 1.05,
|
807 |
+
"grad_norm": 0.5274577320762,
|
808 |
+
"learning_rate": 0.00018329667789721485,
|
809 |
+
"loss": 0.3123,
|
810 |
+
"step": 111
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 1.06,
|
814 |
+
"grad_norm": 0.5096311315676365,
|
815 |
+
"learning_rate": 0.00018295357767961144,
|
816 |
+
"loss": 0.3325,
|
817 |
+
"step": 112
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 1.07,
|
821 |
+
"grad_norm": 0.4613577097438129,
|
822 |
+
"learning_rate": 0.00018260731738312818,
|
823 |
+
"loss": 0.2936,
|
824 |
+
"step": 113
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 1.08,
|
828 |
+
"grad_norm": 0.4997938044342101,
|
829 |
+
"learning_rate": 0.00018225791019839375,
|
830 |
+
"loss": 0.3351,
|
831 |
+
"step": 114
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 1.09,
|
835 |
+
"grad_norm": 0.538085494988463,
|
836 |
+
"learning_rate": 0.00018190536943591624,
|
837 |
+
"loss": 0.329,
|
838 |
+
"step": 115
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 1.1,
|
842 |
+
"grad_norm": 0.5567068979809859,
|
843 |
+
"learning_rate": 0.00018154970852557603,
|
844 |
+
"loss": 0.318,
|
845 |
+
"step": 116
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 1.11,
|
849 |
+
"grad_norm": 0.5548141608588357,
|
850 |
+
"learning_rate": 0.0001811909410161139,
|
851 |
+
"loss": 0.3289,
|
852 |
+
"step": 117
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 1.12,
|
856 |
+
"grad_norm": 0.47326466614968965,
|
857 |
+
"learning_rate": 0.0001808290805746153,
|
858 |
+
"loss": 0.3076,
|
859 |
+
"step": 118
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 1.13,
|
863 |
+
"grad_norm": 0.47629585466918467,
|
864 |
+
"learning_rate": 0.00018046414098598948,
|
865 |
+
"loss": 0.3016,
|
866 |
+
"step": 119
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 1.14,
|
870 |
+
"grad_norm": 0.44135735344426463,
|
871 |
+
"learning_rate": 0.00018009613615244436,
|
872 |
+
"loss": 0.2704,
|
873 |
+
"step": 120
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 1.15,
|
877 |
+
"grad_norm": 0.5127645747027901,
|
878 |
+
"learning_rate": 0.000179725080092957,
|
879 |
+
"loss": 0.2887,
|
880 |
+
"step": 121
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 1.16,
|
884 |
+
"grad_norm": 0.5209981172771183,
|
885 |
+
"learning_rate": 0.0001793509869427395,
|
886 |
+
"loss": 0.2938,
|
887 |
+
"step": 122
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 1.17,
|
891 |
+
"grad_norm": 0.5481082193558409,
|
892 |
+
"learning_rate": 0.00017897387095270058,
|
893 |
+
"loss": 0.3191,
|
894 |
+
"step": 123
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 1.18,
|
898 |
+
"grad_norm": 0.4770065158307258,
|
899 |
+
"learning_rate": 0.0001785937464889027,
|
900 |
+
"loss": 0.2795,
|
901 |
+
"step": 124
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.19,
|
905 |
+
"grad_norm": 0.44845204938493194,
|
906 |
+
"learning_rate": 0.0001782106280320147,
|
907 |
+
"loss": 0.2667,
|
908 |
+
"step": 125
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 1.2,
|
912 |
+
"grad_norm": 0.47824147005907164,
|
913 |
+
"learning_rate": 0.00017782453017676025,
|
914 |
+
"loss": 0.267,
|
915 |
+
"step": 126
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.21,
|
919 |
+
"grad_norm": 0.501015317452837,
|
920 |
+
"learning_rate": 0.00017743546763136187,
|
921 |
+
"loss": 0.2831,
|
922 |
+
"step": 127
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 1.22,
|
926 |
+
"grad_norm": 0.5232536606095718,
|
927 |
+
"learning_rate": 0.00017704345521698058,
|
928 |
+
"loss": 0.2769,
|
929 |
+
"step": 128
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.23,
|
933 |
+
"grad_norm": 0.5495388553709665,
|
934 |
+
"learning_rate": 0.00017664850786715136,
|
935 |
+
"loss": 0.3031,
|
936 |
+
"step": 129
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 1.24,
|
940 |
+
"grad_norm": 0.5371555106361774,
|
941 |
+
"learning_rate": 0.00017625064062721415,
|
942 |
+
"loss": 0.2955,
|
943 |
+
"step": 130
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 1.24,
|
947 |
+
"grad_norm": 0.4716773551397148,
|
948 |
+
"learning_rate": 0.00017584986865374082,
|
949 |
+
"loss": 0.2666,
|
950 |
+
"step": 131
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1.25,
|
954 |
+
"grad_norm": 0.5089124561646106,
|
955 |
+
"learning_rate": 0.00017544620721395777,
|
956 |
+
"loss": 0.3379,
|
957 |
+
"step": 132
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 1.26,
|
961 |
+
"grad_norm": 0.4715340007422714,
|
962 |
+
"learning_rate": 0.00017503967168516426,
|
963 |
+
"loss": 0.2771,
|
964 |
+
"step": 133
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 1.27,
|
968 |
+
"grad_norm": 0.43502563576445413,
|
969 |
+
"learning_rate": 0.0001746302775541467,
|
970 |
+
"loss": 0.2423,
|
971 |
+
"step": 134
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 1.28,
|
975 |
+
"grad_norm": 0.4967705692007805,
|
976 |
+
"learning_rate": 0.00017421804041658863,
|
977 |
+
"loss": 0.2498,
|
978 |
+
"step": 135
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 1.29,
|
982 |
+
"grad_norm": 0.49127370733051945,
|
983 |
+
"learning_rate": 0.00017380297597647667,
|
984 |
+
"loss": 0.2616,
|
985 |
+
"step": 136
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 1.3,
|
989 |
+
"grad_norm": 0.47835649282708265,
|
990 |
+
"learning_rate": 0.00017338510004550223,
|
991 |
+
"loss": 0.241,
|
992 |
+
"step": 137
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 1.31,
|
996 |
+
"grad_norm": 0.4843464174553606,
|
997 |
+
"learning_rate": 0.00017296442854245915,
|
998 |
+
"loss": 0.2458,
|
999 |
+
"step": 138
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 1.32,
|
1003 |
+
"grad_norm": 0.5209405133977896,
|
1004 |
+
"learning_rate": 0.00017254097749263734,
|
1005 |
+
"loss": 0.2452,
|
1006 |
+
"step": 139
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 1.33,
|
1010 |
+
"grad_norm": 0.4709574288825739,
|
1011 |
+
"learning_rate": 0.0001721147630272123,
|
1012 |
+
"loss": 0.2627,
|
1013 |
+
"step": 140
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 1.34,
|
1017 |
+
"grad_norm": 0.4752105435022234,
|
1018 |
+
"learning_rate": 0.00017168580138263062,
|
1019 |
+
"loss": 0.2527,
|
1020 |
+
"step": 141
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 1.35,
|
1024 |
+
"grad_norm": 0.48781843284289905,
|
1025 |
+
"learning_rate": 0.00017125410889999134,
|
1026 |
+
"loss": 0.2356,
|
1027 |
+
"step": 142
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 1.36,
|
1031 |
+
"grad_norm": 0.5731736183258567,
|
1032 |
+
"learning_rate": 0.00017081970202442362,
|
1033 |
+
"loss": 0.2668,
|
1034 |
+
"step": 143
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1.37,
|
1038 |
+
"grad_norm": 0.48105126464697834,
|
1039 |
+
"learning_rate": 0.0001703825973044602,
|
1040 |
+
"loss": 0.2454,
|
1041 |
+
"step": 144
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 1.38,
|
1045 |
+
"grad_norm": 0.5280645599674879,
|
1046 |
+
"learning_rate": 0.00016994281139140688,
|
1047 |
+
"loss": 0.2454,
|
1048 |
+
"step": 145
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 1.39,
|
1052 |
+
"grad_norm": 0.47876489284248624,
|
1053 |
+
"learning_rate": 0.0001695003610387084,
|
1054 |
+
"loss": 0.2463,
|
1055 |
+
"step": 146
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 1.4,
|
1059 |
+
"grad_norm": 0.48826354198860017,
|
1060 |
+
"learning_rate": 0.00016905526310130999,
|
1061 |
+
"loss": 0.2295,
|
1062 |
+
"step": 147
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 1.41,
|
1066 |
+
"grad_norm": 0.47715494831436517,
|
1067 |
+
"learning_rate": 0.0001686075345350156,
|
1068 |
+
"loss": 0.252,
|
1069 |
+
"step": 148
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 1.42,
|
1073 |
+
"grad_norm": 0.5152105233009641,
|
1074 |
+
"learning_rate": 0.0001681571923958416,
|
1075 |
+
"loss": 0.2771,
|
1076 |
+
"step": 149
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1.43,
|
1080 |
+
"grad_norm": 0.4990883717055415,
|
1081 |
+
"learning_rate": 0.00016770425383936735,
|
1082 |
+
"loss": 0.2497,
|
1083 |
+
"step": 150
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 1.43,
|
1087 |
+
"grad_norm": 0.4674093996422124,
|
1088 |
+
"learning_rate": 0.00016724873612008155,
|
1089 |
+
"loss": 0.2441,
|
1090 |
+
"step": 151
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 1.44,
|
1094 |
+
"grad_norm": 0.4432102664091143,
|
1095 |
+
"learning_rate": 0.00016679065659072487,
|
1096 |
+
"loss": 0.2418,
|
1097 |
+
"step": 152
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 1.45,
|
1101 |
+
"grad_norm": 0.4677926556162063,
|
1102 |
+
"learning_rate": 0.00016633003270162902,
|
1103 |
+
"loss": 0.2483,
|
1104 |
+
"step": 153
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 1.46,
|
1108 |
+
"grad_norm": 0.5050389021999718,
|
1109 |
+
"learning_rate": 0.00016586688200005193,
|
1110 |
+
"loss": 0.225,
|
1111 |
+
"step": 154
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 1.47,
|
1115 |
+
"grad_norm": 0.538150442089787,
|
1116 |
+
"learning_rate": 0.00016540122212950934,
|
1117 |
+
"loss": 0.2629,
|
1118 |
+
"step": 155
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 1.48,
|
1122 |
+
"grad_norm": 0.4831894197759429,
|
1123 |
+
"learning_rate": 0.00016493307082910249,
|
1124 |
+
"loss": 0.2539,
|
1125 |
+
"step": 156
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.49,
|
1129 |
+
"grad_norm": 0.4864294249801108,
|
1130 |
+
"learning_rate": 0.00016446244593284277,
|
1131 |
+
"loss": 0.2638,
|
1132 |
+
"step": 157
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 1.5,
|
1136 |
+
"grad_norm": 0.46236092553249764,
|
1137 |
+
"learning_rate": 0.00016398936536897183,
|
1138 |
+
"loss": 0.2255,
|
1139 |
+
"step": 158
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 1.51,
|
1143 |
+
"grad_norm": 0.4963120760517666,
|
1144 |
+
"learning_rate": 0.00016351384715927898,
|
1145 |
+
"loss": 0.2524,
|
1146 |
+
"step": 159
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 1.52,
|
1150 |
+
"grad_norm": 0.5210286477375989,
|
1151 |
+
"learning_rate": 0.00016303590941841458,
|
1152 |
+
"loss": 0.225,
|
1153 |
+
"step": 160
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 1.53,
|
1157 |
+
"grad_norm": 0.5288475623534257,
|
1158 |
+
"learning_rate": 0.0001625555703531998,
|
1159 |
+
"loss": 0.2428,
|
1160 |
+
"step": 161
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1.54,
|
1164 |
+
"grad_norm": 0.4973215047467683,
|
1165 |
+
"learning_rate": 0.00016207284826193335,
|
1166 |
+
"loss": 0.2522,
|
1167 |
+
"step": 162
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.55,
|
1171 |
+
"grad_norm": 0.44826317640998203,
|
1172 |
+
"learning_rate": 0.00016158776153369402,
|
1173 |
+
"loss": 0.2019,
|
1174 |
+
"step": 163
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 1.56,
|
1178 |
+
"grad_norm": 0.45392654459830534,
|
1179 |
+
"learning_rate": 0.0001611003286476406,
|
1180 |
+
"loss": 0.2338,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 1.57,
|
1185 |
+
"grad_norm": 0.4430521150056381,
|
1186 |
+
"learning_rate": 0.00016061056817230754,
|
1187 |
+
"loss": 0.2273,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 1.58,
|
1192 |
+
"grad_norm": 0.44345119147374473,
|
1193 |
+
"learning_rate": 0.00016011849876489776,
|
1194 |
+
"loss": 0.211,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 1.59,
|
1199 |
+
"grad_norm": 0.4808061249544928,
|
1200 |
+
"learning_rate": 0.000159624139170572,
|
1201 |
+
"loss": 0.2104,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1.6,
|
1206 |
+
"grad_norm": 0.5573402749682285,
|
1207 |
+
"learning_rate": 0.00015912750822173445,
|
1208 |
+
"loss": 0.2492,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.61,
|
1213 |
+
"grad_norm": 0.5334950652460796,
|
1214 |
+
"learning_rate": 0.00015862862483731574,
|
1215 |
+
"loss": 0.2187,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 1.62,
|
1220 |
+
"grad_norm": 0.49497739813798797,
|
1221 |
+
"learning_rate": 0.00015812750802205187,
|
1222 |
+
"loss": 0.2097,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 1.62,
|
1227 |
+
"grad_norm": 0.44446540691990566,
|
1228 |
+
"learning_rate": 0.00015762417686576038,
|
1229 |
+
"loss": 0.204,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 1.63,
|
1234 |
+
"grad_norm": 0.42142200135464725,
|
1235 |
+
"learning_rate": 0.0001571186505426132,
|
1236 |
+
"loss": 0.1989,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 1.64,
|
1241 |
+
"grad_norm": 0.4328533901196503,
|
1242 |
+
"learning_rate": 0.00015661094831040598,
|
1243 |
+
"loss": 0.2173,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 1.65,
|
1248 |
+
"grad_norm": 0.43093996542664664,
|
1249 |
+
"learning_rate": 0.00015610108950982494,
|
1250 |
+
"loss": 0.1865,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 1.66,
|
1255 |
+
"grad_norm": 0.4850613308932528,
|
1256 |
+
"learning_rate": 0.00015558909356370944,
|
1257 |
+
"loss": 0.2181,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 1.67,
|
1262 |
+
"grad_norm": 0.47485870685329246,
|
1263 |
+
"learning_rate": 0.00015507497997631266,
|
1264 |
+
"loss": 0.2223,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 1.68,
|
1269 |
+
"grad_norm": 0.42085147271583295,
|
1270 |
+
"learning_rate": 0.0001545587683325583,
|
1271 |
+
"loss": 0.1845,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 1.69,
|
1276 |
+
"grad_norm": 0.4479801309419239,
|
1277 |
+
"learning_rate": 0.00015404047829729457,
|
1278 |
+
"loss": 0.1987,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 1.7,
|
1283 |
+
"grad_norm": 0.4624584058381783,
|
1284 |
+
"learning_rate": 0.00015352012961454507,
|
1285 |
+
"loss": 0.217,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 1.71,
|
1290 |
+
"grad_norm": 0.44005765649196454,
|
1291 |
+
"learning_rate": 0.00015299774210675657,
|
1292 |
+
"loss": 0.1837,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 1.72,
|
1297 |
+
"grad_norm": 0.4508346255489124,
|
1298 |
+
"learning_rate": 0.00015247333567404406,
|
1299 |
+
"loss": 0.2007,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 1.73,
|
1304 |
+
"grad_norm": 0.40396006791211914,
|
1305 |
+
"learning_rate": 0.00015194693029343248,
|
1306 |
+
"loss": 0.1866,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 1.74,
|
1311 |
+
"grad_norm": 0.44558839018398966,
|
1312 |
+
"learning_rate": 0.00015141854601809581,
|
1313 |
+
"loss": 0.1967,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 1.75,
|
1318 |
+
"grad_norm": 0.4337334328022437,
|
1319 |
+
"learning_rate": 0.00015088820297659314,
|
1320 |
+
"loss": 0.1891,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 1.76,
|
1325 |
+
"grad_norm": 0.4636781912221849,
|
1326 |
+
"learning_rate": 0.00015035592137210187,
|
1327 |
+
"loss": 0.193,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.77,
|
1332 |
+
"grad_norm": 0.47955885394967973,
|
1333 |
+
"learning_rate": 0.00014982172148164804,
|
1334 |
+
"loss": 0.1793,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.78,
|
1339 |
+
"grad_norm": 0.4721310395975314,
|
1340 |
+
"learning_rate": 0.00014928562365533392,
|
1341 |
+
"loss": 0.186,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 1.79,
|
1346 |
+
"grad_norm": 0.4737141537120664,
|
1347 |
+
"learning_rate": 0.00014874764831556285,
|
1348 |
+
"loss": 0.2058,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 1.8,
|
1353 |
+
"grad_norm": 0.40830849621087567,
|
1354 |
+
"learning_rate": 0.00014820781595626116,
|
1355 |
+
"loss": 0.1822,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 1.81,
|
1360 |
+
"grad_norm": 0.4272142710058541,
|
1361 |
+
"learning_rate": 0.0001476661471420975,
|
1362 |
+
"loss": 0.2057,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 1.81,
|
1367 |
+
"grad_norm": 0.4212227727031309,
|
1368 |
+
"learning_rate": 0.0001471226625076993,
|
1369 |
+
"loss": 0.1845,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.82,
|
1374 |
+
"grad_norm": 0.39660108389275345,
|
1375 |
+
"learning_rate": 0.0001465773827568671,
|
1376 |
+
"loss": 0.1769,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.83,
|
1381 |
+
"grad_norm": 0.38828383424285384,
|
1382 |
+
"learning_rate": 0.00014603032866178538,
|
1383 |
+
"loss": 0.1699,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 1.84,
|
1388 |
+
"grad_norm": 0.3681031142044674,
|
1389 |
+
"learning_rate": 0.00014548152106223157,
|
1390 |
+
"loss": 0.1456,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 1.85,
|
1395 |
+
"grad_norm": 0.46248659870169556,
|
1396 |
+
"learning_rate": 0.00014493098086478196,
|
1397 |
+
"loss": 0.1846,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 1.86,
|
1402 |
+
"grad_norm": 0.4437664820090981,
|
1403 |
+
"learning_rate": 0.00014437872904201542,
|
1404 |
+
"loss": 0.1706,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 1.87,
|
1409 |
+
"grad_norm": 0.4410375026146085,
|
1410 |
+
"learning_rate": 0.0001438247866317145,
|
1411 |
+
"loss": 0.1757,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.88,
|
1416 |
+
"grad_norm": 0.4290870801703047,
|
1417 |
+
"learning_rate": 0.00014326917473606366,
|
1418 |
+
"loss": 0.1777,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.89,
|
1423 |
+
"grad_norm": 0.4812130220306999,
|
1424 |
+
"learning_rate": 0.00014271191452084597,
|
1425 |
+
"loss": 0.2013,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 1.9,
|
1430 |
+
"grad_norm": 0.4314920290891278,
|
1431 |
+
"learning_rate": 0.00014215302721463623,
|
1432 |
+
"loss": 0.1857,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 1.9,
|
1437 |
+
"eval_blimp_filtered_avg": 0.7161194029850746,
|
1438 |
+
"eval_blimp_filtered_std": 0.005001692965803923,
|
1439 |
+
"step": 200
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 1.9,
|
1443 |
+
"eval_blimp_supplement_avg": 0.8211206896551724,
|
1444 |
+
"eval_blimp_supplement_std": 0.016785621805327337,
|
1445 |
+
"step": 200
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 1.9,
|
1449 |
+
"eval_vqa_filtered_avg": 0.51,
|
1450 |
+
"eval_vqa_filtered_std": 0.05024183937956912,
|
1451 |
+
"step": 200
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.9,
|
1455 |
+
"eval_winoground_filtered_avg": 0.62,
|
1456 |
+
"eval_winoground_filtered_std": 0.04878317312145633,
|
1457 |
+
"step": 200
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 1.91,
|
1461 |
+
"grad_norm": 0.41562514975066434,
|
1462 |
+
"learning_rate": 0.0001415925341079927,
|
1463 |
+
"loss": 0.21,
|
1464 |
+
"step": 201
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 1.92,
|
1468 |
+
"grad_norm": 0.37833993286875955,
|
1469 |
+
"learning_rate": 0.00014103045655264576,
|
1470 |
+
"loss": 0.1659,
|
1471 |
+
"step": 202
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 1.93,
|
1475 |
+
"grad_norm": 0.3880529818353851,
|
1476 |
+
"learning_rate": 0.00014046681596068466,
|
1477 |
+
"loss": 0.1638,
|
1478 |
+
"step": 203
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.94,
|
1482 |
+
"grad_norm": 0.40159118156434603,
|
1483 |
+
"learning_rate": 0.00013990163380374194,
|
1484 |
+
"loss": 0.1768,
|
1485 |
+
"step": 204
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.95,
|
1489 |
+
"grad_norm": 0.4086449128732129,
|
1490 |
+
"learning_rate": 0.00013933493161217523,
|
1491 |
+
"loss": 0.1544,
|
1492 |
+
"step": 205
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 1.96,
|
1496 |
+
"grad_norm": 0.3808287729283849,
|
1497 |
+
"learning_rate": 0.0001387667309742472,
|
1498 |
+
"loss": 0.1366,
|
1499 |
+
"step": 206
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 1.97,
|
1503 |
+
"grad_norm": 0.39609061286446773,
|
1504 |
+
"learning_rate": 0.0001381970535353032,
|
1505 |
+
"loss": 0.1494,
|
1506 |
+
"step": 207
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 1.98,
|
1510 |
+
"grad_norm": 0.40847272653729905,
|
1511 |
+
"learning_rate": 0.00013762592099694665,
|
1512 |
+
"loss": 0.1615,
|
1513 |
+
"step": 208
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 1.99,
|
1517 |
+
"grad_norm": 0.4334994696681873,
|
1518 |
+
"learning_rate": 0.00013705335511621228,
|
1519 |
+
"loss": 0.1542,
|
1520 |
+
"step": 209
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 2.0,
|
1524 |
+
"grad_norm": 0.4546384761691546,
|
1525 |
+
"learning_rate": 0.00013647937770473737,
|
1526 |
+
"loss": 0.1834,
|
1527 |
+
"step": 210
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 2.0,
|
1531 |
+
"grad_norm": 0.36130610610645814,
|
1532 |
+
"learning_rate": 0.00013590401062793083,
|
1533 |
+
"loss": 0.123,
|
1534 |
+
"step": 211
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 2.01,
|
1538 |
+
"grad_norm": 0.29975302946848653,
|
1539 |
+
"learning_rate": 0.0001353272758041402,
|
1540 |
+
"loss": 0.0824,
|
1541 |
+
"step": 212
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 2.02,
|
1545 |
+
"grad_norm": 0.29392603086414587,
|
1546 |
+
"learning_rate": 0.00013474919520381671,
|
1547 |
+
"loss": 0.0836,
|
1548 |
+
"step": 213
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 2.03,
|
1552 |
+
"grad_norm": 0.33169221984700814,
|
1553 |
+
"learning_rate": 0.00013416979084867852,
|
1554 |
+
"loss": 0.0683,
|
1555 |
+
"step": 214
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 2.04,
|
1559 |
+
"grad_norm": 0.39192700338704206,
|
1560 |
+
"learning_rate": 0.00013358908481087134,
|
1561 |
+
"loss": 0.0804,
|
1562 |
+
"step": 215
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 2.05,
|
1566 |
+
"grad_norm": 0.42443737109460977,
|
1567 |
+
"learning_rate": 0.0001330070992121281,
|
1568 |
+
"loss": 0.0797,
|
1569 |
+
"step": 216
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 2.06,
|
1573 |
+
"grad_norm": 0.42848813761714244,
|
1574 |
+
"learning_rate": 0.00013242385622292592,
|
1575 |
+
"loss": 0.0776,
|
1576 |
+
"step": 217
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 2.07,
|
1580 |
+
"grad_norm": 0.37448633759803696,
|
1581 |
+
"learning_rate": 0.00013183937806164172,
|
1582 |
+
"loss": 0.0739,
|
1583 |
+
"step": 218
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 2.08,
|
1587 |
+
"grad_norm": 0.3437440816482259,
|
1588 |
+
"learning_rate": 0.00013125368699370567,
|
1589 |
+
"loss": 0.0652,
|
1590 |
+
"step": 219
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 2.09,
|
1594 |
+
"grad_norm": 0.356415907025676,
|
1595 |
+
"learning_rate": 0.0001306668053307531,
|
1596 |
+
"loss": 0.0778,
|
1597 |
+
"step": 220
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 2.1,
|
1601 |
+
"grad_norm": 0.30675625825005026,
|
1602 |
+
"learning_rate": 0.00013007875542977448,
|
1603 |
+
"loss": 0.0665,
|
1604 |
+
"step": 221
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 2.11,
|
1608 |
+
"grad_norm": 0.29794655672460485,
|
1609 |
+
"learning_rate": 0.00012948955969226383,
|
1610 |
+
"loss": 0.0696,
|
1611 |
+
"step": 222
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 2.12,
|
1615 |
+
"grad_norm": 0.30163505061461343,
|
1616 |
+
"learning_rate": 0.00012889924056336532,
|
1617 |
+
"loss": 0.0705,
|
1618 |
+
"step": 223
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 2.13,
|
1622 |
+
"grad_norm": 0.32541739323213426,
|
1623 |
+
"learning_rate": 0.00012830782053101805,
|
1624 |
+
"loss": 0.0733,
|
1625 |
+
"step": 224
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 2.14,
|
1629 |
+
"grad_norm": 0.31121536090331003,
|
1630 |
+
"learning_rate": 0.00012771532212509974,
|
1631 |
+
"loss": 0.0711,
|
1632 |
+
"step": 225
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 2.15,
|
1636 |
+
"grad_norm": 0.34593292210442944,
|
1637 |
+
"learning_rate": 0.00012712176791656807,
|
1638 |
+
"loss": 0.0788,
|
1639 |
+
"step": 226
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 2.16,
|
1643 |
+
"grad_norm": 0.33946278651997686,
|
1644 |
+
"learning_rate": 0.0001265271805166012,
|
1645 |
+
"loss": 0.0677,
|
1646 |
+
"step": 227
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 2.17,
|
1650 |
+
"grad_norm": 0.3400898219352628,
|
1651 |
+
"learning_rate": 0.0001259315825757362,
