wsashawn commited on
Commit
269e040
1 Parent(s): 6c1b173

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.5-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e0f1587acc7bfcf4ce7ff933de4aaa66c4bad91af226f117c13dcc937ec011b
3
  size 639692768
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afcc9dd6219dd4e03990d41d7adf04c1781ae9ccb04b7004512c76e33819e33b
3
  size 639692768
checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.5-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.5-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "v_proj",
25
+ "up_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "q_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e0f1587acc7bfcf4ce7ff933de4aaa66c4bad91af226f117c13dcc937ec011b
3
+ size 639692768
checkpoint-500/global_step500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:915ae5376fe2f30965de47a0a4357122963d95eaac06e9a28ac33ad5d5d564ea
3
+ size 1022392370
checkpoint-500/global_step500/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae4b29d004bcea9a4cae3bd78dcd1fd469c6c1800ca999b1e0f1260208f40b28
3
+ size 1022392370
checkpoint-500/global_step500/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f5cbb69a0e15c47612833b62897d83b28a5ebbb5c17b3a2543eac80a97f0796
3
+ size 1022392370
checkpoint-500/global_step500/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cd82821cf0d2f5f37662845f6ddfbfde7927c2b9dc34e520b4e7260481f6f60
3
+ size 1022392370
checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccefde6b62dd0262d1b0232e8e65d3a9a8a42d330a1a9a84b3d63c05c401d48f
3
+ size 481762
checkpoint-500/global_step500/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3aec879d2d8fe9a2bd9f008044539f4ba863ae4e333a94fe056387f929035505
3
+ size 481762
checkpoint-500/global_step500/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e48d1f4c2ce62bfa80a19f2973d3677921afcf3f3632691691e8c32047c18025
3
+ size 481762
checkpoint-500/global_step500/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac4d544af741690cac7330bbf778ff222a3a2190b42dab492970e4e55997213c
3
+ size 481762
checkpoint-500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
checkpoint-500/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82370032e137f3f55b0507a17d8f9a6ba3e128250291084d7134592c694d011f
3
+ size 14960
checkpoint-500/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9831c46ec60268b43debb309dcdc1690fbf44f50726e5605cfd939ee9265e66d
3
+ size 14960
checkpoint-500/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bc8ec13e18a1ddde9e54fcc390912f7f549ad1ee5c0bc639e96249c36512207
3
+ size 14960
checkpoint-500/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:363553c1cb5470a4810e404d999c9b3a2e91a32a825d15d41194739e610933d5
3
+ size 14960
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65938ca8bb140e91f88093d917db45c24de2ba39a5e01fc70571e5da0db42f8d
3
+ size 1064
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-500/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "<unk>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3641 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.750593824228028,
5
+ "eval_steps": 100,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 4.008147055910771,
14
+ "learning_rate": 1.25e-05,
15
+ "loss": 4.2415,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.02,
20
+ "grad_norm": 4.04569203441769,
21
+ "learning_rate": 2.5e-05,
22
+ "loss": 4.3121,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.03,
27
+ "grad_norm": 3.865746651377984,
28
+ "learning_rate": 3.7500000000000003e-05,
29
+ "loss": 4.3208,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.04,
34
+ "grad_norm": 2.6407193073379105,
35
+ "learning_rate": 5e-05,
36
+ "loss": 3.8848,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.05,
41
+ "grad_norm": 2.451159328560232,
42
+ "learning_rate": 6.25e-05,
43
+ "loss": 3.4391,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.06,
48
+ "grad_norm": 1.8259504797317525,
49
+ "learning_rate": 7.500000000000001e-05,
50
+ "loss": 3.0656,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "grad_norm": 1.1881779175566867,
56
+ "learning_rate": 8.75e-05,
57
+ "loss": 2.8135,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.08,
62
+ "grad_norm": 1.614839668966139,
63
+ "learning_rate": 0.0001,
64
+ "loss": 2.7319,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.09,
69
+ "grad_norm": 1.5198673994210212,
70
+ "learning_rate": 0.00011250000000000001,
71
+ "loss": 2.6903,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.1,
76
+ "grad_norm": 1.0044025931610727,
77
+ "learning_rate": 0.000125,
78
+ "loss": 2.584,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.1,
83
+ "grad_norm": 1.1531821793787296,
84
+ "learning_rate": 0.0001375,
85
+ "loss": 2.586,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.11,
90
+ "grad_norm": 0.6210600474209341,
91