|
1652 |
+
"loss": 0.0643,
|
1653 |
+
"step": 228
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 2.18,
|
1657 |
+
"grad_norm": 0.3813085350755264,
|
1658 |
+
"learning_rate": 0.00012533499678300618,
|
1659 |
+
"loss": 0.0761,
|
1660 |
+
"step": 229
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"epoch": 2.19,
|
1664 |
+
"grad_norm": 0.3523012248149677,
|
1665 |
+
"learning_rate": 0.00012473744586507604,
|
1666 |
+
"loss": 0.0648,
|
1667 |
+
"step": 230
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"epoch": 2.19,
|
1671 |
+
"grad_norm": 0.37842862853695125,
|
1672 |
+
"learning_rate": 0.00012413895258537675,
|
1673 |
+
"loss": 0.0812,
|
1674 |
+
"step": 231
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 2.2,
|
1678 |
+
"grad_norm": 0.39475455813661525,
|
1679 |
+
"learning_rate": 0.00012353953974323807,
|
1680 |
+
"loss": 0.0801,
|
1681 |
+
"step": 232
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 2.21,
|
1685 |
+
"grad_norm": 0.3205081471986943,
|
1686 |
+
"learning_rate": 0.00012293923017302002,
|
1687 |
+
"loss": 0.0677,
|
1688 |
+
"step": 233
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 2.22,
|
1692 |
+
"grad_norm": 0.31006899448135294,
|
1693 |
+
"learning_rate": 0.0001223380467432432,
|
1694 |
+
"loss": 0.07,
|
1695 |
+
"step": 234
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 2.23,
|
1699 |
+
"grad_norm": 0.3048520942780853,
|
1700 |
+
"learning_rate": 0.00012173601235571742,
|
1701 |
+
"loss": 0.0615,
|
1702 |
+
"step": 235
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"epoch": 2.24,
|
1706 |
+
"grad_norm": 0.3425413653893973,
|
1707 |
+
"learning_rate": 0.0001211331499446693,
|
1708 |
+
"loss": 0.0658,
|
1709 |
+
"step": 236
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 2.25,
|
1713 |
+
"grad_norm": 0.31929344956491607,
|
1714 |
+
"learning_rate": 0.00012052948247586873,
|
1715 |
+
"loss": 0.0653,
|
1716 |
+
"step": 237
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 2.26,
|
1720 |
+
"grad_norm": 0.3414359773691709,
|
1721 |
+
"learning_rate": 0.00011992503294575383,
|
1722 |
+
"loss": 0.0723,
|
1723 |
+
"step": 238
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"epoch": 2.27,
|
1727 |
+
"grad_norm": 0.32978160245312554,
|
1728 |
+
"learning_rate": 0.00011931982438055505,
|
1729 |
+
"loss": 0.07,
|
1730 |
+
"step": 239
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 2.28,
|
1734 |
+
"grad_norm": 0.33271868205929617,
|
1735 |
+
"learning_rate": 0.00011871387983541789,
|
1736 |
+
"loss": 0.0672,
|
1737 |
+
"step": 240
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 2.29,
|
1741 |
+
"grad_norm": 0.29862145989444433,
|
1742 |
+
"learning_rate": 0.00011810722239352467,
|
1743 |
+
"loss": 0.0603,
|
1744 |
+
"step": 241
|
1745 |
+
},
|
1746 |
+
{
|
1747 |
+
"epoch": 2.3,
|
1748 |
+
"grad_norm": 0.34485364985513034,
|
1749 |
+
"learning_rate": 0.00011749987516521523,
|
1750 |
+
"loss": 0.0632,
|
1751 |
+
"step": 242
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 2.31,
|
1755 |
+
"grad_norm": 0.3299899118013224,
|
1756 |
+
"learning_rate": 0.00011689186128710654,
|
1757 |
+
"loss": 0.0601,
|
1758 |
+
"step": 243
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 2.32,
|
1762 |
+
"grad_norm": 0.29635972892096896,
|
1763 |
+
"learning_rate": 0.00011628320392121117,
|
1764 |
+
"loss": 0.0558,
|
1765 |
+
"step": 244
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"epoch": 2.33,
|
1769 |
+
"grad_norm": 0.3414458592363874,
|
1770 |
+
"learning_rate": 0.0001156739262540552,
|
1771 |
+
"loss": 0.0703,
|
1772 |
+
"step": 245
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 2.34,
|
1776 |
+
"grad_norm": 0.3280087622706941,
|
1777 |
+
"learning_rate": 0.00011506405149579468,
|
1778 |
+
"loss": 0.0657,
|
1779 |
+
"step": 246
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 2.35,
|
1783 |
+
"grad_norm": 0.373086375777386,
|
1784 |
+
"learning_rate": 0.00011445360287933165,
|
1785 |
+
"loss": 0.0668,
|
1786 |
+
"step": 247
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 2.36,
|
1790 |
+
"grad_norm": 0.2937645914714354,
|
1791 |
+
"learning_rate": 0.00011384260365942904,
|
1792 |
+
"loss": 0.0612,
|
1793 |
+
"step": 248
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 2.37,
|
1797 |
+
"grad_norm": 0.39022311054047737,
|
1798 |
+
"learning_rate": 0.00011323107711182473,
|
1799 |
+
"loss": 0.0762,
|
1800 |
+
"step": 249
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 2.38,
|
1804 |
+
"grad_norm": 0.3345521008714258,
|
1805 |
+
"learning_rate": 0.00011261904653234485,
|
1806 |
+
"loss": 0.0711,
|
1807 |
+
"step": 250
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 2.38,
|
1811 |
+
"grad_norm": 0.30608871062806836,
|
1812 |
+
"learning_rate": 0.00011200653523601652,
|
1813 |
+
"loss": 0.0617,
|
1814 |
+
"step": 251
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 2.39,
|
1818 |
+
"grad_norm": 0.30714147902477945,
|
1819 |
+
"learning_rate": 0.00011139356655617945,
|
1820 |
+
"loss": 0.063,
|
1821 |
+
"step": 252
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 2.4,
|
1825 |
+
"grad_norm": 0.31051190204375445,
|
1826 |
+
"learning_rate": 0.00011078016384359724,
|
1827 |
+
"loss": 0.0659,
|
1828 |
+
"step": 253
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"epoch": 2.41,
|
1832 |
+
"grad_norm": 0.3071085278813772,
|
1833 |
+
"learning_rate": 0.00011016635046556772,
|
1834 |
+
"loss": 0.061,
|
1835 |
+
"step": 254
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"epoch": 2.42,
|
1839 |
+
"grad_norm": 0.3045837343462885,
|
1840 |
+
"learning_rate": 0.00010955214980503284,
|
1841 |
+
"loss": 0.0597,
|
1842 |
+
"step": 255
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"epoch": 2.43,
|
1846 |
+
"grad_norm": 0.3049959198680976,
|
1847 |
+
"learning_rate": 0.00010893758525968789,
|
1848 |
+
"loss": 0.0587,
|
1849 |
+
"step": 256
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 2.44,
|
1853 |
+
"grad_norm": 0.3168437149994661,
|
1854 |
+
"learning_rate": 0.00010832268024109025,
|
1855 |
+
"loss": 0.0559,
|
1856 |
+
"step": 257
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 2.45,
|
1860 |
+
"grad_norm": 0.3024342626013227,
|
1861 |
+
"learning_rate": 0.00010770745817376742,
|
1862 |
+
"loss": 0.0583,
|
1863 |
+
"step": 258
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 2.46,
|
1867 |
+
"grad_norm": 0.3188509232471995,
|
1868 |
+
"learning_rate": 0.0001070919424943247,
|
1869 |
+
"loss": 0.061,
|
1870 |
+
"step": 259
|
1871 |
+
},
|
1872 |
+
{
|
1873 |
+
"epoch": 2.47,
|
1874 |
+
"grad_norm": 0.3381945814712772,
|
1875 |
+
"learning_rate": 0.0001064761566505525,
|
1876 |
+
"loss": 0.0648,
|
1877 |
+
"step": 260
|
1878 |
+
},
|
1879 |
+
{
|
1880 |
+
"epoch": 2.48,
|
1881 |
+
"grad_norm": 0.3131931451431926,
|
1882 |
+
"learning_rate": 0.00010586012410053292,
|
1883 |
+
"loss": 0.0624,
|
1884 |
+
"step": 261
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 2.49,
|
1888 |
+
"grad_norm": 0.32809637984753304,
|
1889 |
+
"learning_rate": 0.00010524386831174628,
|
1890 |
+
"loss": 0.0627,
|
1891 |
+
"step": 262
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"epoch": 2.5,
|
1895 |
+
"grad_norm": 0.2832796499168925,
|
1896 |
+
"learning_rate": 0.00010462741276017711,
|
1897 |
+
"loss": 0.0535,
|
1898 |
+
"step": 263
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 2.51,
|
1902 |
+
"grad_norm": 0.3334141162384235,
|
1903 |
+
"learning_rate": 0.00010401078092941971,
|
1904 |
+
"loss": 0.061,
|
1905 |
+
"step": 264
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 2.52,
|
1909 |
+
"grad_norm": 0.27653747850590626,
|
1910 |
+
"learning_rate": 0.00010339399630978373,
|
1911 |
+
"loss": 0.0497,
|
1912 |
+
"step": 265
|
1913 |
+
},
|
1914 |
+
{
|
1915 |
+
"epoch": 2.53,
|
1916 |
+
"grad_norm": 0.32205480409336124,
|
1917 |
+
"learning_rate": 0.00010277708239739924,
|
1918 |
+
"loss": 0.0658,
|
1919 |
+
"step": 266
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 2.54,
|
1923 |
+
"grad_norm": 0.310079147965717,
|
1924 |
+
"learning_rate": 0.0001021600626933217,
|
1925 |
+
"loss": 0.0525,
|
1926 |
+
"step": 267
|
1927 |
+
},
|
1928 |
+
{
|
1929 |
+
"epoch": 2.55,
|
1930 |
+
"grad_norm": 0.31094425691461797,
|
1931 |
+
"learning_rate": 0.00010154296070263649,
|
1932 |
+
"loss": 0.0619,
|
1933 |
+
"step": 268
|
1934 |
+
},
|
1935 |
+
{
|
1936 |
+
"epoch": 2.56,
|
1937 |
+
"grad_norm": 0.33419799536496597,
|
1938 |
+
"learning_rate": 0.00010092579993356386,
|
1939 |
+
"loss": 0.0615,
|
1940 |
+
"step": 269
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 2.57,
|
1944 |
+
"grad_norm": 0.3343121767672678,
|
1945 |
+
"learning_rate": 0.00010030860389656305,
|
1946 |
+
"loss": 0.0663,
|
1947 |
+
"step": 270
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 2.57,
|
1951 |
+
"grad_norm": 0.3516117623617434,
|
1952 |
+
"learning_rate": 9.969139610343696e-05,
|
1953 |
+
"loss": 0.0662,
|
1954 |
+
"step": 271
|
1955 |
+
},
|
1956 |
+
{
|
1957 |
+
"epoch": 2.58,
|
1958 |
+
"grad_norm": 0.31796912631433194,
|
1959 |
+
"learning_rate": 9.907420006643619e-05,
|
1960 |
+
"loss": 0.0624,
|
1961 |
+
"step": 272
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 2.59,
|
1965 |
+
"grad_norm": 0.29219460425245597,
|
1966 |
+
"learning_rate": 9.845703929736351e-05,
|
1967 |
+
"loss": 0.0596,
|
1968 |
+
"step": 273
|
1969 |
+
},
|
1970 |
+
{
|
1971 |
+
"epoch": 2.6,
|
1972 |
+
"grad_norm": 0.316635170830544,
|
1973 |
+
"learning_rate": 9.783993730667831e-05,
|
1974 |
+
"loss": 0.0659,
|
1975 |
+
"step": 274
|
1976 |
+
},
|
1977 |
+
{
|
1978 |
+
"epoch": 2.61,
|
1979 |
+
"grad_norm": 0.33766616368603597,
|
1980 |
+
"learning_rate": 9.722291760260077e-05,
|
1981 |
+
"loss": 0.0646,
|
1982 |
+
"step": 275
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 2.62,
|
1986 |
+
"grad_norm": 0.31287192455811574,
|
1987 |
+
"learning_rate": 9.66060036902163e-05,
|
1988 |
+
"loss": 0.0585,
|
1989 |
+
"step": 276
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 2.63,
|
1993 |
+
"grad_norm": 0.28964582015181484,
|
1994 |
+
"learning_rate": 9.598921907058033e-05,
|
1995 |
+
"loss": 0.0543,
|
1996 |
+
"step": 277
|
1997 |
+
},
|
1998 |
+
{
|
1999 |
+
"epoch": 2.64,
|
2000 |
+
"grad_norm": 0.3037919396698326,
|
2001 |
+
"learning_rate": 9.53725872398229e-05,
|
2002 |
+
"loss": 0.0512,
|
2003 |
+
"step": 278
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"epoch": 2.65,
|
2007 |
+
"grad_norm": 0.3229974938313004,
|
2008 |
+
"learning_rate": 9.475613168825374e-05,
|
2009 |
+
"loss": 0.0531,
|
2010 |
+
"step": 279
|
2011 |
+
},
|
2012 |
+
{
|
2013 |
+
"epoch": 2.66,
|
2014 |
+
"grad_norm": 0.29881091304580676,
|
2015 |
+
"learning_rate": 9.413987589946711e-05,
|
2016 |
+
"loss": 0.0569,
|
2017 |
+
"step": 280
|
2018 |
+
},
|
2019 |
+
{
|
2020 |
+
"epoch": 2.67,
|
2021 |
+
"grad_norm": 0.29692909307641674,
|
2022 |
+
"learning_rate": 9.352384334944753e-05,
|
2023 |
+
"loss": 0.0547,
|
2024 |
+
"step": 281
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 2.68,
|
2028 |
+
"grad_norm": 0.33439942628885455,
|
2029 |
+
"learning_rate": 9.290805750567532e-05,
|
2030 |
+
"loss": 0.0622,
|
2031 |
+
"step": 282
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 2.69,
|
2035 |
+
"grad_norm": 0.2991141437988068,
|
2036 |
+
"learning_rate": 9.22925418262326e-05,
|
2037 |
+
"loss": 0.0464,
|
2038 |
+
"step": 283
|
2039 |
+
},
|
2040 |
+
{
|
2041 |
+
"epoch": 2.7,
|
2042 |
+
"grad_norm": 0.3171911760038229,
|
2043 |
+
"learning_rate": 9.167731975890976e-05,
|
2044 |
+
"loss": 0.059,
|
2045 |
+
"step": 284
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"epoch": 2.71,
|
2049 |
+
"grad_norm": 0.30072460150102115,
|
2050 |
+
"learning_rate": 9.106241474031212e-05,
|
2051 |
+
"loss": 0.0559,
|
2052 |
+
"step": 285
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"epoch": 2.72,
|
2056 |
+
"grad_norm": 0.3301896190647226,
|
2057 |
+
"learning_rate": 9.04478501949672e-05,
|
2058 |
+
"loss": 0.0514,
|
2059 |
+
"step": 286
|
2060 |
+
},
|
2061 |
+
{
|
2062 |
+
"epoch": 2.73,
|
2063 |
+
"grad_norm": 0.3298071637508188,
|
2064 |
+
"learning_rate": 8.983364953443227e-05,
|
2065 |
+
"loss": 0.0618,
|
2066 |
+
"step": 287
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 2.74,
|
2070 |
+
"grad_norm": 0.3497185839244567,
|
2071 |
+
"learning_rate": 8.921983615640277e-05,
|
2072 |
+
"loss": 0.065,
|
2073 |
+
"step": 288
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 2.75,
|
2077 |
+
"grad_norm": 0.33084725547728233,
|
2078 |
+
"learning_rate": 8.860643344382056e-05,
|
2079 |
+
"loss": 0.0527,
|
2080 |
+
"step": 289
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"epoch": 2.76,
|
2084 |
+
"grad_norm": 0.33012822636415956,
|
2085 |
+
"learning_rate": 8.79934647639835e-05,
|
2086 |
+
"loss": 0.0666,
|
2087 |
+
"step": 290
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 2.76,
|
2091 |
+
"grad_norm": 0.3151687548518561,
|
2092 |
+
"learning_rate": 8.738095346765518e-05,
|
2093 |
+
"loss": 0.0573,
|
2094 |
+
"step": 291
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 2.77,
|
2098 |
+
"grad_norm": 0.30346203875619676,
|
2099 |
+
"learning_rate": 8.676892288817531e-05,
|
2100 |
+
"loss": 0.0491,
|
2101 |
+
"step": 292
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 2.78,
|
2105 |
+
"grad_norm": 0.3133369298353677,
|
2106 |
+
"learning_rate": 8.615739634057098e-05,
|
2107 |
+
"loss": 0.0595,
|
2108 |
+
"step": 293
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 2.79,
|
2112 |
+
"grad_norm": 0.28715782085999497,
|
2113 |
+
"learning_rate": 8.554639712066836e-05,
|
2114 |
+
"loss": 0.0542,
|
2115 |
+
"step": 294
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 2.8,
|
2119 |
+
"grad_norm": 0.2815995010771035,
|
2120 |
+
"learning_rate": 8.493594850420537e-05,
|
2121 |
+
"loss": 0.0551,
|
2122 |
+
"step": 295
|
2123 |
+
},
|
2124 |
+
{
|
2125 |
+
"epoch": 2.81,
|
2126 |
+
"grad_norm": 0.280576878443274,
|
2127 |
+
"learning_rate": 8.432607374594484e-05,
|
2128 |
+
"loss": 0.0488,
|
2129 |
+
"step": 296
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 2.82,
|
2133 |
+
"grad_norm": 0.298809991890747,
|
2134 |
+
"learning_rate": 8.371679607878884e-05,
|
2135 |
+
"loss": 0.0544,
|
2136 |
+
"step": 297
|
2137 |
+
},
|
2138 |
+
{
|
2139 |
+
"epoch": 2.83,
|
2140 |
+
"grad_norm": 0.30088222272143067,
|
2141 |
+
"learning_rate": 8.310813871289348e-05,
|
2142 |
+
"loss": 0.0591,
|
2143 |
+
"step": 298
|
2144 |
+
},
|
2145 |
+
{
|
2146 |
+
"epoch": 2.84,
|
2147 |
+
"grad_norm": 0.3237358977236424,
|
2148 |
+
"learning_rate": 8.250012483478478e-05,
|
2149 |
+
"loss": 0.0547,
|
2150 |
+
"step": 299
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 2.85,
|
2154 |
+
"grad_norm": 0.34075237005827885,
|
2155 |
+
"learning_rate": 8.189277760647537e-05,
|
2156 |
+
"loss": 0.0566,
|
2157 |
+
"step": 300
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 2.85,
|
2161 |
+
"eval_blimp_filtered_avg": 0.7037313432835821,
|
2162 |
+
"eval_blimp_filtered_std": 0.005058972315437875,
|
2163 |
+
"step": 300
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 2.85,
|
2167 |
+
"eval_blimp_supplement_avg": 0.8103448275862069,
|
2168 |
+
"eval_blimp_supplement_std": 0.017321145118445798,
|
2169 |
+
"step": 300
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 2.85,
|
2173 |
+
"eval_vqa_filtered_avg": 0.53,
|
2174 |
+
"eval_vqa_filtered_std": 0.0501613558046592,
|
2175 |
+
"step": 300
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 2.85,
|
2179 |
+
"eval_winoground_filtered_avg": 0.68,
|
2180 |
+
"eval_winoground_filtered_std": 0.046882617226215034,
|
2181 |
+
"step": 300
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 2.86,
|
2185 |
+
"grad_norm": 0.3237263865460515,
|
2186 |
+
"learning_rate": 8.128612016458215e-05,
|
2187 |
+
"loss": 0.059,
|
2188 |
+
"step": 301
|
2189 |
+
},
|
2190 |
+
{
|
2191 |
+
"epoch": 2.87,
|
2192 |
+
"grad_norm": 0.2977357286247905,
|
2193 |
+
"learning_rate": 8.068017561944499e-05,
|
2194 |
+
"loss": 0.0492,
|
2195 |
+
"step": 302
|
2196 |
+
},
|
2197 |
+
{
|
2198 |
+
"epoch": 2.88,
|
2199 |
+
"grad_norm": 0.29591506818063545,
|
2200 |
+
"learning_rate": 8.00749670542462e-05,
|
2201 |
+
"loss": 0.052,
|
2202 |
+
"step": 303
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"epoch": 2.89,
|
2206 |
+
"grad_norm": 0.2789469075911483,
|
2207 |
+
"learning_rate": 7.94705175241313e-05,
|
2208 |
+
"loss": 0.0455,
|
2209 |
+
"step": 304
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"epoch": 2.9,
|
2213 |
+
"grad_norm": 0.2997082343784124,
|
2214 |
+
"learning_rate": 7.886685005533072e-05,
|
2215 |
+
"loss": 0.0498,
|
2216 |
+
"step": 305
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 2.91,
|
2220 |
+
"grad_norm": 0.30157528073661777,
|
2221 |
+
"learning_rate": 7.82639876442826e-05,
|
2222 |
+
"loss": 0.0567,
|
2223 |
+
"step": 306
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 2.92,
|
2227 |
+
"grad_norm": 0.32803298910194756,
|
2228 |
+
"learning_rate": 7.76619532567568e-05,
|
2229 |
+
"loss": 0.0622,
|
2230 |
+
"step": 307
|
2231 |
+
},
|
2232 |
+
{
|
2233 |
+
"epoch": 2.93,
|
2234 |
+
"grad_norm": 0.28556449374878695,
|
2235 |
+
"learning_rate": 7.706076982697999e-05,
|
2236 |
+
"loss": 0.0489,
|
2237 |
+
"step": 308
|
2238 |
+
},
|
2239 |
+
{
|
2240 |
+
"epoch": 2.94,
|
2241 |
+
"grad_norm": 0.32287162854623286,
|
2242 |
+
"learning_rate": 7.646046025676198e-05,
|
2243 |
+
"loss": 0.066,
|
2244 |
+
"step": 309
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 2.95,
|
2248 |
+
"grad_norm": 0.3384064716667544,
|
2249 |
+
"learning_rate": 7.586104741462325e-05,
|
2250 |
+
"loss": 0.0629,
|
2251 |
+
"step": 310
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 2.95,
|
2255 |
+
"grad_norm": 0.3005901634146794,
|
2256 |
+
"learning_rate": 7.526255413492395e-05,
|
2257 |
+
"loss": 0.051,
|
2258 |
+
"step": 311
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 2.96,
|
2262 |
+
"grad_norm": 0.2907146546357962,
|
2263 |
+
"learning_rate": 7.466500321699383e-05,
|
2264 |
+
"loss": 0.0546,
|
2265 |
+
"step": 312
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 2.97,
|
2269 |
+
"grad_norm": 0.30779520364750435,
|
2270 |
+
"learning_rate": 7.40684174242638e-05,
|
2271 |
+
"loss": 0.058,
|
2272 |
+
"step": 313
|
2273 |
+
},
|
2274 |
+
{
|
2275 |
+
"epoch": 2.98,
|
2276 |
+
"grad_norm": 0.29074373091101263,
|
2277 |
+
"learning_rate": 7.347281948339879e-05,
|
2278 |
+
"loss": 0.0463,
|
2279 |
+
"step": 314
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 2.99,
|
2283 |
+
"grad_norm": 0.32970798475445445,
|
2284 |
+
"learning_rate": 7.287823208343192e-05,
|
2285 |
+
"loss": 0.0589,
|
2286 |
+
"step": 315
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"epoch": 3.0,
|
2290 |
+
"grad_norm": 0.2798345327195924,
|
2291 |
+
"learning_rate": 7.228467787490028e-05,
|
2292 |
+
"loss": 0.0438,
|
2293 |
+
"step": 316
|
2294 |
+
},
|
2295 |
+
{
|
2296 |
+
"epoch": 3.01,
|
2297 |
+
"grad_norm": 0.18326848967204043,
|
2298 |
+
"learning_rate": 7.169217946898197e-05,
|
2299 |
+
"loss": 0.0225,
|
2300 |
+
"step": 317
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 3.02,
|
2304 |
+
"grad_norm": 0.18022372679373735,
|
2305 |
+
"learning_rate": 7.110075943663472e-05,
|
2306 |
+
"loss": 0.0161,
|
2307 |
+
"step": 318
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 3.03,
|
2311 |
+
"grad_norm": 0.1633153575928502,
|
2312 |
+
"learning_rate": 7.051044030773618e-05,
|
2313 |
+
"loss": 0.0153,
|
2314 |
+
"step": 319
|
2315 |
+
},
|
2316 |
+
{
|
2317 |
+
"epoch": 3.04,
|
2318 |
+
"grad_norm": 0.17802284328446474,
|
2319 |
+
"learning_rate": 6.992124457022553e-05,
|
2320 |
+
"loss": 0.0176,
|
2321 |
+
"step": 320
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 3.05,
|
2325 |
+
"grad_norm": 0.17359891604740127,
|
2326 |
+
"learning_rate": 6.933319466924693e-05,
|
2327 |
+
"loss": 0.0162,
|
2328 |
+
"step": 321
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 3.06,
|
2332 |
+
"grad_norm": 0.2202987501804585,
|
2333 |
+
"learning_rate": 6.874631300629435e-05,
|
2334 |
+
"loss": 0.0162,
|
2335 |
+
"step": 322
|
2336 |
+
},
|
2337 |
+
{
|
2338 |
+
"epoch": 3.07,
|
2339 |
+
"grad_norm": 0.22277821921264357,
|
2340 |
+
"learning_rate": 6.81606219383583e-05,
|
2341 |
+
"loss": 0.0187,
|
2342 |
+
"step": 323
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 3.08,
|
2346 |
+
"grad_norm": 0.18724963681022663,
|
2347 |
+
"learning_rate": 6.757614377707409e-05,
|
2348 |
+
"loss": 0.0153,
|
2349 |
+
"step": 324
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 3.09,
|
2353 |
+
"grad_norm": 0.21995220887794256,
|
2354 |
+
"learning_rate": 6.699290078787193e-05,
|
2355 |
+
"loss": 0.0188,
|
2356 |
+
"step": 325
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 3.1,
|
2360 |
+
"grad_norm": 0.1967935793635855,
|
2361 |
+
"learning_rate": 6.641091518912867e-05,
|
2362 |
+
"loss": 0.0156,
|
2363 |
+
"step": 326
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 3.11,
|
2367 |
+
"grad_norm": 0.20661934683104752,
|
2368 |
+
"learning_rate": 6.583020915132152e-05,
|
2369 |
+
"loss": 0.0158,
|
2370 |
+
"step": 327
|
2371 |
+
},
|
2372 |
+
{
|
2373 |
+
"epoch": 3.12,
|
2374 |
+
"grad_norm": 0.2422474266231083,
|
2375 |
+
"learning_rate": 6.525080479618331e-05,
|
2376 |
+
"loss": 0.0177,
|
2377 |
+
"step": 328
|
2378 |
+
},
|
2379 |
+
{
|
2380 |
+
"epoch": 3.13,
|
2381 |
+
"grad_norm": 0.18354685059507367,
|
2382 |
+
"learning_rate": 6.467272419585984e-05,
|
2383 |
+
"loss": 0.013,
|
2384 |
+
"step": 329
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 3.14,
|
2388 |
+
"grad_norm": 0.22423754187379397,
|
2389 |
+
"learning_rate": 6.40959893720692e-05,
|
2390 |
+
"loss": 0.0188,
|
2391 |
+
"step": 330
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 3.14,
|
2395 |
+
"grad_norm": 0.18994008796265852,
|
2396 |
+
"learning_rate": 6.352062229526266e-05,
|
2397 |
+
"loss": 0.0132,
|
2398 |
+
"step": 331
|
2399 |
+
},
|
2400 |
+
{
|
2401 |
+
"epoch": 3.15,
|
2402 |
+
"grad_norm": 0.24715301748493912,
|
2403 |
+
"learning_rate": 6.294664488378776e-05,
|
2404 |
+
"loss": 0.015,
|
2405 |
+
"step": 332
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"epoch": 3.16,
|
2409 |
+
"grad_norm": 0.17280498203848704,
|
2410 |
+
"learning_rate": 6.237407900305335e-05,
|
2411 |
+
"loss": 0.0138,
|
2412 |
+
"step": 333
|
2413 |
+
},
|
2414 |
+
{
|
2415 |
+
"epoch": 3.17,
|
2416 |
+
"grad_norm": 0.21773200395950232,
|
2417 |
+
"learning_rate": 6.180294646469679e-05,
|
2418 |
+
"loss": 0.0155,
|
2419 |
+
"step": 334
|
2420 |
+
},
|
2421 |
+
{
|
2422 |
+
"epoch": 3.18,
|
2423 |
+
"grad_norm": 0.2144971485793242,
|
2424 |
+
"learning_rate": 6.123326902575282e-05,
|
2425 |
+
"loss": 0.0158,
|
2426 |
+
"step": 335
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 3.19,
|
2430 |
+
"grad_norm": 0.18331926033535073,
|
2431 |
+
"learning_rate": 6.06650683878248e-05,
|
2432 |
+
"loss": 0.013,
|
2433 |
+
"step": 336
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 3.2,
|
2437 |
+
"grad_norm": 0.1788180130126268,
|
2438 |
+
"learning_rate": 6.009836619625809e-05,
|
2439 |
+
"loss": 0.0133,
|
2440 |
+
"step": 337
|
2441 |
+
},
|
2442 |
+
{
|
2443 |
+
"epoch": 3.21,
|
2444 |
+
"grad_norm": 0.20337677688861636,
|
2445 |
+
"learning_rate": 5.953318403931532e-05,
|
2446 |
+
"loss": 0.0129,
|
2447 |
+
"step": 338
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 3.22,
|
2451 |
+
"grad_norm": 0.20853998405220736,
|
2452 |
+
"learning_rate": 5.896954344735426e-05,
|
2453 |
+
"loss": 0.0176,
|
2454 |
+
"step": 339
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 3.23,
|
2458 |
+
"grad_norm": 0.1919639102705018,
|
2459 |
+
"learning_rate": 5.840746589200732e-05,
|
2460 |
+
"loss": 0.0144,
|
2461 |
+
"step": 340
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"epoch": 3.24,
|
2465 |
+
"grad_norm": 0.2134469059873606,
|
2466 |
+
"learning_rate": 5.784697278536379e-05,
|
2467 |
+
"loss": 0.0138,
|
2468 |
+
"step": 341
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 3.25,
|
2472 |
+
"grad_norm": 0.18435084201272836,
|
2473 |
+
"learning_rate": 5.728808547915405e-05,
|
2474 |
+
"loss": 0.0135,
|
2475 |
+
"step": 342
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 3.26,
|
2479 |
+
"grad_norm": 0.19554570393158438,
|
2480 |
+
"learning_rate": 5.673082526393634e-05,
|
2481 |
+
"loss": 0.015,
|
2482 |
+
"step": 343
|
2483 |
+
},
|
2484 |
+
{
|
2485 |
+
"epoch": 3.27,
|
2486 |
+
"grad_norm": 0.18522448379098544,
|
2487 |
+
"learning_rate": 5.617521336828556e-05,
|
2488 |
+
"loss": 0.0129,
|
2489 |
+
"step": 344
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 3.28,
|
2493 |
+
"grad_norm": 0.190207008998555,
|
2494 |
+
"learning_rate": 5.5621270957984573e-05,
|
2495 |
+
"loss": 0.0161,
|
2496 |
+
"step": 345
|
2497 |
+
},
|
2498 |
+
{
|
2499 |
+
"epoch": 3.29,
|
2500 |
+
"grad_norm": 0.19594053008897275,
|
2501 |
+
"learning_rate": 5.506901913521808e-05,
|
2502 |
+
"loss": 0.0162,
|
2503 |
+
"step": 346
|
2504 |
+
},
|
2505 |
+
{
|
2506 |
+
"epoch": 3.3,
|
2507 |
+
"grad_norm": 0.20111569255746164,
|
2508 |
+
"learning_rate": 5.451847893776845e-05,
|
2509 |
+
"loss": 0.0147,
|
2510 |
+
"step": 347
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 3.31,
|
2514 |
+
"grad_norm": 0.20867562278084897,
|
2515 |
+
"learning_rate": 5.396967133821461e-05,
|
2516 |
+
"loss": 0.0154,
|
2517 |
+
"step": 348
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 3.32,
|
2521 |
+
"grad_norm": 0.16028325232055693,
|
2522 |
+
"learning_rate": 5.342261724313292e-05,
|
2523 |
+
"loss": 0.0117,
|
2524 |
+
"step": 349
|
2525 |
+
},
|
2526 |
+
{
|
2527 |
+
"epoch": 3.33,
|
2528 |
+
"grad_norm": 0.14992620939570764,
|
2529 |
+
"learning_rate": 5.28773374923007e-05,
|
2530 |
+
"loss": 0.0106,
|
2531 |
+
"step": 350
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"epoch": 3.33,
|
2535 |
+
"grad_norm": 0.20669460754401175,
|
2536 |
+
"learning_rate": 5.2333852857902575e-05,
|
2537 |
+
"loss": 0.0161,
|
2538 |
+
"step": 351
|
2539 |
+
},
|
2540 |
+
{
|
2541 |
+
"epoch": 3.34,
|
2542 |
+
"grad_norm": 0.21934716169620833,
|
2543 |
+
"learning_rate": 5.1792184043738855e-05,
|
2544 |
+
"loss": 0.0128,
|
2545 |
+
"step": 352
|
2546 |
+
},
|
2547 |
+
{
|
2548 |
+
"epoch": 3.35,
|
2549 |
+
"grad_norm": 0.18204794157825063,
|
2550 |
+
"learning_rate": 5.1252351684437136e-05,
|
2551 |
+
"loss": 0.0129,
|
2552 |
+
"step": 353
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 3.36,
|
2556 |
+
"grad_norm": 0.21363608639584963,
|
2557 |
+
"learning_rate": 5.071437634466609e-05,
|
2558 |
+
"loss": 0.0105,
|
2559 |
+
"step": 354
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 3.37,
|
2563 |
+
"grad_norm": 0.15881770971724649,
|
2564 |
+
"learning_rate": 5.0178278518351983e-05,
|
2565 |
+
"loss": 0.0096,
|
2566 |
+
"step": 355
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 3.38,
|
2570 |
+
"grad_norm": 0.1980006966366768,
|
2571 |
+
"learning_rate": 4.964407862789817e-05,
|
2572 |
+
"loss": 0.0119,
|
2573 |
+
"step": 356
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"epoch": 3.39,
|
2577 |
+
"grad_norm": 0.21004802159627842,
|
2578 |
+
"learning_rate": 4.911179702340688e-05,
|
2579 |
+
"loss": 0.0119,
|
2580 |
+
"step": 357
|
2581 |
+
},
|
2582 |
+
{
|
2583 |
+
"epoch": 3.4,
|
2584 |
+
"grad_norm": 0.20419756258161648,
|
2585 |
+
"learning_rate": 4.85814539819042e-05,
|
2586 |
+
"loss": 0.0145,
|
2587 |
+
"step": 358
|
2588 |
+
},
|
2589 |
+
{
|
2590 |
+
"epoch": 3.41,
|
2591 |
+
"grad_norm": 0.1565818058300373,
|
2592 |
+
"learning_rate": 4.8053069706567554e-05,
|
2593 |
+
"loss": 0.0105,
|
2594 |
+
"step": 359
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 3.42,
|
2598 |
+
"grad_norm": 0.19501698471957343,
|
2599 |
+
"learning_rate": 4.752666432595596e-05,
|
2600 |
+
"loss": 0.0126,
|
2601 |
+
"step": 360
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 3.43,
|
2605 |
+
"grad_norm": 0.20941486180216556,
|
2606 |
+
"learning_rate": 4.700225789324343e-05,
|
2607 |
+
"loss": 0.0105,
|
2608 |
+
"step": 361
|
2609 |
+
},
|
2610 |
+
{
|
2611 |
+
"epoch": 3.44,
|
2612 |
+
"grad_norm": 0.18304197382791004,
|
2613 |
+
"learning_rate": 4.647987038545496e-05,
|
2614 |
+
"loss": 0.011,
|
2615 |
+
"step": 362
|
2616 |
+
},
|
2617 |
+
{
|
2618 |
+
"epoch": 3.45,
|
2619 |
+
"grad_norm": 0.16720171411001336,
|
2620 |
+
"learning_rate": 4.595952170270542e-05,
|
2621 |
+
"loss": 0.0112,
|
2622 |
+
"step": 363
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"epoch": 3.46,
|
2626 |
+
"grad_norm": 0.22478251297433013,
|
2627 |
+
"learning_rate": 4.544123166744172e-05,
|
2628 |
+
"loss": 0.0118,
|
2629 |
+
"step": 364
|
2630 |
+
},
|
2631 |
+
{
|
2632 |
+
"epoch": 3.47,
|
2633 |
+
"grad_norm": 0.1598572948562243,
|
2634 |
+
"learning_rate": 4.492502002368738e-05,
|
2635 |
+
"loss": 0.0107,
|
2636 |
+
"step": 365
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 3.48,
|
2640 |
+
"grad_norm": 0.22373563049772874,
|
2641 |
+
"learning_rate": 4.4410906436290566e-05,
|
2642 |
+
"loss": 0.0104,
|
2643 |
+
"step": 366
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 3.49,
|
2647 |
+
"grad_norm": 0.16802667132434534,
|
2648 |
+
"learning_rate": 4.38989104901751e-05,
|
2649 |
+
"loss": 0.0114,
|
2650 |
+
"step": 367
|
2651 |
+
},
|
2652 |
+
{
|
2653 |
+
"epoch": 3.5,
|
2654 |
+
"grad_norm": 0.24550738449688075,
|
2655 |
+
"learning_rate": 4.3389051689594e-05,
|
2656 |
+
"loss": 0.0121,
|
2657 |
+
"step": 368
|
2658 |
+
},
|
2659 |
+
{
|
2660 |
+
"epoch": 3.51,
|
2661 |
+
"grad_norm": 0.1660066244443363,
|
2662 |
+
"learning_rate": 4.288134945738684e-05,
|
2663 |
+
"loss": 0.0099,
|
2664 |
+
"step": 369
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 3.52,
|
2668 |
+
"grad_norm": 0.1783889244909253,
|
2669 |
+
"learning_rate": 4.237582313423962e-05,
|
2670 |
+
"loss": 0.0094,
|
2671 |
+
"step": 370
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 3.52,
|
2675 |
+
"grad_norm": 0.17141038466777303,
|
2676 |
+
"learning_rate": 4.187249197794813e-05,
|
2677 |
+
"loss": 0.0095,
|
2678 |
+
"step": 371
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 3.53,
|
2682 |
+
"grad_norm": 0.1893721805088239,
|
2683 |
+
"learning_rate": 4.137137516268426e-05,
|
2684 |
+
"loss": 0.013,
|
2685 |
+
"step": 372
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 3.54,
|
2689 |
+
"grad_norm": 0.16935951673752134,
|
2690 |
+
"learning_rate": 4.0872491778265535e-05,
|
2691 |
+
"loss": 0.0091,
|
2692 |
+
"step": 373
|
2693 |
+
},
|
2694 |
+
{
|
2695 |
+
"epoch": 3.55,
|
2696 |
+
"grad_norm": 0.13309068523326859,
|
2697 |
+
"learning_rate": 4.037586082942805e-05,
|
2698 |
+
"loss": 0.0091,
|
2699 |
+
"step": 374
|
2700 |
+
},
|
2701 |
+
{
|
2702 |
+
"epoch": 3.56,
|
2703 |
+
"grad_norm": 0.18791651271841342,
|
2704 |
+
"learning_rate": 3.988150123510224e-05,
|
2705 |
+
"loss": 0.0121,
|
2706 |
+
"step": 375
|
2707 |
+
},
|
2708 |
+
{
|
2709 |
+
"epoch": 3.57,
|
2710 |
+
"grad_norm": 0.1559825545952661,
|
2711 |
+
"learning_rate": 3.938943182769246e-05,
|
2712 |
+
"loss": 0.0102,
|
2713 |
+
"step": 376
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"epoch": 3.58,
|
2717 |
+
"grad_norm": 0.2261919531211638,
|
2718 |
+
"learning_rate": 3.88996713523594e-05,
|
2719 |
+
"loss": 0.0127,
|
2720 |
+
"step": 377
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 3.59,
|
2724 |
+
"grad_norm": 0.20792420146527377,
|
2725 |
+
"learning_rate": 3.841223846630599e-05,
|
2726 |
+
"loss": 0.013,
|
2727 |
+
"step": 378
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 3.6,
|
2731 |
+
"grad_norm": 0.16486082885129608,
|
2732 |
+
"learning_rate": 3.792715173806669e-05,
|
2733 |
+
"loss": 0.0105,
|
2734 |
+
"step": 379
|
2735 |
+
},
|
2736 |
+
{
|
2737 |
+
"epoch": 3.61,
|
2738 |
+
"grad_norm": 0.1549020176177142,
|
2739 |
+
"learning_rate": 3.74444296468002e-05,
|
2740 |
+
"loss": 0.0098,
|
2741 |
+
"step": 380
|
2742 |
+
},
|
2743 |
+
{
|
2744 |
+
"epoch": 3.62,
|
2745 |
+
"grad_norm": 0.17250200199106172,
|
2746 |
+
"learning_rate": 3.696409058158544e-05,
|
2747 |
+
"loss": 0.0109,
|
2748 |
+
"step": 381
|
2749 |
+
},
|
2750 |
+
{
|
2751 |
+
"epoch": 3.63,
|
2752 |
+
"grad_norm": 0.1415293330470341,
|
2753 |
+
"learning_rate": 3.6486152840721046e-05,
|
2754 |
+
"loss": 0.0084,
|
2755 |
+
"step": 382
|
2756 |
+
},
|
2757 |
+
{
|
2758 |
+
"epoch": 3.64,
|
2759 |
+
"grad_norm": 0.14461810975420877,
|
2760 |
+
"learning_rate": 3.6010634631028226e-05,
|
2761 |
+
"loss": 0.0084,
|
2762 |
+
"step": 383
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 3.65,
|
2766 |
+
"grad_norm": 0.1557012557289619,
|
2767 |
+
"learning_rate": 3.553755406715724e-05,
|
2768 |
+
"loss": 0.0089,
|
2769 |
+
"step": 384
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 3.66,
|
2773 |
+
"grad_norm": 0.15752891661687976,
|
2774 |
+
"learning_rate": 3.506692917089751e-05,
|
2775 |
+
"loss": 0.0109,
|
2776 |
+
"step": 385
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 3.67,
|
2780 |
+
"grad_norm": 0.1694876915505117,
|
2781 |
+
"learning_rate": 3.459877787049072e-05,
|
2782 |
+
"loss": 0.009,
|
2783 |
+
"step": 386
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"epoch": 3.68,
|
2787 |
+
"grad_norm": 0.1582663784415179,
|
2788 |
+
"learning_rate": 3.413311799994808e-05,
|
2789 |
+
"loss": 0.0095,
|
2790 |
+
"step": 387
|
2791 |
+
},
|
2792 |
+
{
|
2793 |
+
"epoch": 3.69,
|
2794 |
+
"grad_norm": 0.13693031068741818,
|
2795 |
+
"learning_rate": 3.366996729837102e-05,
|
2796 |
+
"loss": 0.0092,
|
2797 |
+
"step": 388
|
2798 |
+
},
|
2799 |
+
{
|
2800 |
+
"epoch": 3.7,
|
2801 |
+
"grad_norm": 0.14543112940410688,
|
2802 |
+
"learning_rate": 3.320934340927513e-05,
|
2803 |
+
"loss": 0.0108,
|
2804 |
+
"step": 389
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 3.71,
|
2808 |
+
"grad_norm": 0.19389482832864774,
|
2809 |
+
"learning_rate": 3.275126387991847e-05,
|
2810 |
+
"loss": 0.0098,
|
2811 |
+
"step": 390
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 3.71,
|
2815 |
+
"grad_norm": 0.15797165592004603,
|
2816 |
+
"learning_rate": 3.229574616063268e-05,
|
2817 |
+
"loss": 0.0076,
|
2818 |
+
"step": 391
|
2819 |
+
},
|
2820 |
+
{
|
2821 |
+
"epoch": 3.72,
|
2822 |
+
"grad_norm": 0.21281942854700847,
|
2823 |
+
"learning_rate": 3.184280760415843e-05,
|
2824 |
+
"loss": 0.0142,
|
2825 |
+
"step": 392
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 3.73,
|
2829 |
+
"grad_norm": 0.12498130411986656,
|
2830 |
+
"learning_rate": 3.1392465464984455e-05,
|
2831 |
+
"loss": 0.0081,
|
2832 |
+
"step": 393
|
2833 |
+
},
|
2834 |
+
{
|
2835 |
+
"epoch": 3.74,
|
2836 |
+
"grad_norm": 0.1152125429659436,
|
2837 |
+
"learning_rate": 3.094473689869002e-05,
|
2838 |
+
"loss": 0.0058,
|
2839 |
+
"step": 394
|
2840 |
+
},
|
2841 |
+
{
|
2842 |
+
"epoch": 3.75,
|
2843 |
+
"grad_norm": 0.1567733530080216,
|
2844 |
+
"learning_rate": 3.0499638961291623e-05,
|
2845 |
+
"loss": 0.011,
|
2846 |
+
"step": 395
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 3.76,
|
2850 |
+
"grad_norm": 0.14500898906990572,
|
2851 |
+
"learning_rate": 3.0057188608593147e-05,
|
2852 |
+
"loss": 0.0085,
|
2853 |
+
"step": 396
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 3.77,
|
2857 |
+
"grad_norm": 0.16163974543952728,
|
2858 |
+
"learning_rate": 2.9617402695539808e-05,
|
2859 |
+
"loss": 0.013,
|
2860 |
+
"step": 397
|
2861 |
+
},
|
2862 |
+
{
|
2863 |
+
"epoch": 3.78,
|
2864 |
+
"grad_norm": 0.13868168811451842,
|
2865 |
+
"learning_rate": 2.9180297975576364e-05,
|
2866 |
+
"loss": 0.0084,
|
2867 |
+
"step": 398
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 3.79,
|
2871 |
+
"grad_norm": 0.17847032901949134,
|
2872 |
+
"learning_rate": 2.8745891100008683e-05,
|
2873 |
+
"loss": 0.0121,
|
2874 |
+
"step": 399
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 3.8,
|
2878 |
+
"grad_norm": 0.17527442252411723,
|
2879 |
+
"learning_rate": 2.83141986173694e-05,
|
2880 |
+
"loss": 0.0084,
|
2881 |
+
"step": 400
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 3.8,
|
2885 |
+
"eval_blimp_filtered_avg": 0.7053731343283582,
|
2886 |
+
"eval_blimp_filtered_std": 0.005043001462199571,
|
2887 |
+
"step": 400
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 3.8,
|
2891 |
+
"eval_blimp_supplement_avg": 0.8125,
|
2892 |
+
"eval_blimp_supplement_std": 0.01736311122127593,
|
2893 |
+
"step": 400
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 3.8,
|
2897 |
+
"eval_vqa_filtered_avg": 0.52,
|
2898 |
+
"eval_vqa_filtered_std": 0.05021167315686779,
|
2899 |
+
"step": 400
|
2900 |
+
},
|
2901 |
+
{
|
2902 |
+
"epoch": 3.8,
|
2903 |
+
"eval_winoground_filtered_avg": 0.64,
|
2904 |
+
"eval_winoground_filtered_std": 0.048241815132442176,
|
2905 |
+
"step": 400
|
2906 |
+
},
|
2907 |
+
{
|
2908 |
+
"epoch": 3.81,
|
2909 |
+
"grad_norm": 0.14598157841040266,
|
2910 |
+
"learning_rate": 2.788523697278773e-05,
|
2911 |
+
"loss": 0.0093,
|
2912 |
+
"step": 401
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 3.82,
|
2916 |
+
"grad_norm": 0.20150542514971506,
|
2917 |
+
"learning_rate": 2.7459022507362686e-05,
|
2918 |
+
"loss": 0.0122,
|
2919 |
+
"step": 402
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 3.83,
|
2923 |
+
"grad_norm": 0.18255123614923588,
|
2924 |
+
"learning_rate": 2.7035571457540865e-05,
|
2925 |
+
"loss": 0.0103,
|
2926 |
+
"step": 403
|
2927 |
+
},
|
2928 |
+
{
|
2929 |
+
"epoch": 3.84,
|
2930 |
+
"grad_norm": 0.16704045474943452,
|
2931 |
+
"learning_rate": 2.6614899954497795e-05,
|
2932 |
+
"loss": 0.0114,
|
2933 |
+
"step": 404
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 3.85,
|
2937 |
+
"grad_norm": 0.14683721625679494,
|
2938 |
+
"learning_rate": 2.619702402352332e-05,
|
2939 |
+
"loss": 0.01,
|
2940 |
+
"step": 405
|
2941 |
+
},
|
2942 |
+
{
|
2943 |
+
"epoch": 3.86,
|
2944 |
+
"grad_norm": 0.18144743721435366,
|
2945 |
+
"learning_rate": 2.5781959583411374e-05,
|
2946 |
+
"loss": 0.0129,
|
2947 |
+
"step": 406
|
2948 |
+
},
|
2949 |
+
{
|
2950 |
+
"epoch": 3.87,
|
2951 |
+
"grad_norm": 0.19646570441433073,
|
2952 |
+
"learning_rate": 2.5369722445853304e-05,
|
2953 |
+
"loss": 0.0143,
|
2954 |
+
"step": 407
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 3.88,
|
2958 |
+
"grad_norm": 0.1668088181727681,
|
2959 |
+
"learning_rate": 2.4960328314835745e-05,
|
2960 |
+
"loss": 0.0089,
|
2961 |
+
"step": 408
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 3.89,
|
2965 |
+
"grad_norm": 0.16111476451284476,
|
2966 |
+
"learning_rate": 2.4553792786042262e-05,
|
2967 |
+
"loss": 0.0091,
|
2968 |
+
"step": 409
|
2969 |
+
},
|
2970 |
+
{
|
2971 |
+
"epoch": 3.9,
|
2972 |
+
"grad_norm": 0.17729690845562673,
|
2973 |
+
"learning_rate": 2.4150131346259197e-05,
|
2974 |
+
"loss": 0.0103,
|
2975 |
+
"step": 410
|
2976 |
+
},
|
2977 |
+
{
|
2978 |
+
"epoch": 3.9,
|
2979 |
+
"grad_norm": 0.15155895346947004,
|
2980 |
+
"learning_rate": 2.3749359372785883e-05,
|
2981 |
+
"loss": 0.0096,
|
2982 |
+
"step": 411
|
2983 |
+
},
|
2984 |
+
{
|
2985 |
+
"epoch": 3.91,
|
2986 |
+
"grad_norm": 0.15041370885333255,
|
2987 |
+
"learning_rate": 2.3351492132848664e-05,
|
2988 |
+
"loss": 0.0085,
|
2989 |
+
"step": 412
|
2990 |
+
},
|
2991 |
+
{
|
2992 |
+
"epoch": 3.92,
|
2993 |
+
"grad_norm": 0.12197907148956355,
|
2994 |
+
"learning_rate": 2.2956544783019418e-05,
|
2995 |
+
"loss": 0.0067,
|
2996 |
+
"step": 413
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 3.93,
|
3000 |
+
"grad_norm": 0.1788434056496877,
|
3001 |
+
"learning_rate": 2.2564532368638146e-05,
|
3002 |
+
"loss": 0.01,
|
3003 |
+
"step": 414
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 3.94,
|
3007 |
+
"grad_norm": 0.19269466130772045,
|
3008 |
+
"learning_rate": 2.2175469823239768e-05,
|
3009 |
+
"loss": 0.0117,
|
3010 |
+
"step": 415
|
3011 |
+
},
|
3012 |
+
{
|
3013 |
+
"epoch": 3.95,
|
3014 |
+
"grad_norm": 0.15780826445252463,
|
3015 |
+
"learning_rate": 2.1789371967985338e-05,
|
3016 |
+
"loss": 0.0101,
|
3017 |
+
"step": 416
|
3018 |
+
},
|
3019 |
+
{
|
3020 |
+
"epoch": 3.96,
|
3021 |
+
"grad_norm": 0.19229144408434373,
|
3022 |
+
"learning_rate": 2.140625351109733e-05,
|
3023 |
+
"loss": 0.0084,
|
3024 |
+
"step": 417
|
3025 |
+
},
|
3026 |
+
{
|
3027 |
+
"epoch": 3.97,
|
3028 |
+
"grad_norm": 0.15474486143047034,
|
3029 |
+
"learning_rate": 2.1026129047299436e-05,
|
3030 |
+
"loss": 0.0067,
|
3031 |
+
"step": 418
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"epoch": 3.98,
|
3035 |
+
"grad_norm": 0.15864166155594778,
|
3036 |
+
"learning_rate": 2.0649013057260546e-05,
|
3037 |
+
"loss": 0.0098,
|
3038 |
+
"step": 419
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 3.99,
|
3042 |
+
"grad_norm": 0.22515244613844015,
|
3043 |
+
"learning_rate": 2.0274919907043033e-05,
|
3044 |
+
"loss": 0.0094,
|
3045 |
+
"step": 420
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 4.0,
|
3049 |
+
"grad_norm": 0.18684872878382638,
|
3050 |
+
"learning_rate": 1.9903863847555648e-05,
|
3051 |
+
"loss": 0.0127,
|
3052 |
+
"step": 421
|
3053 |
+
},
|
3054 |
+
{
|
3055 |
+
"epoch": 4.01,
|
3056 |
+
"grad_norm": 0.06270483785922072,
|
3057 |
+
"learning_rate": 1.9535859014010526e-05,
|
3058 |
+
"loss": 0.0028,
|
3059 |
+
"step": 422
|
3060 |
+
},
|
3061 |
+
{
|
3062 |
+
"epoch": 4.02,
|
3063 |
+
"grad_norm": 0.09948637260912774,
|
3064 |
+
"learning_rate": 1.917091942538469e-05,
|
3065 |
+
"loss": 0.0037,
|
3066 |
+
"step": 423
|
3067 |
+
},
|
3068 |
+
{
|
3069 |
+
"epoch": 4.03,
|
3070 |
+
"grad_norm": 0.07530065845248647,
|
3071 |
+
"learning_rate": 1.880905898388612e-05,
|
3072 |
+
"loss": 0.0039,
|
3073 |
+
"step": 424
|
3074 |
+
},
|
3075 |
+
{
|
3076 |
+
"epoch": 4.04,
|
3077 |
+
"grad_norm": 0.054461890750773165,
|
3078 |
+
"learning_rate": 1.8450291474423998e-05,
|
3079 |
+
"loss": 0.0025,
|
3080 |
+
"step": 425
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 4.05,
|
3084 |
+
"grad_norm": 0.08002877578075594,
|
3085 |
+
"learning_rate": 1.8094630564083736e-05,
|
3086 |
+
"loss": 0.0035,
|
3087 |
+
"step": 426
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 4.06,
|
3091 |
+
"grad_norm": 0.05746226463965698,
|
3092 |
+
"learning_rate": 1.7742089801606276e-05,
|
3093 |
+
"loss": 0.0025,
|
3094 |
+
"step": 427
|
3095 |
+
},
|
3096 |
+
{
|
3097 |
+
"epoch": 4.07,
|
3098 |
+
"grad_norm": 0.0633358139605444,
|
3099 |
+
"learning_rate": 1.7392682616871837e-05,
|
3100 |
+
"loss": 0.0027,
|
3101 |
+
"step": 428
|
3102 |
+
},
|
3103 |
+
{
|
3104 |
+
"epoch": 4.08,
|
3105 |
+
"grad_norm": 0.06509683268742919,
|
3106 |
+
"learning_rate": 1.7046422320388556e-05,
|
3107 |
+
"loss": 0.0027,
|
3108 |
+
"step": 429
|
3109 |
+
},
|
3110 |
+
{
|
3111 |
+
"epoch": 4.09,
|
3112 |
+
"grad_norm": 0.054571154616853274,
|
3113 |
+
"learning_rate": 1.6703322102785168e-05,
|
3114 |
+
"loss": 0.0026,
|
3115 |
+
"step": 430
|
3116 |
+
},
|
3117 |
+
{
|
3118 |
+
"epoch": 4.1,
|
3119 |
+
"grad_norm": 0.06888564779650448,
|
3120 |
+
"learning_rate": 1.6363395034308703e-05,
|
3121 |
+
"loss": 0.0027,
|
3122 |
+
"step": 431
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 4.1,
|
3126 |
+
"grad_norm": 0.05307117129834359,
|
3127 |
+
"learning_rate": 1.6026654064326553e-05,
|
3128 |
+
"loss": 0.0025,
|
3129 |
+
"step": 432
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 4.11,
|
3133 |
+
"grad_norm": 0.06598879328529111,
|
3134 |
+
"learning_rate": 1.5693112020833013e-05,
|
3135 |
+
"loss": 0.003,
|
3136 |
+
"step": 433
|
3137 |
+
},
|
3138 |
+
{
|
3139 |
+
"epoch": 4.12,
|
3140 |
+
"grad_norm": 0.054752236275106794,
|
3141 |
+
"learning_rate": 1.5362781609960852e-05,
|
3142 |
+
"loss": 0.0025,
|
3143 |
+
"step": 434
|
3144 |
+
},
|
3145 |
+
{
|
3146 |
+
"epoch": 4.13,
|
3147 |
+
"grad_norm": 0.07106963888787232,
|
3148 |
+
"learning_rate": 1.5035675415497063e-05,
|
3149 |
+
"loss": 0.0031,
|
3150 |
+
"step": 435
|
3151 |
+
},
|
3152 |
+
{
|
3153 |
+
"epoch": 4.14,
|
3154 |
+
"grad_norm": 0.052548572683446884,
|
3155 |
+
"learning_rate": 1.471180589840363e-05,
|
3156 |
+
"loss": 0.0025,
|
3157 |
+
"step": 436
|
3158 |
+
},
|
3159 |
+
{
|
3160 |
+
"epoch": 4.15,
|
3161 |
+
"grad_norm": 0.08828036910254508,
|
3162 |
+
"learning_rate": 1.4391185396342789e-05,
|
3163 |
+
"loss": 0.0038,
|
3164 |
+
"step": 437
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 4.16,
|
3168 |
+
"grad_norm": 0.09463459893212552,
|
3169 |
+
"learning_rate": 1.4073826123206946e-05,
|
3170 |
+
"loss": 0.0038,
|
3171 |
+
"step": 438
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 4.17,
|
3175 |
+
"grad_norm": 0.08002928457971342,
|
3176 |
+
"learning_rate": 1.375974016865359e-05,
|
3177 |
+
"loss": 0.0031,
|
3178 |
+
"step": 439
|
3179 |
+
},
|
3180 |
+
{
|
3181 |
+
"epoch": 4.18,
|
3182 |
+
"grad_norm": 0.07631532690730236,
|
3183 |
+
"learning_rate": 1.3448939497644509e-05,
|
3184 |
+
"loss": 0.0031,
|
3185 |
+
"step": 440
|
3186 |
+
},
|
3187 |
+
{
|
3188 |
+
"epoch": 4.19,
|
3189 |
+
"grad_norm": 0.04831761603516682,
|
3190 |
+
"learning_rate": 1.3141435949990188e-05,
|
3191 |
+
"loss": 0.0027,
|
3192 |
+
"step": 441
|
3193 |
+
},
|
3194 |
+
{
|
3195 |
+
"epoch": 4.2,
|
3196 |
+
"grad_norm": 0.07344003153336562,
|
3197 |
+
"learning_rate": 1.2837241239898667e-05,
|
3198 |
+
"loss": 0.0032,
|
3199 |
+
"step": 442
|
3200 |
+
},
|
3201 |
+
{
|
3202 |
+
"epoch": 4.21,
|
3203 |
+
"grad_norm": 0.08305075630986966,
|
3204 |
+
"learning_rate": 1.253636695552931e-05,
|
3205 |
+
"loss": 0.003,
|
3206 |
+
"step": 443
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 4.22,
|
3210 |
+
"grad_norm": 0.1034575433958594,
|
3211 |
+
"learning_rate": 1.2238824558551365e-05,
|
3212 |
+
"loss": 0.0039,
|
3213 |
+
"step": 444
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 4.23,
|
3217 |
+
"grad_norm": 0.06655324788558148,
|
3218 |
+
"learning_rate": 1.1944625383707374e-05,
|
3219 |
+
"loss": 0.003,
|
3220 |
+
"step": 445
|
3221 |
+
},
|
3222 |
+
{
|
3223 |
+
"epoch": 4.24,
|
3224 |
+
"grad_norm": 0.0790599253839735,
|
3225 |
+
"learning_rate": 1.1653780638381328e-05,
|
3226 |
+
"loss": 0.0029,
|
3227 |
+
"step": 446
|
3228 |
+
},
|
3229 |
+
{
|
3230 |
+
"epoch": 4.25,
|
3231 |
+
"grad_norm": 0.04198685628145689,
|
3232 |
+
"learning_rate": 1.1366301402171775e-05,
|
3233 |
+
"loss": 0.0017,
|
3234 |
+
"step": 447
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 4.26,
|
3238 |
+
"grad_norm": 0.06439353264983554,
|
3239 |
+
"learning_rate": 1.1082198626469686e-05,
|
3240 |
+
"loss": 0.0024,
|
3241 |
+
"step": 448
|
3242 |
+
},
|
3243 |
+
{
|
3244 |
+
"epoch": 4.27,
|
3245 |
+
"grad_norm": 0.07762450043477247,
|
3246 |
+
"learning_rate": 1.0801483134041268e-05,
|
3247 |
+
"loss": 0.0027,
|
3248 |
+
"step": 449
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 4.28,
|
3252 |
+
"grad_norm": 0.07856883953783565,
|
3253 |
+
"learning_rate": 1.0524165618615845e-05,
|
3254 |
+
"loss": 0.0033,
|
3255 |
+
"step": 450
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 4.29,
|
3259 |
+
"grad_norm": 0.07929308057852809,
|
3260 |
+
"learning_rate": 1.0250256644478195e-05,
|
3261 |
+
"loss": 0.003,
|
3262 |
+
"step": 451
|
3263 |
+
},
|
3264 |
+
{
|
3265 |
+
"epoch": 4.29,
|
3266 |
+
"grad_norm": 0.0587512154822952,
|
3267 |
+
"learning_rate": 9.979766646066368e-06,
|
3268 |
+
"loss": 0.0027,
|
3269 |
+
"step": 452
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 4.3,
|
3273 |
+
"grad_norm": 0.06109551507247056,
|
3274 |
+
"learning_rate": 9.71270592757404e-06,
|
3275 |
+
"loss": 0.0032,
|
3276 |
+
"step": 453
|
3277 |
+
},
|
3278 |
+
{
|
3279 |
+
"epoch": 4.31,
|
3280 |
+
"grad_norm": 0.05909029031199419,
|
3281 |
+
"learning_rate": 9.449084662557982e-06,
|
3282 |
+
"loss": 0.0026,
|
3283 |
+
"step": 454
|
3284 |
+
},
|
3285 |
+
{
|
3286 |
+
"epoch": 4.32,
|
3287 |
+
"grad_norm": 0.0814055458144323,
|
3288 |
+
"learning_rate": 9.188912893550695e-06,
|
3289 |
+
"loss": 0.0026,
|