+ "learning_rate": 0.00015000000000000001,
92
+ "loss": 2.5298,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.12,
97
+ "grad_norm": 0.5025244204180619,
98
+ "learning_rate": 0.00016250000000000002,
99
+ "loss": 2.4665,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.13,
104
+ "grad_norm": 0.5058788641352842,
105
+ "learning_rate": 0.000175,
106
+ "loss": 2.4194,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.14,
111
+ "grad_norm": 0.44571801666869537,
112
+ "learning_rate": 0.0001875,
113
+ "loss": 2.3531,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.15,
118
+ "grad_norm": 0.44028009268534757,
119
+ "learning_rate": 0.0002,
120
+ "loss": 2.2749,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.16,
125
+ "grad_norm": 0.42473118020142525,
126
+ "learning_rate": 0.00019999809527270051,
127
+ "loss": 2.2587,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.17,
132
+ "grad_norm": 0.465029302165452,
133
+ "learning_rate": 0.0001999923811633618,
134
+ "loss": 2.2196,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.18,
139
+ "grad_norm": 0.49040381415815754,
140
+ "learning_rate": 0.00019998285788966027,
141
+ "loss": 2.2061,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.19,
146
+ "grad_norm": 0.4160855034634493,
147
+ "learning_rate": 0.00019996952581438068,
148
+ "loss": 2.1173,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.2,
153
+ "grad_norm": 0.45625369964232165,
154
+ "learning_rate": 0.00019995238544540241,
155
+ "loss": 2.1267,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.21,
160
+ "grad_norm": 0.42551849567803673,
161
+ "learning_rate": 0.00019993143743568,
162
+ "loss": 2.0976,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.22,
167
+ "grad_norm": 0.5100052595965069,
168
+ "learning_rate": 0.0001999066825832184,
169
+ "loss": 2.0428,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.23,
174
+ "grad_norm": 0.4717525078599394,
175
+ "learning_rate": 0.00019987812183104247,
176
+ "loss": 2.0068,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.24,
181
+ "grad_norm": 0.5596905853419681,
182
+ "learning_rate": 0.0001998457562671611,
183
+ "loss": 2.0303,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.25,
188
+ "grad_norm": 0.4931645550169434,
189
+ "learning_rate": 0.00019980958712452577,
190
+ "loss": 1.9722,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.26,
195
+ "grad_norm": 0.4433810930704678,
196
+ "learning_rate": 0.0001997696157809835,
197
+ "loss": 1.957,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.27,
202
+ "grad_norm": 0.5522396650266582,
203
+ "learning_rate": 0.0001997258437592245,
204
+ "loss": 1.915,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.28,
209
+ "grad_norm": 0.49861222066728145,
210
+ "learning_rate": 0.00019967827272672408,
211
+ "loss": 1.8303,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.29,
216
+ "grad_norm": 0.6169911964169147,
217
+ "learning_rate": 0.00019962690449567912,
218
+ "loss": 1.8454,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.29,
223
+ "grad_norm": 0.5639780725078123,
224
+ "learning_rate": 0.000199571741022939,
225
+ "loss": 1.8068,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.3,
230
+ "grad_norm": 0.6302805853808786,
231
+ "learning_rate": 0.0001995127844099313,
232
+ "loss": 1.7166,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.31,
237
+ "grad_norm": 0.6494693483139545,
238
+ "learning_rate": 0.00019945003690258125,
239
+ "loss": 1.6433,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.32,
244
+ "grad_norm": 0.7598443409498918,
245
+ "learning_rate": 0.00019938350089122682,
246
+ "loss": 1.7081,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.33,
251
+ "grad_norm": 0.6512764391881087,
252
+ "learning_rate": 0.00019931317891052708,
253
+ "loss": 1.6436,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.34,
258
+ "grad_norm": 0.6953537359048508,
259
+ "learning_rate": 0.00019923907363936593,
260
+ "loss": 1.5862,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.35,
265
+ "grad_norm": 0.6011387829084072,
266
+ "learning_rate": 0.00019916118790075008,
267
+ "loss": 1.5432,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.36,
272
+ "grad_norm": 0.659130437748028,
273
+ "learning_rate": 0.00019907952466170138,
274
+ "loss": 1.5132,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.37,
279
+ "grad_norm": 0.7211467253555573,
280
+ "learning_rate": 0.00019899408703314385,
281
+ "loss": 1.506,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.38,
286
+ "grad_norm": 0.7006890038987398,
287
+ "learning_rate": 0.0001989048782697851,
288
+ "loss": 1.4498,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.39,
293
+ "grad_norm": 0.64642158324997,
294
+ "learning_rate": 0.00019881190176999255,
295
+ "loss": 1.4478,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.4,
300