3290 |
+
"step": 455
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 4.33,
|
3294 |
+
"grad_norm": 0.07735385332942207,
|
3295 |
+
"learning_rate": 8.932200531677537e-06,
|
3296 |
+
"loss": 0.0028,
|
3297 |
+
"step": 456
|
3298 |
+
},
|
3299 |
+
{
|
3300 |
+
"epoch": 4.34,
|
3301 |
+
"grad_norm": 0.08519595591969155,
|
3302 |
+
"learning_rate": 8.678957356279371e-06,
|
3303 |
+
"loss": 0.0024,
|
3304 |
+
"step": 457
|
3305 |
+
},
|
3306 |
+
{
|
3307 |
+
"epoch": 4.35,
|
3308 |
+
"grad_norm": 0.055031384326470804,
|
3309 |
+
"learning_rate": 8.429193014540015e-06,
|
3310 |
+
"loss": 0.0026,
|
3311 |
+
"step": 458
|
3312 |
+
},
|
3313 |
+
{
|
3314 |
+
"epoch": 4.36,
|
3315 |
+
"grad_norm": 0.05387324401647046,
|
3316 |
+
"learning_rate": 8.182917021118663e-06,
|
3317 |
+
"loss": 0.0026,
|
3318 |
+
"step": 459
|
3319 |
+
},
|
3320 |
+
{
|
3321 |
+
"epoch": 4.37,
|
3322 |
+
"grad_norm": 0.07168879976269556,
|
3323 |
+
"learning_rate": 7.940138757787507e-06,
|
3324 |
+
"loss": 0.0032,
|
3325 |
+
"step": 460
|
3326 |
+
},
|
3327 |
+
{
|
3328 |
+
"epoch": 4.38,
|
3329 |
+
"grad_norm": 0.07661756681904786,
|
3330 |
+
"learning_rate": 7.700867473074224e-06,
|
3331 |
+
"loss": 0.0035,
|
3332 |
+
"step": 461
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 4.39,
|
3336 |
+
"grad_norm": 0.09486930411075328,
|
3337 |
+
"learning_rate": 7.46511228190977e-06,
|
3338 |
+
"loss": 0.0049,
|
3339 |
+
"step": 462
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 4.4,
|
3343 |
+
"grad_norm": 0.0679530025111762,
|
3344 |
+
"learning_rate": 7.232882165281141e-06,
|
3345 |
+
"loss": 0.0026,
|
3346 |
+
"step": 463
|
3347 |
+
},
|
3348 |
+
{
|
3349 |
+
"epoch": 4.41,
|
3350 |
+
"grad_norm": 0.06514922044267304,
|
3351 |
+
"learning_rate": 7.004185969889187e-06,
|
3352 |
+
"loss": 0.0027,
|
3353 |
+
"step": 464
|
3354 |
+
},
|
3355 |
+
{
|
3356 |
+
"epoch": 4.42,
|
3357 |
+
"grad_norm": 0.06706026131022384,
|
3358 |
+
"learning_rate": 6.7790324078116364e-06,
|
3359 |
+
"loss": 0.0027,
|
3360 |
+
"step": 465
|
3361 |
+
},
|
3362 |
+
{
|
3363 |
+
"epoch": 4.43,
|
3364 |
+
"grad_norm": 0.07709046890424658,
|
3365 |
+
"learning_rate": 6.557430056171221e-06,
|
3366 |
+
"loss": 0.0033,
|
3367 |
+
"step": 466
|
3368 |
+
},
|
3369 |
+
{
|
3370 |
+
"epoch": 4.44,
|
3371 |
+
"grad_norm": 0.051443041020356704,
|
3372 |
+
"learning_rate": 6.339387356808912e-06,
|
3373 |
+
"loss": 0.0026,
|
3374 |
+
"step": 467
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 4.45,
|
3378 |
+
"grad_norm": 0.060318722923432995,
|
3379 |
+
"learning_rate": 6.124912615962341e-06,
|
3380 |
+
"loss": 0.0028,
|
3381 |
+
"step": 468
|
3382 |
+
},
|
3383 |
+
{
|
3384 |
+
"epoch": 4.46,
|
3385 |
+
"grad_norm": 0.062212012735137795,
|
3386 |
+
"learning_rate": 5.9140140039494084e-06,
|
3387 |
+
"loss": 0.0025,
|
3388 |
+
"step": 469
|
3389 |
+
},
|
3390 |
+
{
|
3391 |
+
"epoch": 4.47,
|
3392 |
+
"grad_norm": 0.06556299474776538,
|
3393 |
+
"learning_rate": 5.706699554856964e-06,
|
3394 |
+
"loss": 0.0023,
|
3395 |
+
"step": 470
|
3396 |
+
},
|
3397 |
+
{
|
3398 |
+
"epoch": 4.48,
|
3399 |
+
"grad_norm": 0.08649267044276539,
|
3400 |
+
"learning_rate": 5.502977166234857e-06,
|
3401 |
+
"loss": 0.0035,
|
3402 |
+
"step": 471
|
3403 |
+
},
|
3404 |
+
{
|
3405 |
+
"epoch": 4.48,
|
3406 |
+
"grad_norm": 0.08526822145924882,
|
3407 |
+
"learning_rate": 5.302854598794937e-06,
|
3408 |
+
"loss": 0.003,
|
3409 |
+
"step": 472
|
3410 |
+
},
|
3411 |
+
{
|
3412 |
+
"epoch": 4.49,
|
3413 |
+
"grad_norm": 0.04133711118453636,
|
3414 |
+
"learning_rate": 5.106339476115596e-06,
|
3415 |
+
"loss": 0.0019,
|
3416 |
+
"step": 473
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 4.5,
|
3420 |
+
"grad_norm": 0.05708577094578342,
|
3421 |
+
"learning_rate": 4.913439284351207e-06,
|
3422 |
+
"loss": 0.0026,
|
3423 |
+
"step": 474
|
3424 |
+
},
|
3425 |
+
{
|
3426 |
+
"epoch": 4.51,
|
3427 |
+
"grad_norm": 0.07367912633186298,
|
3428 |
+
"learning_rate": 4.724161371946978e-06,
|
3429 |
+
"loss": 0.0029,
|
3430 |
+
"step": 475
|
3431 |
+
},
|
3432 |
+
{
|
3433 |
+
"epoch": 4.52,
|
3434 |
+
"grad_norm": 0.08135320771271103,
|
3435 |
+
"learning_rate": 4.538512949359075e-06,
|
3436 |
+
"loss": 0.0027,
|
3437 |
+
"step": 476
|
3438 |
+
},
|
3439 |
+
{
|
3440 |
+
"epoch": 4.53,
|
3441 |
+
"grad_norm": 0.0849858165893086,
|
3442 |
+
"learning_rate": 4.356501088779841e-06,
|
3443 |
+
"loss": 0.0027,
|
3444 |
+
"step": 477
|
3445 |
+
},
|
3446 |
+
{
|
3447 |
+
"epoch": 4.54,
|
3448 |
+
"grad_norm": 0.05260609110954984,
|
3449 |
+
"learning_rate": 4.178132723868477e-06,
|
3450 |
+
"loss": 0.0019,
|
3451 |
+
"step": 478
|
3452 |
+
},
|
3453 |
+
{
|
3454 |
+
"epoch": 4.55,
|
3455 |
+
"grad_norm": 0.0795477617292828,
|
3456 |
+
"learning_rate": 4.003414649486892e-06,
|
3457 |
+
"loss": 0.0032,
|
3458 |
+
"step": 479
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 4.56,
|
3462 |
+
"grad_norm": 0.08161922179718771,
|
3463 |
+
"learning_rate": 3.832353521440768e-06,
|
3464 |
+
"loss": 0.0026,
|
3465 |
+
"step": 480
|
3466 |
+
},
|
3467 |
+
{
|
3468 |
+
"epoch": 4.57,
|
3469 |
+
"grad_norm": 0.06830643544893618,
|
3470 |
+
"learning_rate": 3.6649558562261375e-06,
|
3471 |
+
"loss": 0.0032,
|
3472 |
+
"step": 481
|
3473 |
+
},
|
3474 |
+
{
|
3475 |
+
"epoch": 4.58,
|
3476 |
+
"grad_norm": 0.08641205617098656,
|
3477 |
+
"learning_rate": 3.501228030781034e-06,
|
3478 |
+
"loss": 0.0028,
|
3479 |
+
"step": 482
|
3480 |
+
},
|
3481 |
+
{
|
3482 |
+
"epoch": 4.59,
|
3483 |
+
"grad_norm": 0.04921706287498077,
|
3484 |
+
"learning_rate": 3.341176282242653e-06,
|
3485 |
+
"loss": 0.0021,
|
3486 |
+
"step": 483
|
3487 |
+
},
|
3488 |
+
{
|
3489 |
+
"epoch": 4.6,
|
3490 |
+
"grad_norm": 0.05901589705081983,
|
3491 |
+
"learning_rate": 3.184806707709698e-06,
|
3492 |
+
"loss": 0.0027,
|
3493 |
+
"step": 484
|
3494 |
+
},
|
3495 |
+
{
|
3496 |
+
"epoch": 4.61,
|
3497 |
+
"grad_norm": 0.08562934355546689,
|
3498 |
+
"learning_rate": 3.0321252640100885e-06,
|
3499 |
+
"loss": 0.0035,
|
3500 |
+
"step": 485
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 4.62,
|
3504 |
+
"grad_norm": 0.056139936545776606,
|
3505 |
+
"learning_rate": 2.88313776747412e-06,
|
3506 |
+
"loss": 0.0027,
|
3507 |
+
"step": 486
|
3508 |
+
},
|
3509 |
+
{
|
3510 |
+
"epoch": 4.63,
|
3511 |
+
"grad_norm": 0.06574452787357139,
|
3512 |
+
"learning_rate": 2.7378498937128404e-06,
|
3513 |
+
"loss": 0.0031,
|
3514 |
+
"step": 487
|
3515 |
+
},
|
3516 |
+
{
|
3517 |
+
"epoch": 4.64,
|
3518 |
+
"grad_norm": 0.06295208396607756,
|
3519 |
+
"learning_rate": 2.5962671774018234e-06,
|
3520 |
+
"loss": 0.0029,
|
3521 |
+
"step": 488
|
3522 |
+
},
|
3523 |
+
{
|
3524 |
+
"epoch": 4.65,
|
3525 |
+
"grad_norm": 0.06348707610420529,
|
3526 |
+
"learning_rate": 2.458395012070369e-06,
|
3527 |
+
"loss": 0.0027,
|
3528 |
+
"step": 489
|
3529 |
+
},
|
3530 |
+
{
|
3531 |
+
"epoch": 4.66,
|
3532 |
+
"grad_norm": 0.06438459591992919,
|
3533 |
+
"learning_rate": 2.3242386498960266e-06,
|
3534 |
+
"loss": 0.003,
|
3535 |
+
"step": 490
|
3536 |
+
},
|
3537 |
+
{
|
3538 |
+
"epoch": 4.67,
|
3539 |
+
"grad_norm": 0.0936033257355208,
|
3540 |
+
"learning_rate": 2.1938032015044964e-06,
|
3541 |
+
"loss": 0.0053,
|
3542 |
+
"step": 491
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 4.67,
|
3546 |
+
"grad_norm": 0.0712704009642112,
|
3547 |
+
"learning_rate": 2.067093635774975e-06,
|
3548 |
+
"loss": 0.0033,
|
3549 |
+
"step": 492
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 4.68,
|
3553 |
+
"grad_norm": 0.05278839840964536,
|
3554 |
+
"learning_rate": 1.9441147796508407e-06,
|
3555 |
+
"loss": 0.0025,
|
3556 |
+
"step": 493
|
3557 |
+
},
|
3558 |
+
{
|
3559 |
+
"epoch": 4.69,
|
3560 |
+
"grad_norm": 0.05158800004403027,
|
3561 |
+
"learning_rate": 1.8248713179557786e-06,
|
3562 |
+
"loss": 0.002,
|
3563 |
+
"step": 494
|
3564 |
+
},
|
3565 |
+
{
|
3566 |
+
"epoch": 4.7,
|
3567 |
+
"grad_norm": 0.06302315225352234,
|
3568 |
+
"learning_rate": 1.7093677932153218e-06,
|
3569 |
+
"loss": 0.002,
|
3570 |
+
"step": 495
|
3571 |
+
},
|
3572 |
+
{
|
3573 |
+
"epoch": 4.71,
|
3574 |
+
"grad_norm": 0.09014451602286425,
|
3575 |
+
"learning_rate": 1.5976086054838025e-06,
|
3576 |
+
"loss": 0.0031,
|
3577 |
+
"step": 496
|
3578 |
+
},
|
3579 |
+
{
|
3580 |
+
"epoch": 4.72,
|
3581 |
+
"grad_norm": 0.08249201483869177,
|
3582 |
+
"learning_rate": 1.4895980121767627e-06,
|
3583 |
+
"loss": 0.0029,
|
3584 |
+
"step": 497
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 4.73,
|
3588 |
+
"grad_norm": 0.07887788932672342,
|
3589 |
+
"learning_rate": 1.3853401279086854e-06,
|
3590 |
+
"loss": 0.0028,
|
3591 |
+
"step": 498
|
3592 |
+
},
|
3593 |
+
{
|
3594 |
+
"epoch": 4.74,
|
3595 |
+
"grad_norm": 0.09271365227044996,
|
3596 |
+
"learning_rate": 1.2848389243363512e-06,
|
3597 |
+
"loss": 0.0026,
|
3598 |
+
"step": 499
|
3599 |
+
},
|
3600 |
+
{
|
3601 |
+
"epoch": 4.75,
|
3602 |
+
"grad_norm": 0.05191622392926365,
|
3603 |
+
"learning_rate": 1.1880982300074838e-06,
|
3604 |
+
"loss": 0.0027,
|
3605 |
+
"step": 500
|
3606 |
+
},
|
3607 |
+
{
|
3608 |
+
"epoch": 4.75,
|
3609 |
+
"eval_blimp_filtered_avg": 0.7105970149253731,
|
3610 |
+
"eval_blimp_filtered_std": 0.005015059082306442,
|
3611 |
+
"step": 500
|
3612 |
+
},
|
3613 |
+
{
|
3614 |
+
"epoch": 4.75,
|
3615 |
+
"eval_blimp_supplement_avg": 0.8146551724137931,
|
3616 |
+
"eval_blimp_supplement_std": 0.01739418193453382,
|
3617 |
+
"step": 500
|
3618 |
+
},
|
3619 |
+
{
|
3620 |
+
"epoch": 4.75,
|
3621 |
+
"eval_vqa_filtered_avg": 0.52,
|
3622 |
+
"eval_vqa_filtered_std": 0.05021167315686779,
|
3623 |
+
"step": 500
|
3624 |
+
},
|
3625 |
+
{
|
3626 |
+
"epoch": 4.75,
|
3627 |
+
"eval_winoground_filtered_avg": 0.64,
|
3628 |
+
"eval_winoground_filtered_std": 0.048241815132442176,
|
3629 |
+
"step": 500
|
3630 |
+
}
|
3631 |
+
],
|
3632 |
+
"logging_steps": 1.0,
|
3633 |
+
"max_steps": 525,
|
3634 |
+
"num_input_tokens_seen": 0,
|
3635 |
+
"num_train_epochs": 5,
|
3636 |
+
"save_steps": 500,
|
3637 |
+
"total_flos": 394333829201920.0,
|
3638 |
+
"train_batch_size": 40,
|
3639 |
+
"trial_name": null,
|
3640 |
+
"trial_params": null
|
3641 |
+
}
|
checkpoint-500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08b5f65153ee777fbd3d7179f8557cd50d2f8195b4001cff264a353dcb84007a
|
3 |
+
size 7032
|
checkpoint-500/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "liuhaotian/llava-v1.5-7b",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"freeze_mm_mlp_adapter": false,
|
11 |
+
"freeze_mm_vision_resampler": false,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"image_aspect_ratio": "pad",
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 11008,
|
17 |
+
"max_length": 4096,
|
18 |
+
"max_position_embeddings": 4096,
|
19 |
+
"mm_hidden_size": 1024,
|
20 |
+
"mm_patch_merge_type": "flat",
|
21 |
+
"mm_projector_lr": 2e-05,
|
22 |
+
"mm_projector_type": "mlp2x_gelu",
|
23 |
+
"mm_resampler_type": null,
|
24 |
+
"mm_use_im_patch_token": false,
|
25 |
+
"mm_use_im_start_end": false,
|
26 |
+
"mm_vision_select_feature": "patch",
|
27 |
+
"mm_vision_select_layer": -2,
|
28 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
29 |
+
"model_type": "llava_llama",
|
30 |
+
"num_attention_heads": 32,
|
31 |
+
"num_hidden_layers": 32,
|
32 |
+
"num_key_value_heads": 32,
|
33 |
+
"pad_token_id": 0,
|
34 |
+
"pretraining_tp": 1,
|
35 |
+
"rms_norm_eps": 1e-05,
|
36 |
+
"rope_scaling": null,
|
37 |
+
"rope_theta": 10000.0,
|
38 |
+
"tie_word_embeddings": false,
|
39 |
+
"tokenizer_model_max_length": 2048,
|
40 |
+
"tokenizer_padding_side": "right",
|
41 |
+
"torch_dtype": "float16",
|
42 |
+
"transformers_version": "4.39.3",
|
43 |
+
"tune_mm_mlp_adapter": false,
|
44 |
+
"tune_mm_vision_resampler": false,
|
45 |
+
"unfreeze_mm_vision_tower": false,
|
46 |
+
"use_cache": true,
|
47 |
+
"use_mm_proj": true,
|
48 |
+
"vocab_size": 32000
|
49 |
+
}
|
non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4256d30527b68662b35b87c465a72acf392ee1cb4c248edee2238d360ce1f04e
|
3 |
+
size 41961648
|
trainer_state.json
ADDED
@@ -0,0 +1,3825 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 4.98812351543943,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 525,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 4.008147055910771,
|
14 |
+
"learning_rate": 1.25e-05,
|
15 |
+
"loss": 4.2415,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.02,
|
20 |
+
"grad_norm": 4.04569203441769,
|
21 |
+
"learning_rate": 2.5e-05,
|
22 |
+
"loss": 4.3121,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.03,
|
27 |
+
"grad_norm": 3.865746651377984,
|
28 |
+
"learning_rate": 3.7500000000000003e-05,
|
29 |
+
"loss": 4.3208,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.04,
|
34 |
+
"grad_norm": 2.6407193073379105,
|
35 |
+
"learning_rate": 5e-05,
|
36 |
+
"loss": 3.8848,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.05,
|
41 |
+
"grad_norm": 2.451159328560232,
|
42 |
+
"learning_rate": 6.25e-05,
|
43 |
+
"loss": 3.4391,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.06,
|
48 |
+
"grad_norm": 1.8259504797317525,
|
49 |
+
"learning_rate": 7.500000000000001e-05,
|
50 |
+
"loss": 3.0656,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07,
|
55 |
+
"grad_norm": 1.1881779175566867,
|
56 |
+
"learning_rate": 8.75e-05,
|
57 |
+
"loss": 2.8135,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.08,
|
62 |
+
"grad_norm": 1.614839668966139,
|
63 |
+
"learning_rate": 0.0001,
|
64 |
+
"loss": 2.7319,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.09,
|
69 |
+
"grad_norm": 1.5198673994210212,
|
70 |
+
"learning_rate": 0.00011250000000000001,
|
71 |
+
"loss": 2.6903,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.1,
|
76 |
+
"grad_norm": 1.0044025931610727,
|
77 |
+
"learning_rate": 0.000125,
|
78 |
+
"loss": 2.584,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1,
|
83 |
+
"grad_norm": 1.1531821793787296,
|
84 |
+
"learning_rate": 0.0001375,
|
85 |
+
"loss": 2.586,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.11,
|
90 |
+
"grad_norm": 0.6210600474209341,
|
91 |
+
"learning_rate": 0.00015000000000000001,
|
92 |
+
"loss": 2.5298,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.12,
|
97 |
+
"grad_norm": 0.5025244204180619,
|
98 |
+
"learning_rate": 0.00016250000000000002,
|
99 |
+
"loss": 2.4665,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.13,
|
104 |
+
"grad_norm": 0.5058788641352842,
|
105 |
+
"learning_rate": 0.000175,
|
106 |
+
"loss": 2.4194,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.14,
|
111 |
+
"grad_norm": 0.44571801666869537,
|
112 |
+
"learning_rate": 0.0001875,
|
113 |
+
"loss": 2.3531,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.15,
|
118 |
+
"grad_norm": 0.44028009268534757,
|
119 |
+
"learning_rate": 0.0002,
|
120 |
+
"loss": 2.2749,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.16,
|
125 |
+
"grad_norm": 0.42473118020142525,
|
126 |
+
"learning_rate": 0.00019999809527270051,
|
127 |
+
"loss": 2.2587,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.17,
|
132 |
+
"grad_norm": 0.465029302165452,
|
133 |
+
"learning_rate": 0.0001999923811633618,
|
134 |
+
"loss": 2.2196,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.18,
|
139 |
+
"grad_norm": 0.49040381415815754,
|
140 |
+
"learning_rate": 0.00019998285788966027,
|
141 |
+
"loss": 2.2061,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.19,
|
146 |
+
"grad_norm": 0.4160855034634493,
|
147 |
+
"learning_rate": 0.00019996952581438068,
|
148 |
+
"loss": 2.1173,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.2,
|
153 |
+
"grad_norm": 0.45625369964232165,
|
154 |
+
"learning_rate": 0.00019995238544540241,
|
155 |
+
"loss": 2.1267,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.21,
|
160 |
+
"grad_norm": 0.42551849567803673,
|
161 |
+
"learning_rate": 0.00019993143743568,
|
162 |
+
"loss": 2.0976,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.22,
|
167 |
+
"grad_norm": 0.5100052595965069,
|
168 |
+
"learning_rate": 0.0001999066825832184,
|
169 |
+
"loss": 2.0428,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.23,
|
174 |
+
"grad_norm": 0.4717525078599394,
|
175 |
+
"learning_rate": 0.00019987812183104247,
|
176 |
+
"loss": 2.0068,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.24,
|
181 |
+
"grad_norm": 0.5596905853419681,
|
182 |
+
"learning_rate": 0.0001998457562671611,
|
183 |
+
"loss": 2.0303,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.25,
|
188 |
+
"grad_norm": 0.4931645550169434,
|
189 |
+
"learning_rate": 0.00019980958712452577,
|
190 |
+
"loss": 1.9722,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.26,
|
195 |
+
"grad_norm": 0.4433810930704678,
|
196 |
+
"learning_rate": 0.0001997696157809835,
|
197 |
+
"loss": 1.957,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.27,
|
202 |
+
"grad_norm": 0.5522396650266582,
|
203 |
+
"learning_rate": 0.0001997258437592245,
|
204 |
+
"loss": 1.915,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.28,
|
209 |
+
"grad_norm": 0.49861222066728145,
|
210 |
+
"learning_rate": 0.00019967827272672408,
|
211 |
+
"loss": 1.8303,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.29,
|
216 |
+
"grad_norm": 0.6169911964169147,
|
217 |
+
"learning_rate": 0.00019962690449567912,
|
218 |
+
"loss": 1.8454,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.29,
|
223 |
+
"grad_norm": 0.5639780725078123,
|
224 |
+
"learning_rate": 0.000199571741022939,
|
225 |
+
"loss": 1.8068,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.3,
|
230 |
+
"grad_norm": 0.6302805853808786,
|
231 |
+
"learning_rate": 0.0001995127844099313,
|
232 |
+
"loss": 1.7166,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.31,
|
237 |
+
"grad_norm": 0.6494693483139545,
|
238 |
+
"learning_rate": 0.00019945003690258125,
|
239 |
+
"loss": 1.6433,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.32,
|
244 |
+
"grad_norm": 0.7598443409498918,
|
245 |
+
"learning_rate": 0.00019938350089122682,
|
246 |
+
"loss": 1.7081,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.33,
|
251 |
+
"grad_norm": 0.6512764391881087,
|
252 |
+
"learning_rate": 0.00019931317891052708,
|
253 |
+
"loss": 1.6436,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.34,
|
258 |
+
"grad_norm": 0.6953537359048508,
|
259 |
+
"learning_rate": 0.00019923907363936593,
|
260 |
+
"loss": 1.5862,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.35,
|
265 |
+
"grad_norm": 0.6011387829084072,
|
266 |
+
"learning_rate": 0.00019916118790075008,
|
267 |
+
"loss": 1.5432,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.36,
|
272 |
+
"grad_norm": 0.659130437748028,
|
273 |
+
"learning_rate": 0.00019907952466170138,
|
274 |
+
"loss": 1.5132,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.37,
|
279 |
+
"grad_norm": 0.7211467253555573,
|
280 |
+
"learning_rate": 0.00019899408703314385,
|
281 |
+
"loss": 1.506,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.38,
|
286 |
+
"grad_norm": 0.7006890038987398,
|
287 |
+
"learning_rate": 0.0001989048782697851,
|
288 |
+
"loss": 1.4498,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.39,
|
293 |
+
"grad_norm": 0.64642158324997,
|
294 |
+
"learning_rate": 0.00019881190176999255,
|
295 |
+
"loss": 1.4478,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.4,
|
300 |
+
"grad_norm": 0.6608085069521318,
|
301 |
+
"learning_rate": 0.00019871516107566366,
|
302 |
+
"loss": 1.3542,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.41,
|
307 |
+
"grad_norm": 0.7707478188072372,
|
308 |
+
"learning_rate": 0.0001986146598720913,
|
309 |
+
"loss": 1.3309,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.42,
|
314 |
+
"grad_norm": 0.8119298049916807,
|
315 |
+
"learning_rate": 0.00019851040198782326,
|
316 |
+
"loss": 1.345,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.43,
|
321 |
+
"grad_norm": 0.7712308653234212,
|
322 |
+
"learning_rate": 0.0001984023913945162,
|
323 |
+
"loss": 1.3076,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.44,
|
328 |
+
"grad_norm": 0.682341709525683,
|
329 |
+
"learning_rate": 0.0001982906322067847,
|
330 |
+
"loss": 1.2565,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.45,
|
335 |
+
"grad_norm": 0.7071991083514119,
|
336 |
+
"learning_rate": 0.00019817512868204425,
|
337 |
+
"loss": 1.1796,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.46,
|
342 |
+
"grad_norm": 0.745222014713615,
|
343 |
+
"learning_rate": 0.00019805588522034916,
|
344 |
+
"loss": 1.1649,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.47,
|
349 |
+
"grad_norm": 0.7158459299510994,
|
350 |
+
"learning_rate": 0.00019793290636422505,
|
351 |
+
"loss": 1.2109,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.48,
|
356 |
+
"grad_norm": 0.7335821144549012,
|
357 |
+
"learning_rate": 0.00019780619679849552,
|
358 |
+
"loss": 1.1475,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.48,
|
363 |
+
"grad_norm": 0.7804306024320766,
|
364 |
+
"learning_rate": 0.000197675761350104,
|
365 |
+
"loss": 1.1068,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.49,
|
370 |
+
"grad_norm": 0.8274924156959725,
|
371 |
+
"learning_rate": 0.00019754160498792965,
|
372 |
+
"loss": 1.1839,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.5,
|
377 |
+
"grad_norm": 0.8840482383868431,
|
378 |
+
"learning_rate": 0.0001974037328225982,
|
379 |
+
"loss": 1.0928,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.51,
|
384 |
+
"grad_norm": 0.7224652999279871,
|
385 |
+
"learning_rate": 0.00019726215010628718,
|
386 |
+
"loss": 1.0299,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.52,
|
391 |
+
"grad_norm": 0.7109288879933862,
|
392 |
+
"learning_rate": 0.0001971168622325259,
|
393 |
+
"loss": 1.0436,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.53,
|
398 |
+
"grad_norm": 0.7650325966583326,
|
399 |
+
"learning_rate": 0.00019696787473598993,
|
400 |
+
"loss": 1.041,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.54,
|
405 |
+
"grad_norm": 0.7307809391946058,
|
406 |
+
"learning_rate": 0.00019681519329229033,
|
407 |
+
"loss": 1.0195,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.55,
|
412 |
+
"grad_norm": 0.6873943623441443,
|
413 |
+
"learning_rate": 0.00019665882371775733,
|
414 |
+
"loss": 0.972,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.56,
|
419 |
+
"grad_norm": 0.8185924734616268,
|
420 |
+
"learning_rate": 0.00019649877196921896,
|
421 |
+
"loss": 0.9986,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.57,
|
426 |
+
"grad_norm": 0.7907558585543373,
|
427 |
+
"learning_rate": 0.00019633504414377388,
|
428 |
+
"loss": 0.9201,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.58,
|
433 |
+
"grad_norm": 0.7216280408288712,
|
434 |
+
"learning_rate": 0.00019616764647855926,
|
435 |
+
"loss": 0.9976,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.59,
|
440 |
+
"grad_norm": 0.6946470891456141,
|
441 |
+
"learning_rate": 0.00019599658535051314,
|
442 |
+
"loss": 0.9008,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.6,
|
447 |
+
"grad_norm": 0.6470248283451219,
|
448 |
+
"learning_rate": 0.00019582186727613152,
|
449 |
+
"loss": 0.8226,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.61,
|
454 |
+
"grad_norm": 0.8297915622585336,
|
455 |
+
"learning_rate": 0.00019564349891122018,
|
456 |
+
"loss": 0.8825,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.62,
|
461 |
+
"grad_norm": 0.7018515834126928,
|
462 |
+
"learning_rate": 0.00019546148705064097,
|
463 |
+
"loss": 0.8521,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.63,
|
468 |
+
"grad_norm": 0.6119835758734723,
|
469 |
+
"learning_rate": 0.00019527583862805303,
|
470 |
+
"loss": 0.7872,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.64,
|
475 |
+
"grad_norm": 0.6396036538427098,
|
476 |
+
"learning_rate": 0.00019508656071564882,
|
477 |
+
"loss": 0.7887,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.65,
|
482 |
+
"grad_norm": 0.6712059239435435,
|
483 |
+
"learning_rate": 0.00019489366052388441,
|
484 |
+
"loss": 0.8406,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.66,
|
489 |
+
"grad_norm": 0.6498227189328728,
|
490 |
+
"learning_rate": 0.00019469714540120507,
|
491 |
+
"loss": 0.7109,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.67,
|
496 |
+
"grad_norm": 0.6950957852561941,
|
497 |
+
"learning_rate": 0.00019449702283376517,
|
498 |
+
"loss": 0.7008,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.67,
|
503 |
+
"grad_norm": 0.6415745385783075,
|
504 |
+
"learning_rate": 0.00019429330044514305,
|
505 |
+
"loss": 0.6808,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.68,
|
510 |
+
"grad_norm": 0.6774461765802887,
|
511 |
+
"learning_rate": 0.0001940859859960506,
|
512 |
+
"loss": 0.7122,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.69,
|
517 |
+
"grad_norm": 0.6335543398879422,
|
518 |
+
"learning_rate": 0.00019387508738403768,
|
519 |
+
"loss": 0.6826,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.7,
|
524 |
+
"grad_norm": 0.6455659601218003,
|
525 |
+
"learning_rate": 0.0001936606126431911,
|
526 |
+
"loss": 0.7342,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.71,
|
531 |
+
"grad_norm": 0.6804108080708727,
|
532 |
+
"learning_rate": 0.00019344256994382878,
|
533 |
+
"loss": 0.6983,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.72,
|
538 |
+
"grad_norm": 0.6233570198373359,
|
539 |
+
"learning_rate": 0.00019322096759218836,
|
540 |
+
"loss": 0.6426,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.73,
|
545 |
+
"grad_norm": 0.6354196060962453,
|
546 |
+
"learning_rate": 0.00019299581403011082,
|
547 |
+
"loss": 0.6978,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.74,
|
552 |
+
"grad_norm": 0.6723728632702363,
|
553 |
+
"learning_rate": 0.0001927671178347189,
|
554 |
+
"loss": 0.6449,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.75,
|
559 |
+
"grad_norm": 0.6055794839258588,
|
560 |
+
"learning_rate": 0.00019253488771809024,
|
561 |
+
"loss": 0.6608,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.76,
|
566 |
+
"grad_norm": 0.6032563228830964,
|
567 |
+
"learning_rate": 0.0001922991325269258,
|
568 |
+
"loss": 0.6691,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.77,
|
573 |
+
"grad_norm": 0.5917538532836075,
|
574 |
+
"learning_rate": 0.00019205986124221251,
|
575 |
+
"loss": 0.6418,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.78,
|
580 |
+
"grad_norm": 0.6558132078005496,
|
581 |
+
"learning_rate": 0.00019181708297888133,
|
582 |
+
"loss": 0.6562,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.79,
|
587 |
+
"grad_norm": 0.6110330049943966,
|
588 |
+
"learning_rate": 0.00019157080698546,
|
589 |
+
"loss": 0.5855,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.8,
|
594 |
+
"grad_norm": 0.6481622083495842,
|
595 |
+
"learning_rate": 0.00019132104264372063,
|
596 |
+
"loss": 0.628,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.81,
|
601 |
+
"grad_norm": 0.5730813607452849,
|
602 |
+
"learning_rate": 0.0001910677994683225,
|
603 |
+
"loss": 0.5476,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.82,
|
608 |
+
"grad_norm": 0.6938507563801335,
|
609 |
+
"learning_rate": 0.00019081108710644932,
|
610 |
+
"loss": 0.6018,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.83,
|
615 |
+
"grad_norm": 0.625439427503205,
|
616 |
+
"learning_rate": 0.00019055091533744202,
|
617 |
+
"loss": 0.5735,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.84,
|
622 |
+
"grad_norm": 0.6628596764324554,
|
623 |
+
"learning_rate": 0.00019028729407242597,
|
624 |
+
"loss": 0.5389,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.85,
|
629 |
+
"grad_norm": 0.6112099968245533,
|
630 |
+
"learning_rate": 0.00019002023335393364,
|
631 |
+
"loss": 0.5235,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.86,
|
636 |
+
"grad_norm": 0.6098216223216336,
|
637 |
+
"learning_rate": 0.0001897497433555218,
|
638 |
+
"loss": 0.6058,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.86,
|
643 |
+
"grad_norm": 0.6469247467013166,
|
644 |
+
"learning_rate": 0.0001894758343813842,
|
645 |
+
"loss": 0.5524,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.87,
|
650 |
+
"grad_norm": 0.6344920759870597,
|
651 |
+
"learning_rate": 0.00018919851686595874,
|
652 |
+
"loss": 0.5605,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.88,
|
657 |
+
"grad_norm": 0.6756355159547938,
|
658 |
+
"learning_rate": 0.00018891780137353034,
|
659 |
+
"loss": 0.5096,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.89,
|
664 |
+
"grad_norm": 0.6439314455537293,
|
665 |
+
"learning_rate": 0.00018863369859782825,
|
666 |
+
"loss": 0.5516,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.9,
|
671 |
+
"grad_norm": 0.5567728554741562,
|
672 |
+
"learning_rate": 0.0001883462193616187,
|
673 |
+
"loss": 0.4576,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.91,
|
678 |
+
"grad_norm": 0.553595533418767,
|
679 |
+
"learning_rate": 0.00018805537461629265,
|
680 |
+
"loss": 0.4947,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.92,
|
685 |
+
"grad_norm": 0.6200223910647112,
|
686 |
+
"learning_rate": 0.00018776117544144863,
|
687 |
+
"loss": 0.5073,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.93,
|
692 |
+
"grad_norm": 0.6294322114297511,
|
693 |
+
"learning_rate": 0.00018746363304447073,
|
694 |
+
"loss": 0.4938,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.94,
|
699 |
+
"grad_norm": 0.6000145257745209,
|
700 |
+
"learning_rate": 0.00018716275876010135,
|
701 |
+
"loss": 0.473,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.95,
|
706 |
+
"grad_norm": 0.5927861897994469,
|
707 |
+
"learning_rate": 0.00018685856405000983,
|
708 |
+
"loss": 0.4724,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.95,
|
713 |
+
"eval_blimp_filtered_avg": 0.7155223880597015,
|
714 |
+
"eval_blimp_filtered_std": 0.005000433138834185,
|
715 |
+
"step": 100
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.95,
|
719 |
+
"eval_blimp_supplement_avg": 0.8405172413793104,
|
720 |
+
"eval_blimp_supplement_std": 0.016486001732879434,
|
721 |
+
"step": 100
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.95,
|
725 |
+
"eval_vqa_filtered_avg": 0.52,
|
726 |
+
"eval_vqa_filtered_std": 0.05021167315686779,
|
727 |
+
"step": 100
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.95,
|
731 |
+
"eval_winoground_filtered_avg": 0.64,
|
732 |
+
"eval_winoground_filtered_std": 0.04824181513244218,
|
733 |
+
"step": 100
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.96,
|
737 |
+
"grad_norm": 0.5504516732077648,
|
738 |
+
"learning_rate": 0.00018655106050235548,
|
739 |
+
"loss": 0.4393,
|
740 |
+
"step": 101
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.97,
|
744 |
+
"grad_norm": 0.5801589113252366,
|
745 |
+
"learning_rate": 0.00018624025983134644,
|
746 |
+
"loss": 0.468,
|
747 |
+
"step": 102
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.98,
|
751 |
+
"grad_norm": 0.5273944337529535,
|
752 |
+
"learning_rate": 0.00018592617387679306,
|
753 |
+
"loss": 0.439,
|
754 |
+
"step": 103
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.99,
|
758 |
+
"grad_norm": 0.508609381383424,
|
759 |
+
"learning_rate": 0.00018560881460365724,
|
760 |
+
"loss": 0.4272,
|
761 |
+
"step": 104
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 1.0,
|
765 |
+
"grad_norm": 0.5396859577867195,
|
766 |
+
"learning_rate": 0.0001852881941015964,
|
767 |
+
"loss": 0.4362,
|
768 |
+
"step": 105
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 1.01,
|
772 |
+
"grad_norm": 0.5122858999271028,
|
773 |
+
"learning_rate": 0.00018496432458450294,
|
774 |
+
"loss": 0.3893,
|
775 |
+
"step": 106
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 1.02,
|
779 |
+
"grad_norm": 0.49626561438760436,
|
780 |
+
"learning_rate": 0.00018463721839003915,
|
781 |
+
"loss": 0.3498,
|
782 |
+
"step": 107
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 1.03,
|
786 |
+
"grad_norm": 0.48748413013987063,
|
787 |
+
"learning_rate": 0.000184306887979167,
|
788 |
+
"loss": 0.3256,
|
789 |
+
"step": 108
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.04,
|
793 |
+
"grad_norm": 0.5310280563857716,
|
794 |
+
"learning_rate": 0.00018397334593567348,
|
795 |
+
"loss": 0.3225,
|
796 |
+
"step": 109
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 1.05,
|
800 |
+
"grad_norm": 0.6232514021230662,
|
801 |
+
"learning_rate": 0.00018363660496569127,
|
802 |
+
"loss": 0.3489,
|
803 |
+
"step": 110
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 1.05,
|
807 |
+
"grad_norm": 0.5274577320762,
|
808 |
+
"learning_rate": 0.00018329667789721485,
|
809 |
+
"loss": 0.3123,
|
810 |
+
"step": 111
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 1.06,
|
814 |
+
"grad_norm": 0.5096311315676365,
|
815 |
+
"learning_rate": 0.00018295357767961144,
|
816 |
+
"loss": 0.3325,
|
817 |
+
"step": 112
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 1.07,
|
821 |
+
"grad_norm": 0.4613577097438129,
|
822 |
+
"learning_rate": 0.00018260731738312818,
|
823 |
+
"loss": 0.2936,
|
824 |
+
"step": 113
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 1.08,
|
828 |
+
"grad_norm": 0.4997938044342101,
|
829 |
+
"learning_rate": 0.00018225791019839375,
|
830 |
+
"loss": 0.3351,
|
831 |
+
"step": 114
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 1.09,
|
835 |
+
"grad_norm": 0.538085494988463,
|
836 |
+
"learning_rate": 0.00018190536943591624,
|
837 |
+
"loss": 0.329,
|
838 |
+
"step": 115
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 1.1,
|
842 |
+
"grad_norm": 0.5567068979809859,
|
843 |
+
"learning_rate": 0.00018154970852557603,
|
844 |
+
"loss": 0.318,
|
845 |
+
"step": 116
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 1.11,
|
849 |
+
"grad_norm": 0.5548141608588357,
|
850 |
+
"learning_rate": 0.0001811909410161139,
|
851 |
+
"loss": 0.3289,
|
852 |
+
"step": 117
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 1.12,
|
856 |
+
"grad_norm": 0.47326466614968965,
|
857 |
+
"learning_rate": 0.0001808290805746153,
|
858 |
+
"loss": 0.3076,
|
859 |
+
"step": 118
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 1.13,
|
863 |
+
"grad_norm": 0.47629585466918467,
|
864 |
+
"learning_rate": 0.00018046414098598948,
|
865 |
+
"loss": 0.3016,
|
866 |
+
"step": 119
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 1.14,
|
870 |
+
"grad_norm": 0.44135735344426463,
|
871 |
+
"learning_rate": 0.00018009613615244436,
|
872 |
+
"loss": 0.2704,
|
873 |
+
"step": 120
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 1.15,
|
877 |
+
"grad_norm": 0.5127645747027901,
|
878 |
+
"learning_rate": 0.000179725080092957,
|
879 |
+
"loss": 0.2887,
|
880 |
+
"step": 121
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 1.16,
|
884 |
+
"grad_norm": 0.5209981172771183,
|
885 |
+
"learning_rate": 0.0001793509869427395,
|
886 |
+
"loss": 0.2938,
|
887 |
+
"step": 122
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 1.17,
|
891 |
+
"grad_norm": 0.5481082193558409,
|
892 |
+
"learning_rate": 0.00017897387095270058,
|
893 |
+
"loss": 0.3191,
|
894 |
+
"step": 123
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 1.18,
|
898 |
+
"grad_norm": 0.4770065158307258,
|
899 |
+
"learning_rate": 0.0001785937464889027,
|
900 |
+
"loss": 0.2795,
|
901 |
+
"step": 124
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.19,
|
905 |
+
"grad_norm": 0.44845204938493194,
|
906 |
+
"learning_rate": 0.0001782106280320147,
|
907 |
+
"loss": 0.2667,
|
908 |
+
"step": 125
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 1.2,
|
912 |
+
"grad_norm": 0.47824147005907164,
|
913 |
+
"learning_rate": 0.00017782453017676025,
|
914 |
+
"loss": 0.267,
|
915 |
+
"step": 126
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.21,
|
919 |
+
"grad_norm": 0.501015317452837,
|
920 |
+
"learning_rate": 0.00017743546763136187,
|
921 |
+
"loss": 0.2831,
|
922 |
+
"step": 127
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 1.22,
|
926 |
+
"grad_norm": 0.5232536606095718,
|
927 |
+
"learning_rate": 0.00017704345521698058,
|
928 |
+
"loss": 0.2769,
|
929 |
+
"step": 128
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.23,
|
933 |
+
"grad_norm": 0.5495388553709665,
|
934 |
+
"learning_rate": 0.00017664850786715136,
|
935 |
+
"loss": 0.3031,
|
936 |
+
"step": 129
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 1.24,
|
940 |
+
"grad_norm": 0.5371555106361774,
|
941 |
+
"learning_rate": 0.00017625064062721415,
|
942 |
+
"loss": 0.2955,
|
943 |
+
"step": 130
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 1.24,
|
947 |
+
"grad_norm": 0.4716773551397148,
|
948 |
+
"learning_rate": 0.00017584986865374082,
|
949 |
+
"loss": 0.2666,
|
950 |
+
"step": 131
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1.25,
|
954 |
+
"grad_norm": 0.5089124561646106,
|
955 |
+
"learning_rate": 0.00017544620721395777,
|
956 |
+
"loss": 0.3379,
|
957 |
+
"step": 132
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 1.26,
|
961 |
+
"grad_norm": 0.4715340007422714,
|
962 |
+
"learning_rate": 0.00017503967168516426,
|
963 |
+
"loss": 0.2771,
|
964 |
+
"step": 133
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 1.27,
|
968 |
+
"grad_norm": 0.43502563576445413,
|
969 |
+
"learning_rate": 0.0001746302775541467,
|
970 |
+
"loss": 0.2423,
|
971 |
+
"step": 134
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 1.28,
|
975 |
+
"grad_norm": 0.4967705692007805,
|
976 |
+
"learning_rate": 0.00017421804041658863,
|
977 |
+
"loss": 0.2498,
|
978 |
+
"step": 135
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 1.29,
|
982 |
+
"grad_norm": 0.49127370733051945,
|
983 |
+
"learning_rate": 0.00017380297597647667,
|
984 |
+
"loss": 0.2616,
|
985 |
+
"step": 136
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 1.3,
|
989 |
+
"grad_norm": 0.47835649282708265,
|
990 |
+
"learning_rate": 0.00017338510004550223,
|
991 |
+
"loss": 0.241,
|
992 |
+
"step": 137
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 1.31,
|
996 |
+
"grad_norm": 0.4843464174553606,
|
997 |
+
"learning_rate": 0.00017296442854245915,
|
998 |
+
"loss": 0.2458,
|
999 |
+
"step": 138
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 1.32,
|
1003 |
+
"grad_norm": 0.5209405133977896,
|
1004 |
+
"learning_rate": 0.00017254097749263734,
|
1005 |
+
"loss": 0.2452,
|
1006 |
+
"step": 139
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 1.33,
|
1010 |
+
"grad_norm": 0.4709574288825739,
|
1011 |
+
"learning_rate": 0.0001721147630272123,
|
1012 |
+
"loss": 0.2627,
|
1013 |
+
"step": 140
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 1.34,
|
1017 |
+
"grad_norm": 0.4752105435022234,
|
1018 |
+
"learning_rate": 0.00017168580138263062,
|
1019 |
+
"loss": 0.2527,
|
1020 |
+
"step": 141
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 1.35,
|
1024 |
+
"grad_norm": 0.48781843284289905,
|
1025 |
+
"learning_rate": 0.00017125410889999134,
|
1026 |
+
"loss": 0.2356,
|
1027 |
+
"step": 142
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 1.36,
|
1031 |
+
"grad_norm": 0.5731736183258567,
|
1032 |
+
"learning_rate": 0.00017081970202442362,
|
1033 |
+
"loss": 0.2668,
|
1034 |
+
"step": 143
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1.37,
|
1038 |
+
"grad_norm": 0.48105126464697834,
|
1039 |
+
"learning_rate": 0.0001703825973044602,
|
1040 |
+
"loss": 0.2454,
|
1041 |
+
"step": 144
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 1.38,
|
1045 |
+
"grad_norm": 0.5280645599674879,
|
1046 |
+
"learning_rate": 0.00016994281139140688,
|
1047 |
+
"loss": 0.2454,
|
1048 |
+
"step": 145
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 1.39,
|
1052 |
+
"grad_norm": 0.47876489284248624,
|
1053 |
+
"learning_rate": 0.0001695003610387084,
|
1054 |
+
"loss": 0.2463,
|
1055 |
+
"step": 146
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 1.4,
|
1059 |
+
"grad_norm": 0.48826354198860017,
|
1060 |
+
"learning_rate": 0.00016905526310130999,
|
1061 |
+
"loss": 0.2295,
|
1062 |
+
"step": 147
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 1.41,
|
1066 |
+
"grad_norm": 0.47715494831436517,
|
1067 |
+
"learning_rate": 0.0001686075345350156,
|
1068 |
+
"loss": 0.252,
|
1069 |
+
"step": 148
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 1.42,
|
1073 |
+
"grad_norm": 0.5152105233009641,
|
1074 |
+
"learning_rate": 0.0001681571923958416,
|
1075 |
+
"loss": 0.2771,
|
1076 |
+
"step": 149
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1.43,
|
1080 |
+
"grad_norm": 0.4990883717055415,
|
1081 |
+
"learning_rate": 0.00016770425383936735,
|
1082 |
+
"loss": 0.2497,
|
1083 |
+
"step": 150
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 1.43,
|
1087 |
+
"grad_norm": 0.4674093996422124,
|
1088 |
+
"learning_rate": 0.00016724873612008155,
|
1089 |
+
"loss": 0.2441,
|
1090 |
+
"step": 151
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 1.44,
|
1094 |
+
"grad_norm": 0.4432102664091143,
|
1095 |
+
"learning_rate": 0.00016679065659072487,
|
1096 |
+
"loss": 0.2418,
|
1097 |
+
"step": 152
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 1.45,
|
1101 |
+
"grad_norm": 0.4677926556162063,
|
1102 |
+
"learning_rate": 0.00016633003270162902,
|
1103 |
+
"loss": 0.2483,
|
1104 |
+
"step": 153
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 1.46,
|
1108 |
+
"grad_norm": 0.5050389021999718,
|
1109 |
+
"learning_rate": 0.00016586688200005193,
|
1110 |
+
"loss": 0.225,
|
1111 |
+
"step": 154
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 1.47,
|
1115 |
+
"grad_norm": 0.538150442089787,
|
1116 |
+
"learning_rate": 0.00016540122212950934,
|
1117 |
+
"loss": 0.2629,
|
1118 |
+
"step": 155
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 1.48,
|
1122 |
+
"grad_norm": 0.4831894197759429,
|
1123 |
+
"learning_rate": 0.00016493307082910249,
|
1124 |
+
"loss": 0.2539,
|
1125 |
+
"step": 156
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.49,
|
1129 |
+
"grad_norm": 0.4864294249801108,
|
1130 |
+
"learning_rate": 0.00016446244593284277,
|
1131 |
+
"loss": 0.2638,
|
1132 |
+
"step": 157
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 1.5,
|
1136 |
+
"grad_norm": 0.46236092553249764,
|
1137 |
+
"learning_rate": 0.00016398936536897183,
|
1138 |
+
"loss": 0.2255,
|
1139 |
+
"step": 158
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 1.51,
|
1143 |
+
"grad_norm": 0.4963120760517666,
|
1144 |
+
"learning_rate": 0.00016351384715927898,
|
1145 |
+
"loss": 0.2524,
|
1146 |
+
"step": 159
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 1.52,
|
1150 |
+
"grad_norm": 0.5210286477375989,
|
1151 |
+
"learning_rate": 0.00016303590941841458,
|
1152 |
+
"loss": 0.225,
|
1153 |
+
"step": 160
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 1.53,
|
1157 |
+
"grad_norm": 0.5288475623534257,
|
1158 |
+
"learning_rate": 0.0001625555703531998,
|
1159 |
+
"loss": 0.2428,
|
1160 |
+
"step": 161
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1.54,
|
1164 |
+
"grad_norm": 0.4973215047467683,
|
1165 |
+
"learning_rate": 0.00016207284826193335,
|
1166 |
+
"loss": 0.2522,
|
1167 |
+
"step": 162
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.55,
|
1171 |
+
"grad_norm": 0.44826317640998203,
|
1172 |
+
"learning_rate": 0.00016158776153369402,
|
1173 |
+
"loss": 0.2019,
|
1174 |
+
"step": 163
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 1.56,
|
1178 |
+
"grad_norm": 0.45392654459830534,
|
1179 |
+
"learning_rate": 0.0001611003286476406,
|
1180 |
+
"loss": 0.2338,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 1.57,
|
1185 |
+
"grad_norm": 0.4430521150056381,
|
1186 |
+
"learning_rate": 0.00016061056817230754,
|
1187 |
+
"loss": 0.2273,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 1.58,
|
1192 |
+
"grad_norm": 0.44345119147374473,
|
1193 |
+
"learning_rate": 0.00016011849876489776,
|
1194 |
+
"loss": 0.211,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 1.59,
|
1199 |
+
"grad_norm": 0.4808061249544928,
|
1200 |
+
"learning_rate": 0.000159624139170572,
|
1201 |
+
"loss": 0.2104,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1.6,
|
1206 |
+
"grad_norm": 0.5573402749682285,
|
1207 |
+
"learning_rate": 0.00015912750822173445,
|
1208 |
+
"loss": 0.2492,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.61,
|
1213 |
+
"grad_norm": 0.5334950652460796,
|
1214 |
+
"learning_rate": 0.00015862862483731574,
|
1215 |
+
"loss": 0.2187,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 1.62,
|
1220 |
+
"grad_norm": 0.49497739813798797,
|
1221 |
+
"learning_rate": 0.00015812750802205187,
|
1222 |
+
"loss": 0.2097,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 1.62,
|
1227 |
+
"grad_norm": 0.44446540691990566,
|
1228 |
+
"learning_rate": 0.00015762417686576038,
|
1229 |
+
"loss": 0.204,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 1.63,
|
1234 |
+
"grad_norm": 0.42142200135464725,
|
1235 |
+
"learning_rate": 0.0001571186505426132,
|
1236 |
+
"loss": 0.1989,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 1.64,
|
1241 |
+
"grad_norm": 0.4328533901196503,
|
1242 |
+
"learning_rate": 0.00015661094831040598,
|
1243 |
+
"loss": 0.2173,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 1.65,
|
1248 |
+
"grad_norm": 0.43093996542664664,
|
1249 |
+
"learning_rate": 0.00015610108950982494,
|
1250 |
+
"loss": 0.1865,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 1.66,
|
1255 |
+
"grad_norm": 0.4850613308932528,
|
1256 |
+
"learning_rate": 0.00015558909356370944,
|
1257 |
+
"loss": 0.2181,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 1.67,
|
1262 |
+
"grad_norm": 0.47485870685329246,
|
1263 |
+
"learning_rate": 0.00015507497997631266,
|
1264 |
+
"loss": 0.2223,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 1.68,
|
1269 |
+
"grad_norm": 0.42085147271583295,
|
1270 |
+
"learning_rate": 0.0001545587683325583,
|
1271 |
+
"loss": 0.1845,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 1.69,
|
1276 |
+
"grad_norm": 0.4479801309419239,
|
1277 |
+
"learning_rate": 0.00015404047829729457,
|
1278 |
+
"loss": 0.1987,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 1.7,
|
1283 |
+
"grad_norm": 0.4624584058381783,
|
1284 |
+
"learning_rate": 0.00015352012961454507,
|
1285 |
+
"loss": 0.217,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 1.71,
|
1290 |
+
"grad_norm": 0.44005765649196454,
|
1291 |
+
"learning_rate": 0.00015299774210675657,
|
1292 |
+
"loss": 0.1837,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 1.72,
|
1297 |
+
"grad_norm": 0.4508346255489124,
|
1298 |
+
"learning_rate": 0.00015247333567404406,
|
1299 |
+
"loss": 0.2007,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 1.73,
|
1304 |
+
"grad_norm": 0.40396006791211914,
|
1305 |
+
"learning_rate": 0.00015194693029343248,
|
1306 |
+
"loss": 0.1866,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 1.74,
|
1311 |
+
"grad_norm": 0.44558839018398966,
|
1312 |
+
"learning_rate": 0.00015141854601809581,
|
1313 |
+
"loss": 0.1967,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 1.75,
|
1318 |
+
"grad_norm": 0.4337334328022437,
|
1319 |
+
"learning_rate": 0.00015088820297659314,
|
1320 |
+
"loss": 0.1891,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 1.76,
|
1325 |
+
"grad_norm": 0.4636781912221849,
|
1326 |
+
"learning_rate": 0.00015035592137210187,
|
1327 |
+
"loss": 0.193,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.77,
|
1332 |
+
"grad_norm": 0.47955885394967973,
|
1333 |
+
"learning_rate": 0.00014982172148164804,
|
1334 |
+
"loss": 0.1793,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.78,
|
1339 |
+
"grad_norm": 0.4721310395975314,
|
1340 |
+
"learning_rate": 0.00014928562365533392,
|
1341 |
+
"loss": 0.186,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 1.79,
|
1346 |
+
"grad_norm": 0.4737141537120664,
|
1347 |
+
"learning_rate": 0.00014874764831556285,
|
1348 |
+
"loss": 0.2058,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 1.8,
|
1353 |
+
"grad_norm": 0.40830849621087567,
|
1354 |
+
"learning_rate": 0.00014820781595626116,