+ "grad_norm": 0.6608085069521318,
301
+ "learning_rate": 0.00019871516107566366,
302
+ "loss": 1.3542,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.41,
307
+ "grad_norm": 0.7707478188072372,
308
+ "learning_rate": 0.0001986146598720913,
309
+ "loss": 1.3309,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.42,
314
+ "grad_norm": 0.8119298049916807,
315
+ "learning_rate": 0.00019851040198782326,
316
+ "loss": 1.345,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.43,
321
+ "grad_norm": 0.7712308653234212,
322
+ "learning_rate": 0.0001984023913945162,
323
+ "loss": 1.3076,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.44,
328
+ "grad_norm": 0.682341709525683,
329
+ "learning_rate": 0.0001982906322067847,
330
+ "loss": 1.2565,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.45,
335
+ "grad_norm": 0.7071991083514119,
336
+ "learning_rate": 0.00019817512868204425,
337
+ "loss": 1.1796,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.46,
342
+ "grad_norm": 0.745222014713615,
343
+ "learning_rate": 0.00019805588522034916,
344
+ "loss": 1.1649,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.47,
349
+ "grad_norm": 0.7158459299510994,
350
+ "learning_rate": 0.00019793290636422505,
351
+ "loss": 1.2109,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.48,
356
+ "grad_norm": 0.7335821144549012,
357
+ "learning_rate": 0.00019780619679849552,
358
+ "loss": 1.1475,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.48,
363
+ "grad_norm": 0.7804306024320766,
364
+ "learning_rate": 0.000197675761350104,
365
+ "loss": 1.1068,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.49,
370
+ "grad_norm": 0.8274924156959725,
371
+ "learning_rate": 0.00019754160498792965,
372
+ "loss": 1.1839,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.5,
377
+ "grad_norm": 0.8840482383868431,
378
+ "learning_rate": 0.0001974037328225982,
379
+ "loss": 1.0928,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.51,
384
+ "grad_norm": 0.7224652999279871,
385
+ "learning_rate": 0.00019726215010628718,
386
+ "loss": 1.0299,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.52,
391
+ "grad_norm": 0.7109288879933862,
392
+ "learning_rate": 0.0001971168622325259,
393
+ "loss": 1.0436,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.53,
398
+ "grad_norm": 0.7650325966583326,
399
+ "learning_rate": 0.00019696787473598993,
400
+ "loss": 1.041,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.54,
405
+ "grad_norm": 0.7307809391946058,
406
+ "learning_rate": 0.00019681519329229033,
407
+ "loss": 1.0195,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.55,
412
+ "grad_norm": 0.6873943623441443,
413
+ "learning_rate": 0.00019665882371775733,
414
+ "loss": 0.972,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.56,
419
+ "grad_norm": 0.8185924734616268,
420
+ "learning_rate": 0.00019649877196921896,
421
+ "loss": 0.9986,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.57,
426
+ "grad_norm": 0.7907558585543373,
427
+ "learning_rate": 0.00019633504414377388,
428
+ "loss": 0.9201,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.58,
433
+ "grad_norm": 0.7216280408288712,
434
+ "learning_rate": 0.00019616764647855926,
435
+ "loss": 0.9976,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.59,
440
+ "grad_norm": 0.6946470891456141,
441
+ "learning_rate": 0.00019599658535051314,
442
+ "loss": 0.9008,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.6,
447
+ "grad_norm": 0.6470248283451219,
448
+ "learning_rate": 0.00019582186727613152,
449
+ "loss": 0.8226,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.61,
454
+ "grad_norm": 0.8297915622585336,
455
+ "learning_rate": 0.00019564349891122018,
456
+ "loss": 0.8825,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.62,
461
+ "grad_norm": 0.7018515834126928,
462
+ "learning_rate": 0.00019546148705064097,
463
+ "loss": 0.8521,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.63,
468
+ "grad_norm": 0.6119835758734723,
469
+ "learning_rate": 0.00019527583862805303,
470
+ "loss": 0.7872,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.64,
475
+ "grad_norm": 0.6396036538427098,
476
+ "learning_rate": 0.00019508656071564882,
477
+ "loss": 0.7887,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.65,
482
+ "grad_norm": 0.6712059239435435,
483
+ "learning_rate": 0.00019489366052388441,
484
+ "loss": 0.8406,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.66,
489
+ "grad_norm": 0.6498227189328728,
490
+ "learning_rate": 0.00019469714540120507,
491
+ "loss": 0.7109,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.67,
496
+ "grad_norm": 0.6950957852561941,
497
+ "learning_rate": 0.00019449702283376517,
498
+ "loss": 0.7008,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.67,
503
+ "grad_norm": 0.6415745385783075,
504
+ "learning_rate": 0.00019429330044514305,