|
1355 |
+
"loss": 0.1822,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 1.81,
|
1360 |
+
"grad_norm": 0.4272142710058541,
|
1361 |
+
"learning_rate": 0.0001476661471420975,
|
1362 |
+
"loss": 0.2057,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 1.81,
|
1367 |
+
"grad_norm": 0.4212227727031309,
|
1368 |
+
"learning_rate": 0.0001471226625076993,
|
1369 |
+
"loss": 0.1845,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.82,
|
1374 |
+
"grad_norm": 0.39660108389275345,
|
1375 |
+
"learning_rate": 0.0001465773827568671,
|
1376 |
+
"loss": 0.1769,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.83,
|
1381 |
+
"grad_norm": 0.38828383424285384,
|
1382 |
+
"learning_rate": 0.00014603032866178538,
|
1383 |
+
"loss": 0.1699,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 1.84,
|
1388 |
+
"grad_norm": 0.3681031142044674,
|
1389 |
+
"learning_rate": 0.00014548152106223157,
|
1390 |
+
"loss": 0.1456,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 1.85,
|
1395 |
+
"grad_norm": 0.46248659870169556,
|
1396 |
+
"learning_rate": 0.00014493098086478196,
|
1397 |
+
"loss": 0.1846,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 1.86,
|
1402 |
+
"grad_norm": 0.4437664820090981,
|
1403 |
+
"learning_rate": 0.00014437872904201542,
|
1404 |
+
"loss": 0.1706,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 1.87,
|
1409 |
+
"grad_norm": 0.4410375026146085,
|
1410 |
+
"learning_rate": 0.0001438247866317145,
|
1411 |
+
"loss": 0.1757,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.88,
|
1416 |
+
"grad_norm": 0.4290870801703047,
|
1417 |
+
"learning_rate": 0.00014326917473606366,
|
1418 |
+
"loss": 0.1777,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.89,
|
1423 |
+
"grad_norm": 0.4812130220306999,
|
1424 |
+
"learning_rate": 0.00014271191452084597,
|
1425 |
+
"loss": 0.2013,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 1.9,
|
1430 |
+
"grad_norm": 0.4314920290891278,
|
1431 |
+
"learning_rate": 0.00014215302721463623,
|
1432 |
+
"loss": 0.1857,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 1.9,
|
1437 |
+
"eval_blimp_filtered_avg": 0.7161194029850746,
|
1438 |
+
"eval_blimp_filtered_std": 0.005001692965803923,
|
1439 |
+
"step": 200
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 1.9,
|
1443 |
+
"eval_blimp_supplement_avg": 0.8211206896551724,
|
1444 |
+
"eval_blimp_supplement_std": 0.016785621805327337,
|
1445 |
+
"step": 200
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 1.9,
|
1449 |
+
"eval_vqa_filtered_avg": 0.51,
|
1450 |
+
"eval_vqa_filtered_std": 0.05024183937956912,
|
1451 |
+
"step": 200
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.9,
|
1455 |
+
"eval_winoground_filtered_avg": 0.62,
|
1456 |
+
"eval_winoground_filtered_std": 0.04878317312145633,
|
1457 |
+
"step": 200
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 1.91,
|
1461 |
+
"grad_norm": 0.41562514975066434,
|
1462 |
+
"learning_rate": 0.0001415925341079927,
|
1463 |
+
"loss": 0.21,
|
1464 |
+
"step": 201
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 1.92,
|
1468 |
+
"grad_norm": 0.37833993286875955,
|
1469 |
+
"learning_rate": 0.00014103045655264576,
|
1470 |
+
"loss": 0.1659,
|
1471 |
+
"step": 202
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 1.93,
|
1475 |
+
"grad_norm": 0.3880529818353851,
|
1476 |
+
"learning_rate": 0.00014046681596068466,
|
1477 |
+
"loss": 0.1638,
|
1478 |
+
"step": 203
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.94,
|
1482 |
+
"grad_norm": 0.40159118156434603,
|
1483 |
+
"learning_rate": 0.00013990163380374194,
|
1484 |
+
"loss": 0.1768,
|
1485 |
+
"step": 204
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.95,
|
1489 |
+
"grad_norm": 0.4086449128732129,
|
1490 |
+
"learning_rate": 0.00013933493161217523,
|
1491 |
+
"loss": 0.1544,
|
1492 |
+
"step": 205
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 1.96,
|
1496 |
+
"grad_norm": 0.3808287729283849,
|
1497 |
+
"learning_rate": 0.0001387667309742472,
|
1498 |
+
"loss": 0.1366,
|
1499 |
+
"step": 206
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 1.97,
|
1503 |
+
"grad_norm": 0.39609061286446773,
|
1504 |
+
"learning_rate": 0.0001381970535353032,
|
1505 |
+
"loss": 0.1494,
|
1506 |
+
"step": 207
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 1.98,
|
1510 |
+
"grad_norm": 0.40847272653729905,
|
1511 |
+
"learning_rate": 0.00013762592099694665,
|
1512 |
+
"loss": 0.1615,
|
1513 |
+
"step": 208
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 1.99,
|
1517 |
+
"grad_norm": 0.4334994696681873,
|
1518 |
+
"learning_rate": 0.00013705335511621228,
|
1519 |
+
"loss": 0.1542,
|
1520 |
+
"step": 209
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 2.0,
|
1524 |
+
"grad_norm": 0.4546384761691546,
|
1525 |
+
"learning_rate": 0.00013647937770473737,
|
1526 |
+
"loss": 0.1834,
|
1527 |
+
"step": 210
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 2.0,
|
1531 |
+
"grad_norm": 0.36130610610645814,
|
1532 |
+
"learning_rate": 0.00013590401062793083,
|
1533 |
+
"loss": 0.123,
|
1534 |
+
"step": 211
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 2.01,
|
1538 |
+
"grad_norm": 0.29975302946848653,
|
1539 |
+
"learning_rate": 0.0001353272758041402,
|
1540 |
+
"loss": 0.0824,
|
1541 |
+
"step": 212
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 2.02,
|
1545 |
+
"grad_norm": 0.29392603086414587,
|
1546 |
+
"learning_rate": 0.00013474919520381671,
|
1547 |
+
"loss": 0.0836,
|
1548 |
+
"step": 213
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 2.03,
|
1552 |
+
"grad_norm": 0.33169221984700814,
|
1553 |
+
"learning_rate": 0.00013416979084867852,
|
1554 |
+
"loss": 0.0683,
|
1555 |
+
"step": 214
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 2.04,
|
1559 |
+
"grad_norm": 0.39192700338704206,
|
1560 |
+
"learning_rate": 0.00013358908481087134,
|
1561 |
+
"loss": 0.0804,
|
1562 |
+
"step": 215
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 2.05,
|
1566 |
+
"grad_norm": 0.42443737109460977,
|
1567 |
+
"learning_rate": 0.0001330070992121281,
|
1568 |
+
"loss": 0.0797,
|
1569 |
+
"step": 216
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 2.06,
|
1573 |
+
"grad_norm": 0.42848813761714244,
|
1574 |
+
"learning_rate": 0.00013242385622292592,
|
1575 |
+
"loss": 0.0776,
|
1576 |
+
"step": 217
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 2.07,
|
1580 |
+
"grad_norm": 0.37448633759803696,
|
1581 |
+
"learning_rate": 0.00013183937806164172,
|
1582 |
+
"loss": 0.0739,
|
1583 |
+
"step": 218
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 2.08,
|
1587 |
+
"grad_norm": 0.3437440816482259,
|
1588 |
+
"learning_rate": 0.00013125368699370567,
|
1589 |
+
"loss": 0.0652,
|
1590 |
+
"step": 219
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 2.09,
|
1594 |
+
"grad_norm": 0.356415907025676,
|
1595 |
+
"learning_rate": 0.0001306668053307531,
|
1596 |
+
"loss": 0.0778,
|
1597 |
+
"step": 220
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 2.1,
|
1601 |
+
"grad_norm": 0.30675625825005026,
|
1602 |
+
"learning_rate": 0.00013007875542977448,
|
1603 |
+
"loss": 0.0665,
|
1604 |
+
"step": 221
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 2.11,
|
1608 |
+
"grad_norm": 0.29794655672460485,
|
1609 |
+
"learning_rate": 0.00012948955969226383,
|
1610 |
+
"loss": 0.0696,
|
1611 |
+
"step": 222
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 2.12,
|
1615 |
+
"grad_norm": 0.30163505061461343,
|
1616 |
+
"learning_rate": 0.00012889924056336532,
|
1617 |
+
"loss": 0.0705,
|
1618 |
+
"step": 223
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 2.13,
|
1622 |
+
"grad_norm": 0.32541739323213426,
|
1623 |
+
"learning_rate": 0.00012830782053101805,
|
1624 |
+
"loss": 0.0733,
|
1625 |
+
"step": 224
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 2.14,
|
1629 |
+
"grad_norm": 0.31121536090331003,
|
1630 |
+
"learning_rate": 0.00012771532212509974,
|
1631 |
+
"loss": 0.0711,
|
1632 |
+
"step": 225
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 2.15,
|
1636 |
+
"grad_norm": 0.34593292210442944,
|
1637 |
+
"learning_rate": 0.00012712176791656807,
|
1638 |
+
"loss": 0.0788,
|
1639 |
+
"step": 226
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 2.16,
|
1643 |
+
"grad_norm": 0.33946278651997686,
|
1644 |
+
"learning_rate": 0.0001265271805166012,
|
1645 |
+
"loss": 0.0677,
|
1646 |
+
"step": 227
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 2.17,
|
1650 |
+
"grad_norm": 0.3400898219352628,
|
1651 |
+
"learning_rate": 0.0001259315825757362,
|
1652 |
+
"loss": 0.0643,
|
1653 |
+
"step": 228
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 2.18,
|
1657 |
+
"grad_norm": 0.3813085350755264,
|
1658 |
+
"learning_rate": 0.00012533499678300618,
|
1659 |
+
"loss": 0.0761,
|
1660 |
+
"step": 229
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"epoch": 2.19,
|
1664 |
+
"grad_norm": 0.3523012248149677,
|
1665 |
+
"learning_rate": 0.00012473744586507604,
|
1666 |
+
"loss": 0.0648,
|
1667 |
+
"step": 230
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"epoch": 2.19,
|
1671 |
+
"grad_norm": 0.37842862853695125,
|
1672 |
+
"learning_rate": 0.00012413895258537675,
|
1673 |
+
"loss": 0.0812,
|
1674 |
+
"step": 231
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 2.2,
|
1678 |
+
"grad_norm": 0.39475455813661525,
|
1679 |
+
"learning_rate": 0.00012353953974323807,
|
1680 |
+
"loss": 0.0801,
|
1681 |
+
"step": 232
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 2.21,
|
1685 |
+
"grad_norm": 0.3205081471986943,
|
1686 |
+
"learning_rate": 0.00012293923017302002,
|
1687 |
+
"loss": 0.0677,
|
1688 |
+
"step": 233
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 2.22,
|
1692 |
+
"grad_norm": 0.31006899448135294,
|
1693 |
+
"learning_rate": 0.0001223380467432432,
|
1694 |
+
"loss": 0.07,
|
1695 |
+
"step": 234
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 2.23,
|
1699 |
+
"grad_norm": 0.3048520942780853,
|
1700 |
+
"learning_rate": 0.00012173601235571742,
|
1701 |
+
"loss": 0.0615,
|
1702 |
+
"step": 235
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"epoch": 2.24,
|
1706 |
+
"grad_norm": 0.3425413653893973,
|
1707 |
+
"learning_rate": 0.0001211331499446693,
|
1708 |
+
"loss": 0.0658,
|
1709 |
+
"step": 236
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 2.25,
|
1713 |
+
"grad_norm": 0.31929344956491607,
|
1714 |
+
"learning_rate": 0.00012052948247586873,
|
1715 |
+
"loss": 0.0653,
|
1716 |
+
"step": 237
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 2.26,
|
1720 |
+
"grad_norm": 0.3414359773691709,
|
1721 |
+
"learning_rate": 0.00011992503294575383,
|
1722 |
+
"loss": 0.0723,
|
1723 |
+
"step": 238
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"epoch": 2.27,
|
1727 |
+
"grad_norm": 0.32978160245312554,
|
1728 |
+
"learning_rate": 0.00011931982438055505,
|
1729 |
+
"loss": 0.07,
|
1730 |
+
"step": 239
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 2.28,
|
1734 |
+
"grad_norm": 0.33271868205929617,
|
1735 |
+
"learning_rate": 0.00011871387983541789,
|
1736 |
+
"loss": 0.0672,
|
1737 |
+
"step": 240
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 2.29,
|
1741 |
+
"grad_norm": 0.29862145989444433,
|
1742 |
+
"learning_rate": 0.00011810722239352467,
|
1743 |
+
"loss": 0.0603,
|
1744 |
+
"step": 241
|
1745 |
+
},
|
1746 |
+
{
|
1747 |
+
"epoch": 2.3,
|
1748 |
+
"grad_norm": 0.34485364985513034,
|
1749 |
+
"learning_rate": 0.00011749987516521523,
|
1750 |
+
"loss": 0.0632,
|
1751 |
+
"step": 242
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 2.31,
|
1755 |
+
"grad_norm": 0.3299899118013224,
|
1756 |
+
"learning_rate": 0.00011689186128710654,
|
1757 |
+
"loss": 0.0601,
|
1758 |
+
"step": 243
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 2.32,
|
1762 |
+
"grad_norm": 0.29635972892096896,
|
1763 |
+
"learning_rate": 0.00011628320392121117,
|
1764 |
+
"loss": 0.0558,
|
1765 |
+
"step": 244
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"epoch": 2.33,
|
1769 |
+
"grad_norm": 0.3414458592363874,
|
1770 |
+
"learning_rate": 0.0001156739262540552,
|
1771 |
+
"loss": 0.0703,
|
1772 |
+
"step": 245
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 2.34,
|
1776 |
+
"grad_norm": 0.3280087622706941,
|
1777 |
+
"learning_rate": 0.00011506405149579468,
|
1778 |
+
"loss": 0.0657,
|
1779 |
+
"step": 246
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 2.35,
|
1783 |
+
"grad_norm": 0.373086375777386,
|
1784 |
+
"learning_rate": 0.00011445360287933165,
|
1785 |
+
"loss": 0.0668,
|
1786 |
+
"step": 247
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 2.36,
|
1790 |
+
"grad_norm": 0.2937645914714354,
|
1791 |
+
"learning_rate": 0.00011384260365942904,
|
1792 |
+
"loss": 0.0612,
|
1793 |
+
"step": 248
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 2.37,
|
1797 |
+
"grad_norm": 0.39022311054047737,
|
1798 |
+
"learning_rate": 0.00011323107711182473,
|
1799 |
+
"loss": 0.0762,
|
1800 |
+
"step": 249
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 2.38,
|
1804 |
+
"grad_norm": 0.3345521008714258,
|
1805 |
+
"learning_rate": 0.00011261904653234485,
|
1806 |
+
"loss": 0.0711,
|
1807 |
+
"step": 250
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 2.38,
|
1811 |
+
"grad_norm": 0.30608871062806836,
|
1812 |
+
"learning_rate": 0.00011200653523601652,
|
1813 |
+
"loss": 0.0617,
|
1814 |
+
"step": 251
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 2.39,
|
1818 |
+
"grad_norm": 0.30714147902477945,
|
1819 |
+
"learning_rate": 0.00011139356655617945,
|
1820 |
+
"loss": 0.063,
|
1821 |
+
"step": 252
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 2.4,
|
1825 |
+
"grad_norm": 0.31051190204375445,
|
1826 |
+
"learning_rate": 0.00011078016384359724,
|
1827 |
+
"loss": 0.0659,
|
1828 |
+
"step": 253
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"epoch": 2.41,
|
1832 |
+
"grad_norm": 0.3071085278813772,
|
1833 |
+
"learning_rate": 0.00011016635046556772,
|
1834 |
+
"loss": 0.061,
|
1835 |
+
"step": 254
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"epoch": 2.42,
|
1839 |
+
"grad_norm": 0.3045837343462885,
|
1840 |
+
"learning_rate": 0.00010955214980503284,
|
1841 |
+
"loss": 0.0597,
|
1842 |
+
"step": 255
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"epoch": 2.43,
|
1846 |
+
"grad_norm": 0.3049959198680976,
|
1847 |
+
"learning_rate": 0.00010893758525968789,
|
1848 |
+
"loss": 0.0587,
|
1849 |
+
"step": 256
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 2.44,
|
1853 |
+
"grad_norm": 0.3168437149994661,
|
1854 |
+
"learning_rate": 0.00010832268024109025,
|
1855 |
+
"loss": 0.0559,
|
1856 |
+
"step": 257
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 2.45,
|
1860 |
+
"grad_norm": 0.3024342626013227,
|
1861 |
+
"learning_rate": 0.00010770745817376742,
|
1862 |
+
"loss": 0.0583,
|
1863 |
+
"step": 258
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 2.46,
|
1867 |
+
"grad_norm": 0.3188509232471995,
|
1868 |
+
"learning_rate": 0.0001070919424943247,
|
1869 |
+
"loss": 0.061,
|
1870 |
+
"step": 259
|
1871 |
+
},
|
1872 |
+
{
|
1873 |
+
"epoch": 2.47,
|
1874 |
+
"grad_norm": 0.3381945814712772,
|
1875 |
+
"learning_rate": 0.0001064761566505525,
|
1876 |
+
"loss": 0.0648,
|
1877 |
+
"step": 260
|
1878 |
+
},
|
1879 |
+
{
|
1880 |
+
"epoch": 2.48,
|
1881 |
+
"grad_norm": 0.3131931451431926,
|
1882 |
+
"learning_rate": 0.00010586012410053292,
|
1883 |
+
"loss": 0.0624,
|
1884 |
+
"step": 261
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 2.49,
|
1888 |
+
"grad_norm": 0.32809637984753304,
|
1889 |
+
"learning_rate": 0.00010524386831174628,
|
1890 |
+
"loss": 0.0627,
|
1891 |
+
"step": 262
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"epoch": 2.5,
|
1895 |
+
"grad_norm": 0.2832796499168925,
|
1896 |
+
"learning_rate": 0.00010462741276017711,
|
1897 |
+
"loss": 0.0535,
|
1898 |
+
"step": 263
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 2.51,
|
1902 |
+
"grad_norm": 0.3334141162384235,
|
1903 |
+
"learning_rate": 0.00010401078092941971,
|
1904 |
+
"loss": 0.061,
|
1905 |
+
"step": 264
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 2.52,
|
1909 |
+
"grad_norm": 0.27653747850590626,
|
1910 |
+
"learning_rate": 0.00010339399630978373,
|
1911 |
+
"loss": 0.0497,
|
1912 |
+
"step": 265
|
1913 |
+
},
|
1914 |
+
{
|
1915 |
+
"epoch": 2.53,
|
1916 |
+
"grad_norm": 0.32205480409336124,
|
1917 |
+
"learning_rate": 0.00010277708239739924,
|
1918 |
+
"loss": 0.0658,
|
1919 |
+
"step": 266
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 2.54,
|
1923 |
+
"grad_norm": 0.310079147965717,
|
1924 |
+
"learning_rate": 0.0001021600626933217,
|
1925 |
+
"loss": 0.0525,
|
1926 |
+
"step": 267
|
1927 |
+
},
|
1928 |
+
{
|
1929 |
+
"epoch": 2.55,
|
1930 |
+
"grad_norm": 0.31094425691461797,
|
1931 |
+
"learning_rate": 0.00010154296070263649,
|
1932 |
+
"loss": 0.0619,
|
1933 |
+
"step": 268
|
1934 |
+
},
|
1935 |
+
{
|
1936 |
+
"epoch": 2.56,
|
1937 |
+
"grad_norm": 0.33419799536496597,
|
1938 |
+
"learning_rate": 0.00010092579993356386,
|
1939 |
+
"loss": 0.0615,
|
1940 |
+
"step": 269
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 2.57,
|
1944 |
+
"grad_norm": 0.3343121767672678,
|
1945 |
+
"learning_rate": 0.00010030860389656305,
|
1946 |
+
"loss": 0.0663,
|
1947 |
+
"step": 270
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 2.57,
|
1951 |
+
"grad_norm": 0.3516117623617434,
|
1952 |
+
"learning_rate": 9.969139610343696e-05,
|
1953 |
+
"loss": 0.0662,
|
1954 |
+
"step": 271
|
1955 |
+
},
|
1956 |
+
{
|
1957 |
+
"epoch": 2.58,
|
1958 |
+
"grad_norm": 0.31796912631433194,
|
1959 |
+
"learning_rate": 9.907420006643619e-05,
|
1960 |
+
"loss": 0.0624,
|
1961 |
+
"step": 272
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 2.59,
|
1965 |
+
"grad_norm": 0.29219460425245597,
|
1966 |
+
"learning_rate": 9.845703929736351e-05,
|
1967 |
+
"loss": 0.0596,
|
1968 |
+
"step": 273
|
1969 |
+
},
|
1970 |
+
{
|
1971 |
+
"epoch": 2.6,
|
1972 |
+
"grad_norm": 0.316635170830544,
|
1973 |
+
"learning_rate": 9.783993730667831e-05,
|
1974 |
+
"loss": 0.0659,
|
1975 |
+
"step": 274
|
1976 |
+
},
|
1977 |
+
{
|
1978 |
+
"epoch": 2.61,
|
1979 |
+
"grad_norm": 0.33766616368603597,
|
1980 |
+
"learning_rate": 9.722291760260077e-05,
|
1981 |
+
"loss": 0.0646,
|
1982 |
+
"step": 275
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 2.62,
|
1986 |
+
"grad_norm": 0.31287192455811574,
|
1987 |
+
"learning_rate": 9.66060036902163e-05,
|
1988 |
+
"loss": 0.0585,
|
1989 |
+
"step": 276
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 2.63,
|
1993 |
+
"grad_norm": 0.28964582015181484,
|
1994 |
+
"learning_rate": 9.598921907058033e-05,
|
1995 |
+
"loss": 0.0543,
|
1996 |
+
"step": 277
|
1997 |
+
},
|
1998 |
+
{
|
1999 |
+
"epoch": 2.64,
|
2000 |
+
"grad_norm": 0.3037919396698326,
|
2001 |
+
"learning_rate": 9.53725872398229e-05,
|
2002 |
+
"loss": 0.0512,
|
2003 |
+
"step": 278
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"epoch": 2.65,
|
2007 |
+
"grad_norm": 0.3229974938313004,
|
2008 |
+
"learning_rate": 9.475613168825374e-05,
|
2009 |
+
"loss": 0.0531,
|
2010 |
+
"step": 279
|
2011 |
+
},
|
2012 |
+
{
|
2013 |
+
"epoch": 2.66,
|
2014 |
+
"grad_norm": 0.29881091304580676,
|
2015 |
+
"learning_rate": 9.413987589946711e-05,
|
2016 |
+
"loss": 0.0569,
|
2017 |
+
"step": 280
|
2018 |
+
},
|
2019 |
+
{
|
2020 |
+
"epoch": 2.67,
|
2021 |
+
"grad_norm": 0.29692909307641674,
|
2022 |
+
"learning_rate": 9.352384334944753e-05,
|
2023 |
+
"loss": 0.0547,
|
2024 |
+
"step": 281
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 2.68,
|
2028 |
+
"grad_norm": 0.33439942628885455,
|
2029 |
+
"learning_rate": 9.290805750567532e-05,
|
2030 |
+
"loss": 0.0622,
|
2031 |
+
"step": 282
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 2.69,
|
2035 |
+
"grad_norm": 0.2991141437988068,
|
2036 |
+
"learning_rate": 9.22925418262326e-05,
|
2037 |
+
"loss": 0.0464,
|
2038 |
+
"step": 283
|
2039 |
+
},
|
2040 |
+
{
|
2041 |
+
"epoch": 2.7,
|
2042 |
+
"grad_norm": 0.3171911760038229,
|
2043 |
+
"learning_rate": 9.167731975890976e-05,
|
2044 |
+
"loss": 0.059,
|
2045 |
+
"step": 284
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"epoch": 2.71,
|
2049 |
+
"grad_norm": 0.30072460150102115,
|
2050 |
+
"learning_rate": 9.106241474031212e-05,
|
2051 |
+
"loss": 0.0559,
|
2052 |
+
"step": 285
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"epoch": 2.72,
|
2056 |
+
"grad_norm": 0.3301896190647226,
|
2057 |
+
"learning_rate": 9.04478501949672e-05,
|
2058 |
+
"loss": 0.0514,
|
2059 |
+
"step": 286
|
2060 |
+
},
|
2061 |
+
{
|
2062 |
+
"epoch": 2.73,
|
2063 |
+
"grad_norm": 0.3298071637508188,
|
2064 |
+
"learning_rate": 8.983364953443227e-05,
|
2065 |
+
"loss": 0.0618,
|
2066 |
+
"step": 287
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 2.74,
|
2070 |
+
"grad_norm": 0.3497185839244567,
|
2071 |
+
"learning_rate": 8.921983615640277e-05,
|
2072 |
+
"loss": 0.065,
|
2073 |
+
"step": 288
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 2.75,
|
2077 |
+
"grad_norm": 0.33084725547728233,
|
2078 |
+
"learning_rate": 8.860643344382056e-05,
|
2079 |
+
"loss": 0.0527,
|
2080 |
+
"step": 289
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"epoch": 2.76,
|
2084 |
+
"grad_norm": 0.33012822636415956,
|
2085 |
+
"learning_rate": 8.79934647639835e-05,
|
2086 |
+
"loss": 0.0666,
|
2087 |
+
"step": 290
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 2.76,
|
2091 |
+
"grad_norm": 0.3151687548518561,
|
2092 |
+
"learning_rate": 8.738095346765518e-05,
|
2093 |
+
"loss": 0.0573,
|
2094 |
+
"step": 291
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 2.77,
|
2098 |
+
"grad_norm": 0.30346203875619676,
|
2099 |
+
"learning_rate": 8.676892288817531e-05,
|
2100 |
+
"loss": 0.0491,
|
2101 |
+
"step": 292
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 2.78,
|
2105 |
+
"grad_norm": 0.3133369298353677,
|
2106 |
+
"learning_rate": 8.615739634057098e-05,
|
2107 |
+
"loss": 0.0595,
|
2108 |
+
"step": 293
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 2.79,
|
2112 |
+
"grad_norm": 0.28715782085999497,
|
2113 |
+
"learning_rate": 8.554639712066836e-05,
|
2114 |
+
"loss": 0.0542,
|
2115 |
+
"step": 294
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 2.8,
|
2119 |
+
"grad_norm": 0.2815995010771035,
|
2120 |
+
"learning_rate": 8.493594850420537e-05,
|
2121 |
+
"loss": 0.0551,
|
2122 |
+
"step": 295
|
2123 |
+
},
|
2124 |
+
{
|
2125 |
+
"epoch": 2.81,
|
2126 |
+
"grad_norm": 0.280576878443274,
|
2127 |
+
"learning_rate": 8.432607374594484e-05,
|
2128 |
+
"loss": 0.0488,
|
2129 |
+
"step": 296
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 2.82,
|
2133 |
+
"grad_norm": 0.298809991890747,
|
2134 |
+
"learning_rate": 8.371679607878884e-05,
|
2135 |
+
"loss": 0.0544,
|
2136 |
+
"step": 297
|
2137 |
+
},
|
2138 |
+
{
|
2139 |
+
"epoch": 2.83,
|
2140 |
+
"grad_norm": 0.30088222272143067,
|
2141 |
+
"learning_rate": 8.310813871289348e-05,
|
2142 |
+
"loss": 0.0591,
|
2143 |
+
"step": 298
|
2144 |
+
},
|
2145 |
+
{
|
2146 |
+
"epoch": 2.84,
|
2147 |
+
"grad_norm": 0.3237358977236424,
|
2148 |
+
"learning_rate": 8.250012483478478e-05,
|
2149 |
+
"loss": 0.0547,
|
2150 |
+
"step": 299
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 2.85,
|
2154 |
+
"grad_norm": 0.34075237005827885,
|
2155 |
+
"learning_rate": 8.189277760647537e-05,
|
2156 |
+
"loss": 0.0566,
|
2157 |
+
"step": 300
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 2.85,
|
2161 |
+
"eval_blimp_filtered_avg": 0.7037313432835821,
|
2162 |
+
"eval_blimp_filtered_std": 0.005058972315437875,
|
2163 |
+
"step": 300
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 2.85,
|
2167 |
+
"eval_blimp_supplement_avg": 0.8103448275862069,
|
2168 |
+
"eval_blimp_supplement_std": 0.017321145118445798,
|
2169 |
+
"step": 300
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 2.85,
|
2173 |
+
"eval_vqa_filtered_avg": 0.53,
|
2174 |
+
"eval_vqa_filtered_std": 0.0501613558046592,
|
2175 |
+
"step": 300
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 2.85,
|
2179 |
+
"eval_winoground_filtered_avg": 0.68,
|
2180 |
+
"eval_winoground_filtered_std": 0.046882617226215034,
|
2181 |
+
"step": 300
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 2.86,
|
2185 |
+
"grad_norm": 0.3237263865460515,
|
2186 |
+
"learning_rate": 8.128612016458215e-05,
|
2187 |
+
"loss": 0.059,
|
2188 |
+
"step": 301
|
2189 |
+
},
|
2190 |
+
{
|
2191 |
+
"epoch": 2.87,
|
2192 |
+
"grad_norm": 0.2977357286247905,
|
2193 |
+
"learning_rate": 8.068017561944499e-05,
|
2194 |
+
"loss": 0.0492,
|
2195 |
+
"step": 302
|
2196 |
+
},
|
2197 |
+
{
|
2198 |
+
"epoch": 2.88,
|
2199 |
+
"grad_norm": 0.29591506818063545,
|
2200 |
+
"learning_rate": 8.00749670542462e-05,
|
2201 |
+
"loss": 0.052,
|
2202 |
+
"step": 303
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"epoch": 2.89,
|
2206 |
+
"grad_norm": 0.2789469075911483,
|
2207 |
+
"learning_rate": 7.94705175241313e-05,
|
2208 |
+
"loss": 0.0455,
|
2209 |
+
"step": 304
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"epoch": 2.9,
|
2213 |
+
"grad_norm": 0.2997082343784124,
|
2214 |
+
"learning_rate": 7.886685005533072e-05,
|
2215 |
+
"loss": 0.0498,
|
2216 |
+
"step": 305
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 2.91,
|
2220 |
+
"grad_norm": 0.30157528073661777,
|
2221 |
+
"learning_rate": 7.82639876442826e-05,
|
2222 |
+
"loss": 0.0567,
|
2223 |
+
"step": 306
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 2.92,
|
2227 |
+
"grad_norm": 0.32803298910194756,
|
2228 |
+
"learning_rate": 7.76619532567568e-05,
|
2229 |
+
"loss": 0.0622,
|
2230 |
+
"step": 307
|
2231 |
+
},
|
2232 |
+
{
|
2233 |
+
"epoch": 2.93,
|
2234 |
+
"grad_norm": 0.28556449374878695,
|
2235 |
+
"learning_rate": 7.706076982697999e-05,
|
2236 |
+
"loss": 0.0489,
|
2237 |
+
"step": 308
|
2238 |
+
},
|
2239 |
+
{
|
2240 |
+
"epoch": 2.94,
|
2241 |
+
"grad_norm": 0.32287162854623286,
|
2242 |
+
"learning_rate": 7.646046025676198e-05,
|
2243 |
+
"loss": 0.066,
|
2244 |
+
"step": 309
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 2.95,
|
2248 |
+
"grad_norm": 0.3384064716667544,
|
2249 |
+
"learning_rate": 7.586104741462325e-05,
|
2250 |
+
"loss": 0.0629,
|
2251 |
+
"step": 310
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 2.95,
|
2255 |
+
"grad_norm": 0.3005901634146794,
|
2256 |
+
"learning_rate": 7.526255413492395e-05,
|
2257 |
+
"loss": 0.051,
|
2258 |
+
"step": 311
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 2.96,
|
2262 |
+
"grad_norm": 0.2907146546357962,
|
2263 |
+
"learning_rate": 7.466500321699383e-05,
|
2264 |
+
"loss": 0.0546,
|
2265 |
+
"step": 312
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 2.97,
|
2269 |
+
"grad_norm": 0.30779520364750435,
|
2270 |
+
"learning_rate": 7.40684174242638e-05,
|
2271 |
+
"loss": 0.058,
|
2272 |
+
"step": 313
|
2273 |
+
},
|
2274 |
+
{
|
2275 |
+
"epoch": 2.98,
|
2276 |
+
"grad_norm": 0.29074373091101263,
|
2277 |
+
"learning_rate": 7.347281948339879e-05,
|
2278 |
+
"loss": 0.0463,
|
2279 |
+
"step": 314
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 2.99,
|
2283 |
+
"grad_norm": 0.32970798475445445,
|
2284 |
+
"learning_rate": 7.287823208343192e-05,
|
2285 |
+
"loss": 0.0589,
|
2286 |
+
"step": 315
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"epoch": 3.0,
|
2290 |
+
"grad_norm": 0.2798345327195924,
|
2291 |
+
"learning_rate": 7.228467787490028e-05,
|
2292 |
+
"loss": 0.0438,
|
2293 |
+
"step": 316
|
2294 |
+
},
|
2295 |
+
{
|
2296 |
+
"epoch": 3.01,
|
2297 |
+
"grad_norm": 0.18326848967204043,
|
2298 |
+
"learning_rate": 7.169217946898197e-05,
|
2299 |
+
"loss": 0.0225,
|
2300 |
+
"step": 317
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 3.02,
|
2304 |
+
"grad_norm": 0.18022372679373735,
|
2305 |
+
"learning_rate": 7.110075943663472e-05,
|
2306 |
+
"loss": 0.0161,
|
2307 |
+
"step": 318
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 3.03,
|
2311 |
+
"grad_norm": 0.1633153575928502,
|
2312 |
+
"learning_rate": 7.051044030773618e-05,
|
2313 |
+
"loss": 0.0153,
|
2314 |
+
"step": 319
|
2315 |
+
},
|
2316 |
+
{
|
2317 |
+
"epoch": 3.04,
|
2318 |
+
"grad_norm": 0.17802284328446474,
|
2319 |
+
"learning_rate": 6.992124457022553e-05,
|
2320 |
+
"loss": 0.0176,
|
2321 |
+
"step": 320
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 3.05,
|
2325 |
+
"grad_norm": 0.17359891604740127,
|
2326 |
+
"learning_rate": 6.933319466924693e-05,
|
2327 |
+
"loss": 0.0162,
|
2328 |
+
"step": 321
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 3.06,
|
2332 |
+
"grad_norm": 0.2202987501804585,
|
2333 |
+
"learning_rate": 6.874631300629435e-05,
|
2334 |
+
"loss": 0.0162,
|
2335 |
+
"step": 322
|
2336 |
+
},
|
2337 |
+
{
|
2338 |
+
"epoch": 3.07,
|
2339 |
+
"grad_norm": 0.22277821921264357,
|
2340 |
+
"learning_rate": 6.81606219383583e-05,
|
2341 |
+
"loss": 0.0187,
|
2342 |
+
"step": 323
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 3.08,
|
2346 |
+
"grad_norm": 0.18724963681022663,
|
2347 |
+
"learning_rate": 6.757614377707409e-05,
|
2348 |
+
"loss": 0.0153,
|
2349 |
+
"step": 324
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 3.09,
|
2353 |
+
"grad_norm": 0.21995220887794256,
|
2354 |
+
"learning_rate": 6.699290078787193e-05,
|
2355 |
+
"loss": 0.0188,
|
2356 |
+
"step": 325
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 3.1,
|
2360 |
+
"grad_norm": 0.1967935793635855,
|
2361 |
+
"learning_rate": 6.641091518912867e-05,
|
2362 |
+
"loss": 0.0156,
|
2363 |
+
"step": 326
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 3.11,
|
2367 |
+
"grad_norm": 0.20661934683104752,
|
2368 |
+
"learning_rate": 6.583020915132152e-05,
|
2369 |
+
"loss": 0.0158,
|
2370 |
+
"step": 327
|
2371 |
+
},
|
2372 |
+
{
|
2373 |
+
"epoch": 3.12,
|
2374 |
+
"grad_norm": 0.2422474266231083,
|
2375 |
+
"learning_rate": 6.525080479618331e-05,
|
2376 |
+
"loss": 0.0177,
|
2377 |
+
"step": 328
|
2378 |
+
},
|
2379 |
+
{
|
2380 |
+
"epoch": 3.13,
|
2381 |
+
"grad_norm": 0.18354685059507367,
|
2382 |
+
"learning_rate": 6.467272419585984e-05,
|
2383 |
+
"loss": 0.013,
|
2384 |
+
"step": 329
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 3.14,
|
2388 |
+
"grad_norm": 0.22423754187379397,
|
2389 |
+
"learning_rate": 6.40959893720692e-05,
|
2390 |
+
"loss": 0.0188,
|
2391 |
+
"step": 330
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 3.14,
|
2395 |
+
"grad_norm": 0.18994008796265852,
|
2396 |
+
"learning_rate": 6.352062229526266e-05,
|
2397 |
+
"loss": 0.0132,
|
2398 |
+
"step": 331
|
2399 |
+
},
|
2400 |
+
{
|
2401 |
+
"epoch": 3.15,
|
2402 |
+
"grad_norm": 0.24715301748493912,
|
2403 |
+
"learning_rate": 6.294664488378776e-05,
|
2404 |
+
"loss": 0.015,
|
2405 |
+
"step": 332
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"epoch": 3.16,
|
2409 |
+
"grad_norm": 0.17280498203848704,
|
2410 |
+
"learning_rate": 6.237407900305335e-05,
|
2411 |
+
"loss": 0.0138,
|
2412 |
+
"step": 333
|
2413 |
+
},
|
2414 |
+
{
|
2415 |
+
"epoch": 3.17,
|
2416 |
+
"grad_norm": 0.21773200395950232,
|
2417 |
+
"learning_rate": 6.180294646469679e-05,
|
2418 |
+
"loss": 0.0155,
|
2419 |
+
"step": 334
|
2420 |
+
},
|
2421 |
+
{
|
2422 |
+
"epoch": 3.18,
|
2423 |
+
"grad_norm": 0.2144971485793242,
|
2424 |
+
"learning_rate": 6.123326902575282e-05,
|
2425 |
+
"loss": 0.0158,
|
2426 |
+
"step": 335
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 3.19,
|
2430 |
+
"grad_norm": 0.18331926033535073,
|
2431 |
+
"learning_rate": 6.06650683878248e-05,
|
2432 |
+
"loss": 0.013,
|
2433 |
+
"step": 336
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 3.2,
|
2437 |
+
"grad_norm": 0.1788180130126268,
|
2438 |
+
"learning_rate": 6.009836619625809e-05,
|
2439 |
+
"loss": 0.0133,
|
2440 |
+
"step": 337
|
2441 |
+
},
|
2442 |
+
{
|
2443 |
+
"epoch": 3.21,
|
2444 |
+
"grad_norm": 0.20337677688861636,
|
2445 |
+
"learning_rate": 5.953318403931532e-05,
|
2446 |
+
"loss": 0.0129,
|
2447 |
+
"step": 338
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 3.22,
|
2451 |
+
"grad_norm": 0.20853998405220736,
|
2452 |
+
"learning_rate": 5.896954344735426e-05,
|
2453 |
+
"loss": 0.0176,
|
2454 |
+
"step": 339
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 3.23,
|
2458 |
+
"grad_norm": 0.1919639102705018,
|
2459 |
+
"learning_rate": 5.840746589200732e-05,
|
2460 |
+
"loss": 0.0144,
|
2461 |
+
"step": 340
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"epoch": 3.24,
|
2465 |
+
"grad_norm": 0.2134469059873606,
|
2466 |
+
"learning_rate": 5.784697278536379e-05,
|
2467 |
+
"loss": 0.0138,
|
2468 |
+
"step": 341
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 3.25,
|
2472 |
+
"grad_norm": 0.18435084201272836,
|
2473 |
+
"learning_rate": 5.728808547915405e-05,
|
2474 |
+
"loss": 0.0135,
|
2475 |
+
"step": 342
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 3.26,
|
2479 |
+
"grad_norm": 0.19554570393158438,
|
2480 |
+
"learning_rate": 5.673082526393634e-05,
|
2481 |
+
"loss": 0.015,
|
2482 |
+
"step": 343
|
2483 |
+
},
|
2484 |
+
{
|
2485 |
+
"epoch": 3.27,
|
2486 |
+
"grad_norm": 0.18522448379098544,
|
2487 |
+
"learning_rate": 5.617521336828556e-05,
|
2488 |
+
"loss": 0.0129,
|
2489 |
+
"step": 344
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 3.28,
|
2493 |
+
"grad_norm": 0.190207008998555,
|
2494 |
+
"learning_rate": 5.5621270957984573e-05,
|
2495 |
+
"loss": 0.0161,
|
2496 |
+
"step": 345
|
2497 |
+
},
|
2498 |
+
{
|
2499 |
+
"epoch": 3.29,
|
2500 |
+
"grad_norm": 0.19594053008897275,
|
2501 |
+
"learning_rate": 5.506901913521808e-05,
|
2502 |
+
"loss": 0.0162,
|
2503 |
+
"step": 346
|
2504 |
+
},
|
2505 |
+
{
|
2506 |
+
"epoch": 3.3,
|
2507 |
+
"grad_norm": 0.20111569255746164,
|
2508 |
+
"learning_rate": 5.451847893776845e-05,
|
2509 |
+
"loss": 0.0147,
|
2510 |
+
"step": 347
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 3.31,
|
2514 |
+
"grad_norm": 0.20867562278084897,
|
2515 |
+
"learning_rate": 5.396967133821461e-05,
|
2516 |
+
"loss": 0.0154,
|
2517 |
+
"step": 348
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 3.32,
|
2521 |
+
"grad_norm": 0.16028325232055693,
|
2522 |
+
"learning_rate": 5.342261724313292e-05,
|
2523 |
+
"loss": 0.0117,
|
2524 |
+
"step": 349
|
2525 |
+
},
|
2526 |
+
{
|
2527 |
+
"epoch": 3.33,
|
2528 |
+
"grad_norm": 0.14992620939570764,
|
2529 |
+
"learning_rate": 5.28773374923007e-05,
|
2530 |
+
"loss": 0.0106,
|
2531 |
+
"step": 350
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"epoch": 3.33,
|
2535 |
+
"grad_norm": 0.20669460754401175,
|
2536 |
+
"learning_rate": 5.2333852857902575e-05,
|
2537 |
+
"loss": 0.0161,
|
2538 |
+
"step": 351
|
2539 |
+
},
|
2540 |
+
{
|
2541 |
+
"epoch": 3.34,
|
2542 |
+
"grad_norm": 0.21934716169620833,
|
2543 |
+
"learning_rate": 5.1792184043738855e-05,
|
2544 |
+
"loss": 0.0128,
|
2545 |
+
"step": 352
|
2546 |
+
},
|
2547 |
+
{
|
2548 |
+
"epoch": 3.35,
|
2549 |
+
"grad_norm": 0.18204794157825063,
|
2550 |
+
"learning_rate": 5.1252351684437136e-05,
|
2551 |
+
"loss": 0.0129,
|
2552 |
+
"step": 353
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 3.36,
|
2556 |
+
"grad_norm": 0.21363608639584963,
|
2557 |
+
"learning_rate": 5.071437634466609e-05,
|
2558 |
+
"loss": 0.0105,
|
2559 |
+
"step": 354
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 3.37,
|
2563 |
+
"grad_norm": 0.15881770971724649,
|
2564 |
+
"learning_rate": 5.0178278518351983e-05,
|
2565 |
+
"loss": 0.0096,
|
2566 |
+
"step": 355
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 3.38,
|
2570 |
+
"grad_norm": 0.1980006966366768,
|
2571 |
+
"learning_rate": 4.964407862789817e-05,
|
2572 |
+
"loss": 0.0119,
|
2573 |
+
"step": 356
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"epoch": 3.39,
|
2577 |
+
"grad_norm": 0.21004802159627842,
|
2578 |
+
"learning_rate": 4.911179702340688e-05,
|
2579 |
+
"loss": 0.0119,
|
2580 |
+
"step": 357
|
2581 |
+
},
|
2582 |
+
{
|
2583 |
+
"epoch": 3.4,
|
2584 |
+
"grad_norm": 0.20419756258161648,
|
2585 |
+
"learning_rate": 4.85814539819042e-05,
|
2586 |
+
"loss": 0.0145,
|
2587 |
+
"step": 358
|
2588 |
+
},
|
2589 |
+
{
|
2590 |
+
"epoch": 3.41,
|
2591 |
+
"grad_norm": 0.1565818058300373,
|
2592 |
+
"learning_rate": 4.8053069706567554e-05,
|
2593 |
+
"loss": 0.0105,
|
2594 |
+
"step": 359
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 3.42,
|
2598 |
+
"grad_norm": 0.19501698471957343,
|
2599 |
+
"learning_rate": 4.752666432595596e-05,
|
2600 |
+
"loss": 0.0126,
|
2601 |
+
"step": 360
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 3.43,
|
2605 |
+
"grad_norm": 0.20941486180216556,
|
2606 |
+
"learning_rate": 4.700225789324343e-05,
|
2607 |
+
"loss": 0.0105,
|
2608 |
+
"step": 361
|
2609 |
+
},
|
2610 |
+
{
|
2611 |
+
"epoch": 3.44,
|
2612 |
+
"grad_norm": 0.18304197382791004,
|
2613 |
+
"learning_rate": 4.647987038545496e-05,
|
2614 |
+
"loss": 0.011,
|
2615 |
+
"step": 362
|
2616 |
+
},
|
2617 |
+
{
|
2618 |
+
"epoch": 3.45,
|
2619 |
+
"grad_norm": 0.16720171411001336,
|
2620 |
+
"learning_rate": 4.595952170270542e-05,
|
2621 |
+
"loss": 0.0112,
|
2622 |
+
"step": 363
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"epoch": 3.46,
|
2626 |
+
"grad_norm": 0.22478251297433013,
|
2627 |
+
"learning_rate": 4.544123166744172e-05,
|
2628 |
+
"loss": 0.0118,
|
2629 |
+
"step": 364
|
2630 |
+
},
|
2631 |
+
{
|
2632 |
+
"epoch": 3.47,
|
2633 |
+
"grad_norm": 0.1598572948562243,
|
2634 |
+
"learning_rate": 4.492502002368738e-05,
|
2635 |
+
"loss": 0.0107,
|
2636 |
+
"step": 365
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 3.48,
|
2640 |
+
"grad_norm": 0.22373563049772874,
|
2641 |
+
"learning_rate": 4.4410906436290566e-05,
|
2642 |
+
"loss": 0.0104,
|
2643 |
+
"step": 366
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 3.49,
|
2647 |
+
"grad_norm": 0.16802667132434534,
|
2648 |
+
"learning_rate": 4.38989104901751e-05,
|
2649 |
+
"loss": 0.0114,
|
2650 |
+
"step": 367
|
2651 |
+
},
|
2652 |
+
{
|
2653 |
+
"epoch": 3.5,
|
2654 |
+
"grad_norm": 0.24550738449688075,
|
2655 |
+
"learning_rate": 4.3389051689594e-05,
|
2656 |
+
"loss": 0.0121,
|
2657 |
+
"step": 368
|
2658 |
+
},
|
2659 |
+
{
|
2660 |
+
"epoch": 3.51,
|
2661 |
+
"grad_norm": 0.1660066244443363,
|
2662 |
+
"learning_rate": 4.288134945738684e-05,
|
2663 |
+
"loss": 0.0099,
|
2664 |
+
"step": 369
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 3.52,
|
2668 |
+
"grad_norm": 0.1783889244909253,
|
2669 |
+
"learning_rate": 4.237582313423962e-05,
|
2670 |
+
"loss": 0.0094,
|
2671 |
+
"step": 370
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 3.52,
|
2675 |
+
"grad_norm": 0.17141038466777303,
|
2676 |
+
"learning_rate": 4.187249197794813e-05,
|
2677 |
+
"loss": 0.0095,
|
2678 |
+
"step": 371
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 3.53,
|
2682 |
+
"grad_norm": 0.1893721805088239,
|
2683 |
+
"learning_rate": 4.137137516268426e-05,
|
2684 |
+
"loss": 0.013,
|
2685 |
+
"step": 372
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 3.54,
|
2689 |
+
"grad_norm": 0.16935951673752134,
|
2690 |
+
"learning_rate": 4.0872491778265535e-05,
|
2691 |
+
"loss": 0.0091,
|
2692 |
+
"step": 373
|
2693 |
+
},
|
2694 |
+
{
|
2695 |
+
"epoch": 3.55,
|
2696 |
+
"grad_norm": 0.13309068523326859,
|
2697 |
+
"learning_rate": 4.037586082942805e-05,
|
2698 |
+
"loss": 0.0091,
|
2699 |
+
"step": 374
|
2700 |
+
},
|
2701 |
+
{
|
2702 |
+
"epoch": 3.56,
|
2703 |
+
"grad_norm": 0.18791651271841342,
|
2704 |
+
"learning_rate": 3.988150123510224e-05,
|
2705 |
+
"loss": 0.0121,
|
2706 |
+
"step": 375
|
2707 |
+
},
|
2708 |
+
{
|
2709 |
+
"epoch": 3.57,
|
2710 |
+
"grad_norm": 0.1559825545952661,
|
2711 |
+
"learning_rate": 3.938943182769246e-05,
|
2712 |
+
"loss": 0.0102,
|
2713 |
+
"step": 376
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"epoch": 3.58,
|
2717 |
+
"grad_norm": 0.2261919531211638,
|
2718 |
+
"learning_rate": 3.88996713523594e-05,
|
2719 |
+
"loss": 0.0127,
|
2720 |
+
"step": 377
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 3.59,
|
2724 |
+
"grad_norm": 0.20792420146527377,
|
2725 |
+
"learning_rate": 3.841223846630599e-05,
|
2726 |
+
"loss": 0.013,
|
2727 |
+
"step": 378
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 3.6,
|
2731 |
+
"grad_norm": 0.16486082885129608,
|
2732 |
+
"learning_rate": 3.792715173806669e-05,
|
2733 |
+
"loss": 0.0105,
|
2734 |
+
"step": 379
|
2735 |
+
},
|
2736 |
+
{
|
2737 |
+
"epoch": 3.61,
|
2738 |
+
"grad_norm": 0.1549020176177142,
|
2739 |
+
"learning_rate": 3.74444296468002e-05,
|
2740 |
+
"loss": 0.0098,
|
2741 |
+
"step": 380
|
2742 |
+
},
|
2743 |
+
{
|
2744 |
+
"epoch": 3.62,
|
2745 |
+
"grad_norm": 0.17250200199106172,
|
2746 |
+
"learning_rate": 3.696409058158544e-05,
|
2747 |
+
"loss": 0.0109,
|
2748 |
+
"step": 381
|
2749 |
+
},
|
2750 |
+
{
|
2751 |
+
"epoch": 3.63,
|
2752 |
+
"grad_norm": 0.1415293330470341,
|
2753 |
+
"learning_rate": 3.6486152840721046e-05,
|
2754 |
+
"loss": 0.0084,
|
2755 |
+
"step": 382
|
2756 |
+
},
|
2757 |
+
{
|
2758 |
+
"epoch": 3.64,
|
2759 |
+
"grad_norm": 0.14461810975420877,
|
2760 |
+
"learning_rate": 3.6010634631028226e-05,
|
2761 |
+
"loss": 0.0084,
|
2762 |
+
"step": 383
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 3.65,
|
2766 |
+
"grad_norm": 0.1557012557289619,
|
2767 |
+
"learning_rate": 3.553755406715724e-05,
|
2768 |
+
"loss": 0.0089,
|
2769 |
+
"step": 384
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 3.66,
|
2773 |
+
"grad_norm": 0.15752891661687976,
|
2774 |
+
"learning_rate": 3.506692917089751e-05,
|
2775 |
+
"loss": 0.0109,
|
2776 |
+
"step": 385
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 3.67,
|
2780 |
+
"grad_norm": 0.1694876915505117,
|
2781 |
+
"learning_rate": 3.459877787049072e-05,
|
2782 |
+
"loss": 0.009,
|
2783 |
+
"step": 386
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"epoch": 3.68,
|
2787 |
+
"grad_norm": 0.1582663784415179,
|
2788 |
+
"learning_rate": 3.413311799994808e-05,
|
2789 |
+
"loss": 0.0095,
|
2790 |
+
"step": 387
|
2791 |
+
},
|
2792 |
+
{
|
2793 |
+
"epoch": 3.69,
|
2794 |
+
"grad_norm": 0.13693031068741818,
|
2795 |
+
"learning_rate": 3.366996729837102e-05,
|
2796 |
+
"loss": 0.0092,
|
2797 |
+
"step": 388
|
2798 |
+
},
|
2799 |
+
{
|
2800 |
+
"epoch": 3.7,
|
2801 |
+
"grad_norm": 0.14543112940410688,
|
2802 |
+
"learning_rate": 3.320934340927513e-05,
|
2803 |
+
"loss": 0.0108,
|
2804 |
+
"step": 389
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 3.71,
|
2808 |
+
"grad_norm": 0.19389482832864774,
|
2809 |
+
"learning_rate": 3.275126387991847e-05,
|
2810 |
+
"loss": 0.0098,
|
2811 |
+
"step": 390
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 3.71,
|
2815 |
+
"grad_norm": 0.15797165592004603,
|
2816 |
+
"learning_rate": 3.229574616063268e-05,
|
2817 |
+
"loss": 0.0076,
|
2818 |
+
"step": 391
|
2819 |
+
},
|
2820 |
+
{
|
2821 |
+
"epoch": 3.72,
|
2822 |
+
"grad_norm": 0.21281942854700847,
|
2823 |
+
"learning_rate": 3.184280760415843e-05,
|
2824 |
+
"loss": 0.0142,
|
2825 |
+
"step": 392
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 3.73,
|
2829 |
+
"grad_norm": 0.12498130411986656,
|
2830 |
+
"learning_rate": 3.1392465464984455e-05,
|
2831 |
+
"loss": 0.0081,
|
2832 |
+
"step": 393
|
2833 |
+
},
|
2834 |
+
{
|
2835 |
+
"epoch": 3.74,
|
2836 |
+
"grad_norm": 0.1152125429659436,
|
2837 |
+
"learning_rate": 3.094473689869002e-05,
|
2838 |
+
"loss": 0.0058,
|
2839 |
+
"step": 394
|
2840 |
+
},
|
2841 |
+
{
|
2842 |
+
"epoch": 3.75,
|
2843 |
+
"grad_norm": 0.1567733530080216,
|
2844 |
+
"learning_rate": 3.0499638961291623e-05,
|
2845 |
+
"loss": 0.011,
|
2846 |
+
"step": 395
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 3.76,
|
2850 |
+
"grad_norm": 0.14500898906990572,
|
2851 |
+
"learning_rate": 3.0057188608593147e-05,
|
2852 |
+
"loss": 0.0085,
|
2853 |
+
"step": 396
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 3.77,
|
2857 |
+
"grad_norm": 0.16163974543952728,
|
2858 |
+
"learning_rate": 2.9617402695539808e-05,
|
2859 |
+
"loss": 0.013,
|
2860 |
+
"step": 397
|
2861 |
+
},
|
2862 |
+
{
|
2863 |
+
"epoch": 3.78,
|
2864 |
+
"grad_norm": 0.13868168811451842,
|
2865 |
+
"learning_rate": 2.9180297975576364e-05,
|
2866 |
+
"loss": 0.0084,
|
2867 |
+
"step": 398
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 3.79,
|
2871 |
+
"grad_norm": 0.17847032901949134,
|
2872 |
+
"learning_rate": 2.8745891100008683e-05,
|
2873 |
+
"loss": 0.0121,
|
2874 |
+
"step": 399
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 3.8,
|
2878 |
+
"grad_norm": 0.17527442252411723,
|
2879 |
+
"learning_rate": 2.83141986173694e-05,
|
2880 |
+
"loss": 0.0084,
|
2881 |
+
"step": 400
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 3.8,
|
2885 |
+
"eval_blimp_filtered_avg": 0.7053731343283582,
|
2886 |
+
"eval_blimp_filtered_std": 0.005043001462199571,
|
2887 |
+
"step": 400
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 3.8,
|
2891 |
+
"eval_blimp_supplement_avg": 0.8125,
|
2892 |
+
"eval_blimp_supplement_std": 0.01736311122127593,
|
2893 |
+
"step": 400
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 3.8,
|
2897 |
+
"eval_vqa_filtered_avg": 0.52,
|
2898 |
+
"eval_vqa_filtered_std": 0.05021167315686779,
|
2899 |
+
"step": 400
|
2900 |
+
},
|
2901 |
+
{
|
2902 |
+
"epoch": 3.8,
|
2903 |
+
"eval_winoground_filtered_avg": 0.64,
|
2904 |
+
"eval_winoground_filtered_std": 0.048241815132442176,
|
2905 |
+
"step": 400
|
2906 |
+
},
|
2907 |
+
{
|
2908 |
+
"epoch": 3.81,
|
2909 |
+
"grad_norm": 0.14598157841040266,
|
2910 |
+
"learning_rate": 2.788523697278773e-05,
|
2911 |
+
"loss": 0.0093,
|
2912 |
+
"step": 401
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 3.82,
|
2916 |
+
"grad_norm": 0.20150542514971506,
|
2917 |
+
"learning_rate": 2.7459022507362686e-05,
|
2918 |
+
"loss": 0.0122,
|
2919 |
+
"step": 402
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 3.83,
|
2923 |
+
"grad_norm": 0.18255123614923588,
|
2924 |
+
"learning_rate": 2.7035571457540865e-05,
|
2925 |
+
"loss": 0.0103,
|
2926 |
+
"step": 403
|
2927 |
+
},
|
2928 |
+
{
|
2929 |
+
"epoch": 3.84,
|
2930 |
+
"grad_norm": 0.16704045474943452,
|
2931 |
+
"learning_rate": 2.6614899954497795e-05,
|
2932 |
+
"loss": 0.0114,
|
2933 |
+
"step": 404
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 3.85,
|
2937 |
+
"grad_norm": 0.14683721625679494,
|
2938 |
+
"learning_rate": 2.619702402352332e-05,
|
2939 |
+
"loss": 0.01,
|
2940 |
+
"step": 405
|
2941 |
+
},
|
2942 |
+
{
|
2943 |
+
"epoch": 3.86,
|
2944 |
+
"grad_norm": 0.18144743721435366,
|
2945 |
+
"learning_rate": 2.5781959583411374e-05,
|
2946 |
+
"loss": 0.0129,
|
2947 |
+
"step": 406
|
2948 |
+
},
|
2949 |
+
{
|
2950 |
+
"epoch": 3.87,
|
2951 |
+
"grad_norm": 0.19646570441433073,
|
2952 |
+
"learning_rate": 2.5369722445853304e-05,
|
2953 |
+
"loss": 0.0143,
|
2954 |
+
"step": 407
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 3.88,
|
2958 |
+
"grad_norm": 0.1668088181727681,
|
2959 |
+
"learning_rate": 2.4960328314835745e-05,
|
2960 |
+
"loss": 0.0089,
|
2961 |
+
"step": 408
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 3.89,
|
2965 |
+
"grad_norm": 0.16111476451284476,
|
2966 |
+
"learning_rate": 2.4553792786042262e-05,
|
2967 |
+
"loss": 0.0091,
|
2968 |
+
"step": 409
|
2969 |
+
},
|
2970 |
+
{
|
2971 |
+
"epoch": 3.9,
|
2972 |
+
"grad_norm": 0.17729690845562673,
|
2973 |
+
"learning_rate": 2.4150131346259197e-05,
|
2974 |
+
"loss": 0.0103,
|
2975 |
+
"step": 410
|
2976 |
+
},
|
2977 |
+
{
|
2978 |
+
"epoch": 3.9,
|
2979 |
+
"grad_norm": 0.15155895346947004,
|
2980 |
+
"learning_rate": 2.3749359372785883e-05,
|
2981 |
+
"loss": 0.0096,
|
2982 |
+
"step": 411
|
2983 |
+
},
|
2984 |
+
{
|
2985 |
+
"epoch": 3.91,
|
2986 |
+
"grad_norm": 0.15041370885333255,
|
2987 |
+
"learning_rate": 2.3351492132848664e-05,
|
2988 |
+
"loss": 0.0085,
|
2989 |
+
"step": 412
|
2990 |
+
},
|
2991 |
+
{
|
2992 |
+
"epoch": 3.92,
|
2993 |
+
"grad_norm": 0.12197907148956355,
|
2994 |
+
"learning_rate": 2.2956544783019418e-05,
|
2995 |
+
"loss": 0.0067,
|
2996 |
+
"step": 413
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 3.93,
|
3000 |
+
"grad_norm": 0.1788434056496877,
|
3001 |
+
"learning_rate": 2.2564532368638146e-05,
|
3002 |
+
"loss": 0.01,
|
3003 |
+
"step": 414
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 3.94,
|
3007 |
+
"grad_norm": 0.19269466130772045,
|
3008 |
+
"learning_rate": 2.2175469823239768e-05,
|
3009 |
+
"loss": 0.0117,
|
3010 |
+
"step": 415
|
3011 |
+
},
|
3012 |
+
{
|
3013 |
+
"epoch": 3.95,
|
3014 |
+
"grad_norm": 0.15780826445252463,
|
3015 |
+
"learning_rate": 2.1789371967985338e-05,
|
3016 |
+
"loss": 0.0101,
|
3017 |
+
"step": 416
|
3018 |
+
},
|
3019 |
+
{
|
3020 |
+
"epoch": 3.96,
|
3021 |
+
"grad_norm": 0.19229144408434373,
|
3022 |
+
"learning_rate": 2.140625351109733e-05,
|
3023 |
+
"loss": 0.0084,
|
3024 |
+
"step": 417
|
3025 |
+
},
|
3026 |
+
{
|
3027 |
+
"epoch": 3.97,
|
3028 |
+
"grad_norm": 0.15474486143047034,
|
3029 |
+
"learning_rate": 2.1026129047299436e-05,
|
3030 |
+
"loss": 0.0067,
|
3031 |
+
"step": 418
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"epoch": 3.98,
|
3035 |
+
"grad_norm": 0.15864166155594778,
|
3036 |
+
"learning_rate": 2.0649013057260546e-05,
|
3037 |
+
"loss": 0.0098,
|
3038 |
+
"step": 419
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 3.99,
|
3042 |
+
"grad_norm": 0.22515244613844015,
|
3043 |
+
"learning_rate": 2.0274919907043033e-05,
|
3044 |
+
"loss": 0.0094,
|
3045 |
+
"step": 420
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 4.0,
|
3049 |
+
"grad_norm": 0.18684872878382638,
|
3050 |
+
"learning_rate": 1.9903863847555648e-05,
|
3051 |
+
"loss": 0.0127,
|
3052 |
+
"step": 421
|
3053 |
+
},
|
3054 |
+
{
|
3055 |
+
"epoch": 4.01,
|
3056 |
+
"grad_norm": 0.06270483785922072,
|
3057 |
+
"learning_rate": 1.9535859014010526e-05,
|
3058 |
+
"loss": 0.0028,
|
3059 |
+
"step": 422
|
3060 |
+
},
|
3061 |
+
{
|
3062 |
+
"epoch": 4.02,
|
3063 |
+
"grad_norm": 0.09948637260912774,
|
3064 |
+
"learning_rate": 1.917091942538469e-05,
|
3065 |
+
"loss": 0.0037,
|
3066 |
+
"step": 423
|
3067 |
+
},
|
3068 |
+
{
|
3069 |
+
"epoch": 4.03,
|
3070 |
+
"grad_norm": 0.07530065845248647,
|
3071 |
+
"learning_rate": 1.880905898388612e-05,
|
3072 |
+
"loss": 0.0039,
|
3073 |
+
"step": 424
|
3074 |
+
},
|
3075 |
+
{
|
3076 |
+
"epoch": 4.04,
|
3077 |
+
"grad_norm": 0.054461890750773165,
|
3078 |
+
"learning_rate": 1.8450291474423998e-05,
|
3079 |
+
"loss": 0.0025,
|
3080 |
+
"step": 425
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 4.05,
|
3084 |
+
"grad_norm": 0.08002877578075594,
|
3085 |
+
"learning_rate": 1.8094630564083736e-05,
|
3086 |
+
"loss": 0.0035,
|
3087 |
+
"step": 426
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 4.06,
|
3091 |
+
"grad_norm": 0.05746226463965698,
|
3092 |
+
"learning_rate": 1.7742089801606276e-05,
|
3093 |
+
"loss": 0.0025,
|
3094 |
+
"step": 427
|
3095 |
+
},
|
3096 |
+
{
|
3097 |
+
"epoch": 4.07,
|
3098 |
+
"grad_norm": 0.0633358139605444,
|
3099 |
+
"learning_rate": 1.7392682616871837e-05,
|
3100 |
+
"loss": 0.0027,
|
3101 |
+
"step": 428
|
3102 |
+
},
|
3103 |
+
{
|
3104 |
+
"epoch": 4.08,
|
3105 |
+
"grad_norm": 0.06509683268742919,
|
3106 |
+
"learning_rate": 1.7046422320388556e-05,
|
3107 |
+
"loss": 0.0027,
|
3108 |
+
"step": 429
|
3109 |
+
},
|
3110 |
+
{
|
3111 |
+
"epoch": 4.09,
|
3112 |
+
"grad_norm": 0.054571154616853274,
|
3113 |
+
"learning_rate": 1.6703322102785168e-05,
|
3114 |
+
"loss": 0.0026,
|
3115 |
+
"step": 430
|
3116 |
+
},
|
3117 |
+
{
|
3118 |
+
"epoch": 4.1,
|
3119 |
+
"grad_norm": 0.06888564779650448,
|
3120 |
+
"learning_rate": 1.6363395034308703e-05,
|
3121 |
+
"loss": 0.0027,
|
3122 |
+
"step": 431
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 4.1,
|
3126 |
+
"grad_norm": 0.05307117129834359,
|
3127 |
+
"learning_rate": 1.6026654064326553e-05,
|
3128 |
+
"loss": 0.0025,
|
3129 |
+
"step": 432
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 4.11,
|
3133 |
+
"grad_norm": 0.06598879328529111,
|
3134 |
+
"learning_rate": 1.5693112020833013e-05,
|
3135 |
+
"loss": 0.003,
|
3136 |
+
"step": 433
|
3137 |
+
},
|
3138 |
+
{
|
3139 |
+
"epoch": 4.12,
|
3140 |
+
"grad_norm": 0.054752236275106794,
|
3141 |
+
"learning_rate": 1.5362781609960852e-05,
|
3142 |
+
"loss": 0.0025,
|
3143 |
+
"step": 434
|
3144 |
+
},
|
3145 |
+
{
|
3146 |
+
"epoch": 4.13,
|
3147 |
+
"grad_norm": 0.07106963888787232,
|
3148 |
+
"learning_rate": 1.5035675415497063e-05,
|
3149 |
+
"loss": 0.0031,
|
3150 |
+
"step": 435
|
3151 |
+
},
|
3152 |
+
{
|
3153 |
+
"epoch": 4.14,
|
3154 |
+
"grad_norm": 0.052548572683446884,
|
3155 |
+
"learning_rate": 1.471180589840363e-05,
|
3156 |
+
"loss": 0.0025,
|
3157 |
+
"step": 436
|
3158 |
+
},
|
3159 |
+
{
|
3160 |
+
"epoch": 4.15,
|
3161 |
+
"grad_norm": 0.08828036910254508,
|
3162 |
+
"learning_rate": 1.4391185396342789e-05,
|
3163 |
+
"loss": 0.0038,
|
3164 |
+
"step": 437
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 4.16,
|
3168 |
+
"grad_norm": 0.09463459893212552,
|
3169 |
+
"learning_rate": 1.4073826123206946e-05,
|
3170 |
+
"loss": 0.0038,
|
3171 |
+
"step": 438
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 4.17,
|
3175 |
+
"grad_norm": 0.08002928457971342,
|
3176 |
+
"learning_rate": 1.375974016865359e-05,
|
3177 |
+
"loss": 0.0031,
|
3178 |
+
"step": 439
|
3179 |
+
},
|
3180 |
+
{
|
3181 |
+
"epoch": 4.18,
|
3182 |
+
"grad_norm": 0.07631532690730236,
|
3183 |
+
"learning_rate": 1.3448939497644509e-05,
|
3184 |
+
"loss": 0.0031,
|
3185 |
+
"step": 440
|
3186 |
+
},
|
3187 |
+
{
|
3188 |
+
"epoch": 4.19,
|
3189 |
+
"grad_norm": 0.04831761603516682,
|
3190 |
+
"learning_rate": 1.3141435949990188e-05,
|
3191 |
+
"loss": 0.0027,
|
3192 |
+
"step": 441
|
3193 |
+
},
|
3194 |
+
{
|
3195 |
+
"epoch": 4.2,
|
3196 |
+
"grad_norm": 0.07344003153336562,
|
3197 |
+
"learning_rate": 1.2837241239898667e-05,
|
3198 |
+
"loss": 0.0032,
|
3199 |
+
"step": 442
|
3200 |
+
},
|
3201 |
+
{
|
3202 |
+
"epoch": 4.21,
|
3203 |
+
"grad_norm": 0.08305075630986966,
|
3204 |
+
"learning_rate": 1.253636695552931e-05,
|
3205 |
+
"loss": 0.003,
|
3206 |
+
"step": 443
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 4.22,
|
3210 |
+
"grad_norm": 0.1034575433958594,
|
3211 |
+
"learning_rate": 1.2238824558551365e-05,
|
3212 |
+
"loss": 0.0039,
|
3213 |
+
"step": 444
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 4.23,
|
3217 |
+
"grad_norm": 0.06655324788558148,
|
3218 |
+
"learning_rate": 1.1944625383707374e-05,
|
3219 |
+
"loss": 0.003,
|
3220 |
+
"step": 445
|
3221 |
+
},
|
3222 |
+
{
|
3223 |
+
"epoch": 4.24,
|
3224 |
+
"grad_norm": 0.0790599253839735,
|
3225 |
+
"learning_rate": 1.1653780638381328e-05,
|
3226 |
+
"loss": 0.0029,
|
3227 |
+
"step": 446
|
3228 |
+
},
|
3229 |
+
{
|
3230 |
+
"epoch": 4.25,
|
3231 |
+
"grad_norm": 0.04198685628145689,
|
3232 |
+
"learning_rate": 1.1366301402171775e-05,
|
3233 |
+
"loss": 0.0017,
|
3234 |
+
"step": 447
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 4.26,
|
3238 |
+
"grad_norm": 0.06439353264983554,
|
3239 |
+
"learning_rate": 1.1082198626469686e-05,
|
3240 |
+
"loss": 0.0024,
|
3241 |
+
"step": 448
|
3242 |
+
},
|
3243 |
+
{
|
3244 |
+
"epoch": 4.27,
|
3245 |
+
"grad_norm": 0.07762450043477247,
|
3246 |
+
"learning_rate": 1.0801483134041268e-05,
|
3247 |
+
"loss": 0.0027,
|
3248 |
+
"step": 449
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 4.28,
|
3252 |
+
"grad_norm": 0.07856883953783565,
|
3253 |
+
"learning_rate": 1.0524165618615845e-05,
|
3254 |
+
"loss": 0.0033,
|
3255 |
+
"step": 450
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 4.29,
|
3259 |
+
"grad_norm": 0.07929308057852809,
|
3260 |
+
"learning_rate": 1.0250256644478195e-05,
|
3261 |
+
"loss": 0.003,
|
3262 |
+
"step": 451
|
3263 |
+
},
|
3264 |
+
{
|
3265 |
+
"epoch": 4.29,
|
3266 |
+
"grad_norm": 0.0587512154822952,
|
3267 |
+
"learning_rate": 9.979766646066368e-06,
|
3268 |
+
"loss": 0.0027,
|
3269 |
+
"step": 452
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 4.3,
|
3273 |
+
"grad_norm": 0.06109551507247056,
|
3274 |
+
"learning_rate": 9.71270592757404e-06,
|
3275 |
+
"loss": 0.0032,
|
3276 |
+
"step": 453
|
3277 |
+
},
|
3278 |
+
{
|
3279 |
+
"epoch": 4.31,
|
3280 |
+
"grad_norm": 0.05909029031199419,
|
3281 |
+
"learning_rate": 9.449084662557982e-06,
|
3282 |
+
"loss": 0.0026,
|
3283 |
+
"step": 454
|
3284 |
+
},
|
3285 |
+
{
|
3286 |
+
"epoch": 4.32,
|
3287 |
+
"grad_norm": 0.0814055458144323,
|
3288 |
+
"learning_rate": 9.188912893550695e-06,
|
3289 |
+
"loss": 0.0026,
|
3290 |
+
"step": 455
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 4.33,
|
3294 |
+
"grad_norm": 0.07735385332942207,
|
3295 |
+
"learning_rate": 8.932200531677537e-06,
|
3296 |
+
"loss": 0.0028,
|
3297 |
+
"step": 456
|
3298 |
+
},
|
3299 |
+
{
|
3300 |
+
"epoch": 4.34,
|
3301 |
+
"grad_norm": 0.08519595591969155,
|
3302 |
+
"learning_rate": 8.678957356279371e-06,
|
3303 |
+
"loss": 0.0024,
|
3304 |
+
"step": 457
|
3305 |
+
},
|
3306 |
+
{
|
3307 |
+
"epoch": 4.35,
|
3308 |
+
"grad_norm": 0.055031384326470804,
|
3309 |
+
"learning_rate": 8.429193014540015e-06,
|
3310 |
+
"loss": 0.0026,
|
3311 |
+
"step": 458
|
3312 |
+
},
|
3313 |
+
{
|
3314 |
+
"epoch": 4.36,
|
3315 |
+
"grad_norm": 0.05387324401647046,
|
3316 |
+
"learning_rate": 8.182917021118663e-06,
|
3317 |
+
"loss": 0.0026,
|
3318 |
+
"step": 459
|
3319 |
+
},
|
3320 |
+
{
|
3321 |
+
"epoch": 4.37,
|
3322 |
+
"grad_norm": 0.07168879976269556,
|
3323 |
+
"learning_rate": 7.940138757787507e-06,
|
3324 |
+
"loss": 0.0032,
|
3325 |
+
"step": 460
|
3326 |
+
},
|
3327 |
+
{
|
3328 |
+
"epoch": 4.38,
|
3329 |
+
"grad_norm": 0.07661756681904786,
|
3330 |
+
"learning_rate": 7.700867473074224e-06,
|
3331 |
+
"loss": 0.0035,
|
3332 |
+
"step": 461
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 4.39,
|
3336 |
+
"grad_norm": 0.09486930411075328,
|
3337 |
+
"learning_rate": 7.46511228190977e-06,
|
3338 |
+
"loss": 0.0049,
|
3339 |
+
"step": 462
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 4.4,
|
3343 |
+
"grad_norm": 0.0679530025111762,
|
3344 |
+
"learning_rate": 7.232882165281141e-06,
|
3345 |
+
"loss": 0.0026,
|
3346 |
+
"step": 463
|
3347 |
+
},
|
3348 |
+
{
|
3349 |
+
"epoch": 4.41,
|
3350 |
+
"grad_norm": 0.06514922044267304,
|
3351 |
+
"learning_rate": 7.004185969889187e-06,
|
3352 |
+
"loss": 0.0027,
|
3353 |
+
"step": 464
|
3354 |
+
},
|
3355 |
+
{
|
3356 |
+
"epoch": 4.42,
|
3357 |
+
"grad_norm": 0.06706026131022384,
|
3358 |
+
"learning_rate": 6.7790324078116364e-06,
|
3359 |
+
"loss": 0.0027,
|
3360 |
+
"step": 465
|
3361 |
+
},
|
3362 |
+
{
|
3363 |
+
"epoch": 4.43,
|
3364 |
+
"grad_norm": 0.07709046890424658,
|
3365 |
+
"learning_rate": 6.557430056171221e-06,
|
3366 |
+
"loss": 0.0033,
|
3367 |
+
"step": 466
|
3368 |
+
},
|
3369 |
+
{
|
3370 |
+
"epoch": 4.44,
|
3371 |
+
"grad_norm": 0.051443041020356704,
|
3372 |
+
"learning_rate": 6.339387356808912e-06,
|
3373 |
+
"loss": 0.0026,
|
3374 |
+
"step": 467
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 4.45,
|
3378 |
+
"grad_norm": 0.060318722923432995,
|
3379 |
+
"learning_rate": 6.124912615962341e-06,
|
3380 |
+
"loss": 0.0028,
|
3381 |
+
"step": 468
|
3382 |
+
},
|
3383 |
+
{
|
3384 |
+
"epoch": 4.46,
|
3385 |
+
"grad_norm": 0.062212012735137795,
|
3386 |
+
"learning_rate": 5.9140140039494084e-06,
|
3387 |
+
"loss": 0.0025,
|
3388 |
+
"step": 469
|
3389 |
+
},
|
3390 |
+
{
|
3391 |
+
"epoch": 4.47,
|
3392 |
+
"grad_norm": 0.06556299474776538,
|
3393 |
+
"learning_rate": 5.706699554856964e-06,
|
3394 |
+
"loss": 0.0023,
|
3395 |
+
"step": 470
|
3396 |
+
},
|
3397 |
+
{
|
3398 |
+
"epoch": 4.48,
|
3399 |
+
"grad_norm": 0.08649267044276539,
|
3400 |
+
"learning_rate": 5.502977166234857e-06,
|
3401 |
+
"loss": 0.0035,
|
3402 |
+
"step": 471
|
3403 |
+
},
|
3404 |
+
{
|
3405 |
+
"epoch": 4.48,
|
3406 |
+
"grad_norm": 0.08526822145924882,
|
3407 |
+
"learning_rate": 5.302854598794937e-06,
|
3408 |
+
"loss": 0.003,
|
3409 |
+
"step": 472
|
3410 |
+
},
|
3411 |
+
{
|
3412 |
+
"epoch": 4.49,
|
3413 |
+
"grad_norm": 0.04133711118453636,
|
3414 |
+
"learning_rate": 5.106339476115596e-06,
|
3415 |
+
"loss": 0.0019,
|
3416 |
+
"step": 473
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 4.5,
|
3420 |
+
"grad_norm": 0.05708577094578342,
|
3421 |
+
"learning_rate": 4.913439284351207e-06,
|
3422 |
+
"loss": 0.0026,
|
3423 |
+
"step": 474
|
3424 |
+
},
|
3425 |
+
{
|
3426 |
+
"epoch": 4.51,
|
3427 |
+
"grad_norm": 0.07367912633186298,
|
3428 |
+
"learning_rate": 4.724161371946978e-06,
|
3429 |
+
"loss": 0.0029,
|
3430 |
+
"step": 475
|
3431 |
+
},
|
3432 |
+
{
|
3433 |
+
"epoch": 4.52,
|
3434 |
+
"grad_norm": 0.08135320771271103,
|
3435 |
+
"learning_rate": 4.538512949359075e-06,
|
3436 |
+
"loss": 0.0027,
|
3437 |
+
"step": 476
|
3438 |
+
},
|
3439 |
+
{
|
3440 |
+
"epoch": 4.53,
|
3441 |
+
"grad_norm": 0.0849858165893086,
|
3442 |
+
"learning_rate": 4.356501088779841e-06,
|
3443 |
+
"loss": 0.0027,
|
3444 |
+
"step": 477
|
3445 |
+
},
|
3446 |
+
{
|
3447 |
+
"epoch": 4.54,
|
3448 |
+
"grad_norm": 0.05260609110954984,
|
3449 |
+
"learning_rate": 4.178132723868477e-06,
|
3450 |
+
"loss": 0.0019,
|
3451 |
+
"step": 478
|
3452 |
+
},
|
3453 |
+
{
|
3454 |
+
"epoch": 4.55,
|
3455 |
+
"grad_norm": 0.0795477617292828,
|
3456 |
+
"learning_rate": 4.003414649486892e-06,
|
3457 |
+
"loss": 0.0032,
|
3458 |
+
"step": 479
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 4.56,
|
3462 |
+
"grad_norm": 0.08161922179718771,
|
3463 |
+
"learning_rate": 3.832353521440768e-06,
|
3464 |
+
"loss": 0.0026,
|
3465 |
+
"step": 480
|
3466 |
+
},
|
3467 |
+
{
|
3468 |
+
"epoch": 4.57,
|
3469 |
+
"grad_norm": 0.06830643544893618,
|
3470 |
+
"learning_rate": 3.6649558562261375e-06,
|
3471 |
+
"loss": 0.0032,
|
3472 |
+
"step": 481
|
3473 |
+
},
|
3474 |
+
{
|
3475 |
+
"epoch": 4.58,
|
3476 |
+
"grad_norm": 0.08641205617098656,
|
3477 |
+
"learning_rate": 3.501228030781034e-06,
|
3478 |
+
"loss": 0.0028,
|
3479 |
+
"step": 482
|
3480 |
+
},
|
3481 |
+
{
|
3482 |
+
"epoch": 4.59,
|
3483 |
+
"grad_norm": 0.04921706287498077,
|
3484 |
+
"learning_rate": 3.341176282242653e-06,
|
3485 |
+
"loss": 0.0021,
|
3486 |
+
"step": 483
|
3487 |
+
},
|
3488 |
+
{
|
3489 |
+
"epoch": 4.6,
|
3490 |
+
"grad_norm": 0.05901589705081983,
|
3491 |
+
"learning_rate": 3.184806707709698e-06,
|
3492 |
+
"loss": 0.0027,
|
3493 |
+
"step": 484
|
3494 |
+
},
|
3495 |
+
{
|
3496 |
+
"epoch": 4.61,
|
3497 |
+
"grad_norm": 0.08562934355546689,
|
3498 |
+
"learning_rate": 3.0321252640100885e-06,
|
3499 |
+
"loss": 0.0035,
|
3500 |
+
"step": 485
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 4.62,
|
3504 |
+
"grad_norm": 0.056139936545776606,
|
3505 |
+
"learning_rate": 2.88313776747412e-06,
|
3506 |
+
"loss": 0.0027,
|
3507 |
+
"step": 486
|
3508 |
+
},
|
3509 |
+
{
|
3510 |
+
"epoch": 4.63,
|
3511 |
+
"grad_norm": 0.06574452787357139,
|
3512 |
+
"learning_rate": 2.7378498937128404e-06,
|
3513 |
+
"loss": 0.0031,
|
3514 |
+
"step": 487
|
3515 |
+
},
|
3516 |
+
{
|
3517 |
+
"epoch": 4.64,
|
3518 |
+
"grad_norm": 0.06295208396607756,
|
3519 |
+
"learning_rate": 2.5962671774018234e-06,
|
3520 |
+
"loss": 0.0029,
|
3521 |
+
"step": 488
|
3522 |
+
},
|
3523 |
+
{
|
3524 |
+
"epoch": 4.65,
|
3525 |
+
"grad_norm": 0.06348707610420529,
|
3526 |
+
"learning_rate": 2.458395012070369e-06,
|
3527 |
+
"loss": 0.0027,
|
3528 |
+
"step": 489
|
3529 |
+
},
|
3530 |
+
{
|
3531 |
+
"epoch": 4.66,
|
3532 |
+
"grad_norm": 0.06438459591992919,
|
3533 |
+
"learning_rate": 2.3242386498960266e-06,
|
3534 |
+
"loss": 0.003,
|
3535 |
+
"step": 490
|
3536 |
+
},
|
3537 |
+
{
|
3538 |
+
"epoch": 4.67,
|
3539 |
+
"grad_norm": 0.0936033257355208,
|
3540 |
+
"learning_rate": 2.1938032015044964e-06,
|
3541 |
+
"loss": 0.0053,
|
3542 |
+
"step": 491
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 4.67,
|
3546 |
+
"grad_norm": 0.0712704009642112,
|
3547 |
+
"learning_rate": 2.067093635774975e-06,
|
3548 |
+
"loss": 0.0033,
|
3549 |
+
"step": 492
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 4.68,
|
3553 |
+
"grad_norm": 0.05278839840964536,
|
3554 |
+
"learning_rate": 1.9441147796508407e-06,
|
3555 |
+
"loss": 0.0025,
|
3556 |
+
"step": 493
|
3557 |
+
},
|
3558 |
+
{
|
3559 |
+
"epoch": 4.69,
|
3560 |
+
"grad_norm": 0.05158800004403027,
|
3561 |
+
"learning_rate": 1.8248713179557786e-06,
|
3562 |
+
"loss": 0.002,
|
3563 |
+
"step": 494
|
3564 |
+
},
|
3565 |
+
{
|
3566 |
+
"epoch": 4.7,
|
3567 |
+
"grad_norm": 0.06302315225352234,
|
3568 |
+
"learning_rate": 1.7093677932153218e-06,
|
3569 |
+
"loss": 0.002,
|
3570 |
+
"step": 495
|
3571 |
+
},
|
3572 |
+
{
|
3573 |
+
"epoch": 4.71,
|
3574 |
+
"grad_norm": 0.09014451602286425,
|
3575 |
+
"learning_rate": 1.5976086054838025e-06,
|
3576 |
+
"loss": 0.0031,
|
3577 |
+
"step": 496
|
3578 |
+
},
|
3579 |
+
{
|
3580 |
+
"epoch": 4.72,
|
3581 |
+
"grad_norm": 0.08249201483869177,
|
3582 |
+
"learning_rate": 1.4895980121767627e-06,
|
3583 |
+
"loss": 0.0029,
|
3584 |
+
"step": 497
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 4.73,
|
3588 |
+
"grad_norm": 0.07887788932672342,
|
3589 |
+
"learning_rate": 1.3853401279086854e-06,
|
3590 |
+
"loss": 0.0028,
|
3591 |
+
"step": 498
|
3592 |
+
},
|
3593 |
+
{
|
3594 |
+
"epoch": 4.74,
|
3595 |
+
"grad_norm": 0.09271365227044996,
|
3596 |
+
"learning_rate": 1.2848389243363512e-06,
|
3597 |
+
"loss": 0.0026,
|
3598 |
+
"step": 499
|
3599 |
+
},
|
3600 |
+
{
|
3601 |
+
"epoch": 4.75,
|
3602 |
+
"grad_norm": 0.05191622392926365,
|
3603 |
+
"learning_rate": 1.1880982300074838e-06,
|
3604 |
+
"loss": 0.0027,
|
3605 |
+
"step": 500
|
3606 |
+
},
|
3607 |
+
{
|
3608 |
+
"epoch": 4.75,
|
3609 |
+
"eval_blimp_filtered_avg": 0.7105970149253731,
|
3610 |
+
"eval_blimp_filtered_std": 0.005015059082306442,
|
3611 |
+
"step": 500
|
3612 |
+
},
|
3613 |
+
{
|
3614 |
+
"epoch": 4.75,
|
3615 |
+
"eval_blimp_supplement_avg": 0.8146551724137931,
|
3616 |
+
"eval_blimp_supplement_std": 0.01739418193453382,
|
3617 |
+
"step": 500
|
3618 |
+
},
|
3619 |
+
{
|
3620 |
+
"epoch": 4.75,
|
3621 |
+
"eval_vqa_filtered_avg": 0.52,
|
3622 |
+
"eval_vqa_filtered_std": 0.05021167315686779,
|
3623 |
+
"step": 500
|
3624 |
+
},
|
3625 |
+
{
|
3626 |
+
"epoch": 4.75,
|
3627 |
+
"eval_winoground_filtered_avg": 0.64,
|
3628 |
+
"eval_winoground_filtered_std": 0.048241815132442176,
|
3629 |
+
"step": 500
|
3630 |
+
},
|
3631 |
+
{
|
3632 |
+
"epoch": 4.76,
|
3633 |
+
"grad_norm": 0.06004512680198857,
|
3634 |
+
"learning_rate": 1.0951217302148986e-06,
|
3635 |
+
"loss": 0.0021,
|
3636 |
+
"step": 501
|
3637 |
+
},
|
3638 |
+
{
|
3639 |
+
"epoch": 4.77,
|
3640 |
+
"grad_norm": 0.07576379765393293,
|
3641 |
+
"learning_rate": 1.0059129668561707e-06,
|
3642 |
+
"loss": 0.0027,
|
3643 |
+
"step": 502
|
3644 |
+
},
|
3645 |
+
{
|
3646 |
+
"epoch": 4.78,
|
3647 |
+
"grad_norm": 0.0655321501764931,
|
3648 |
+
"learning_rate": 9.204753382986097e-07,
|
3649 |
+
"loss": 0.0029,
|
3650 |
+
"step": 503
|
3651 |
+
},
|
3652 |
+
{
|
3653 |
+
"epoch": 4.79,
|
3654 |
+
"grad_norm": 0.06668565079155468,
|
3655 |
+
"learning_rate": 8.388120992499083e-07,
|
3656 |
+
"loss": 0.0024,
|
3657 |
+
"step": 504
|
3658 |
+
},
|
3659 |
+
{
|
3660 |
+
"epoch": 4.8,
|
3661 |
+
"grad_norm": 0.08295379764022878,
|
3662 |
+
"learning_rate": 7.609263606340622e-07,
|
3663 |
+
"loss": 0.003,
|
3664 |
+
"step": 505
|
3665 |
+
},
|
3666 |
+
{
|
3667 |
+
"epoch": 4.81,
|
3668 |
+
"grad_norm": 0.05830372848137469,
|
3669 |
+
"learning_rate": 6.868210894729332e-07,
|
3670 |
+
"loss": 0.0027,
|
3671 |
+
"step": 506
|
3672 |
+
},
|
3673 |
+
{
|
3674 |
+
"epoch": 4.82,
|
3675 |
+
"grad_norm": 0.04555270319966449,
|
3676 |
+
"learning_rate": 6.164991087731831e-07,
|
3677 |
+
"loss": 0.0021,
|
3678 |
+
"step": 507
|
3679 |
+
},
|
3680 |
+
{
|
3681 |
+
"epoch": 4.83,
|
3682 |
+
"grad_norm": 0.057930715171302063,
|
3683 |
+
"learning_rate": 5.499630974187375e-07,
|
3684 |
+
"loss": 0.0024,
|
3685 |
+
"step": 508
|
3686 |
+
},
|
3687 |
+
{
|
3688 |
+
"epoch": 4.84,
|
3689 |
+
"grad_norm": 0.09648171217668358,
|
3690 |
+
"learning_rate": 4.872155900687347e-07,
|
3691 |
+
"loss": 0.0032,
|
3692 |
+
"step": 509
|
3693 |
+
},
|
3694 |
+
{
|
3695 |
+
"epoch": 4.85,
|
3696 |
+
"grad_norm": 0.08324119499167887,
|
3697 |
+
"learning_rate": 4.2825897706100235e-07,
|
3698 |
+
"loss": 0.0018,
|
3699 |
+
"step": 510
|
3700 |
+
},
|
3701 |
+
{
|
3702 |
+
"epoch": 4.86,
|
3703 |
+
"grad_norm": 0.05280884195269513,
|
3704 |
+
"learning_rate": 3.7309550432090835e-07,
|
3705 |
+
"loss": 0.003,
|
3706 |
+
"step": 511
|
3707 |
+
},
|
3708 |
+
{
|
3709 |
+
"epoch": 4.86,
|
3710 |
+
"grad_norm": 0.06550697689715686,
|
3711 |
+
"learning_rate": 3.217272732759402e-07,
|
3712 |
+
"loss": 0.0029,
|
3713 |
+
"step": 512
|
3714 |
+
},
|
3715 |
+
{
|
3716 |
+
"epoch": 4.87,
|
3717 |
+
"grad_norm": 0.07122072726515956,
|
3718 |
+
"learning_rate": 2.741562407755138e-07,
|
3719 |
+
"loss": 0.0026,
|
3720 |
+
"step": 513
|
3721 |
+
},
|
3722 |
+
{
|
3723 |
+
"epoch": 4.88,
|
3724 |
+
"grad_norm": 0.08524060823989948,
|
3725 |
+
"learning_rate": 2.3038421901651064e-07,
|
3726 |
+
"loss": 0.0032,
|
3727 |
+
"step": 514
|
3728 |
+
},
|
3729 |
+
{
|
3730 |
+
"epoch": 4.89,
|
3731 |
+
"grad_norm": 0.06597786647502633,
|
3732 |
+
"learning_rate": 1.9041287547424403e-07,
|
3733 |
+
"loss": 0.0026,
|
3734 |
+
"step": 515
|
3735 |
+
},
|
3736 |
+
{
|
3737 |
+
"epoch": 4.9,
|
3738 |
+
"grad_norm": 0.0640231658570345,
|
3739 |
+
"learning_rate": 1.5424373283889904e-07,
|
3740 |
+
"loss": 0.0025,
|
3741 |
+
"step": 516
|
3742 |
+
},
|
3743 |
+
{
|
3744 |
+
"epoch": 4.91,
|
3745 |
+
"grad_norm": 0.06369562949011548,
|
3746 |
+
"learning_rate": 1.2187816895752324e-07,
|
3747 |
+
"loss": 0.003,
|
3748 |
+
"step": 517
|
3749 |
+
},
|
3750 |
+
{
|
3751 |
+
"epoch": 4.92,
|
3752 |
+
"grad_norm": 0.05040741786604575,
|
3753 |
+
"learning_rate": 9.3317416781602e-08,
|
3754 |
+
"loss": 0.0021,
|
3755 |
+
"step": 518
|
3756 |
+
},
|
3757 |
+
{
|
3758 |
+
"epoch": 4.93,
|
3759 |
+
"grad_norm": 0.059709231647531516,
|
3760 |
+
"learning_rate": 6.856256432000718e-08,
|
3761 |
+
"loss": 0.0024,
|
3762 |
+
"step": 519
|
3763 |
+
},
|
3764 |
+
{
|
3765 |
+
"epoch": 4.94,
|
3766 |
+
"grad_norm": 0.07196915675318658,
|
3767 |
+
"learning_rate": 4.7614554597608105e-08,
|
3768 |
+
"loss": 0.0033,
|
3769 |
+
"step": 520
|
3770 |
+
},
|
3771 |
+
{
|
3772 |
+
"epoch": 4.95,
|
3773 |
+
"grad_norm": 0.057403114857655216,
|
3774 |
+
"learning_rate": 3.047418561933357e-08,
|
3775 |
+
"loss": 0.002,
|
3776 |
+
"step": 521
|
3777 |
+
},
|
3778 |
+
{
|
3779 |
+
"epoch": 4.96,
|
3780 |
+
"grad_norm": 0.08027211044033893,
|
3781 |
+
"learning_rate": 1.7142110339740668e-08,
|
3782 |
+
"loss": 0.003,
|
3783 |
+
"step": 522
|
3784 |
+
},
|
3785 |
+
{
|
3786 |
+
"epoch": 4.97,
|
3787 |
+
"grad_norm": 0.09851204603686081,
|
3788 |
+
"learning_rate": 7.618836638190186e-09,
|
3789 |
+
"loss": 0.0028,
|
3790 |
+
"step": 523
|
3791 |
+
},
|
3792 |
+
{
|
3793 |
+
"epoch": 4.98,
|
3794 |
+
"grad_norm": 0.0505999817391235,
|
3795 |
+
"learning_rate": 1.904727299473219e-09,
|
3796 |
+
"loss": 0.0023,
|
3797 |
+
"step": 524
|
3798 |
+
},
|
3799 |
+
{
|
3800 |
+
"epoch": 4.99,
|
3801 |
+
"grad_norm": 0.059018226862226256,
|
3802 |
+
"learning_rate": 0.0,
|
3803 |
+
"loss": 0.0029,
|
3804 |
+
"step": 525
|
3805 |
+
},
|
3806 |
+
{
|
3807 |
+
"epoch": 4.99,
|
3808 |
+
"step": 525,
|
3809 |
+
"total_flos": 415734656204800.0,
|
3810 |
+
"train_loss": 0.33918485829939266,
|
3811 |
+
"train_runtime": 37482.4854,
|
3812 |
+
"train_samples_per_second": 8.975,
|
3813 |
+
"train_steps_per_second": 0.014
|
3814 |
+
}
|
3815 |
+
],
|
3816 |
+
"logging_steps": 1.0,
|
3817 |
+
"max_steps": 525,
|
3818 |
+
"num_input_tokens_seen": 0,
|
3819 |
+
"num_train_epochs": 5,
|
3820 |
+
"save_steps": 500,
|
3821 |
+
"total_flos": 415734656204800.0,
|
3822 |
+
"train_batch_size": 40,
|
3823 |
+
"trial_name": null,
|
3824 |
+
"trial_params": null
|
3825 |
+
}
|