505
+ "loss": 0.6808,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.68,
510
+ "grad_norm": 0.6774461765802887,
511
+ "learning_rate": 0.0001940859859960506,
512
+ "loss": 0.7122,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.69,
517
+ "grad_norm": 0.6335543398879422,
518
+ "learning_rate": 0.00019387508738403768,
519
+ "loss": 0.6826,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.7,
524
+ "grad_norm": 0.6455659601218003,
525
+ "learning_rate": 0.0001936606126431911,
526
+ "loss": 0.7342,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.71,
531
+ "grad_norm": 0.6804108080708727,
532
+ "learning_rate": 0.00019344256994382878,
533
+ "loss": 0.6983,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.72,
538
+ "grad_norm": 0.6233570198373359,
539
+ "learning_rate": 0.00019322096759218836,
540
+ "loss": 0.6426,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.73,
545
+ "grad_norm": 0.6354196060962453,
546
+ "learning_rate": 0.00019299581403011082,
547
+ "loss": 0.6978,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.74,
552
+ "grad_norm": 0.6723728632702363,
553
+ "learning_rate": 0.0001927671178347189,
554
+ "loss": 0.6449,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.75,
559
+ "grad_norm": 0.6055794839258588,
560
+ "learning_rate": 0.00019253488771809024,
561
+ "loss": 0.6608,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.76,
566
+ "grad_norm": 0.6032563228830964,
567
+ "learning_rate": 0.0001922991325269258,
568
+ "loss": 0.6691,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.77,
573
+ "grad_norm": 0.5917538532836075,
574
+ "learning_rate": 0.00019205986124221251,
575
+ "loss": 0.6418,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.78,
580
+ "grad_norm": 0.6558132078005496,
581
+ "learning_rate": 0.00019181708297888133,
582
+ "loss": 0.6562,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.79,
587
+ "grad_norm": 0.6110330049943966,
588
+ "learning_rate": 0.00019157080698546,
589
+ "loss": 0.5855,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.8,
594
+ "grad_norm": 0.6481622083495842,
595
+ "learning_rate": 0.00019132104264372063,
596
+ "loss": 0.628,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.81,
601
+ "grad_norm": 0.5730813607452849,
602
+ "learning_rate": 0.0001910677994683225,
603
+ "loss": 0.5476,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.82,
608
+ "grad_norm": 0.6938507563801335,
609
+ "learning_rate": 0.00019081108710644932,
610
+ "loss": 0.6018,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.83,
615
+ "grad_norm": 0.625439427503205,
616
+ "learning_rate": 0.00019055091533744202,
617
+ "loss": 0.5735,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.84,
622
+ "grad_norm": 0.6628596764324554,
623
+ "learning_rate": 0.00019028729407242597,
624
+ "loss": 0.5389,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.85,
629
+ "grad_norm": 0.6112099968245533,
630
+ "learning_rate": 0.00019002023335393364,
631
+ "loss": 0.5235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.86,
636
+ "grad_norm": 0.6098216223216336,
637
+ "learning_rate": 0.0001897497433555218,
638
+ "loss": 0.6058,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.86,
643
+ "grad_norm": 0.6469247467013166,
644
+ "learning_rate": 0.0001894758343813842,
645
+ "loss": 0.5524,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.87,
650
+ "grad_norm": 0.6344920759870597,
651
+ "learning_rate": 0.00018919851686595874,
652
+ "loss": 0.5605,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.88,
657
+ "grad_norm": 0.6756355159547938,
658
+ "learning_rate": 0.00018891780137353034,
659
+ "loss": 0.5096,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.89,
664
+ "grad_norm": 0.6439314455537293,
665
+ "learning_rate": 0.00018863369859782825,
666
+ "loss": 0.5516,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.9,
671
+ "grad_norm": 0.5567728554741562,
672
+ "learning_rate": 0.0001883462193616187,
673
+ "loss": 0.4576,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.91,
678
+ "grad_norm": 0.553595533418767,
679
+ "learning_rate": 0.00018805537461629265,
680
+ "loss": 0.4947,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.92,
685
+ "grad_norm": 0.6200223910647112,
686
+ "learning_rate": 0.00018776117544144863,
687
+ "loss": 0.5073,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.93,
692
+ "grad_norm": 0.6294322114297511,
693
+ "learning_rate": 0.00018746363304447073,
694
+ "loss": 0.4938,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.94,
699
+ "grad_norm": 0.6000145257745209,
700
+ "learning_rate": 0.00018716275876010135,
701
+ "loss": 0.473,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.95,
706
+ "grad_norm": 0.5927861897994469,
707
+ "learning_rate": 0.00018685856405000983,
708
+ "loss": 0.4724,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.95,
713
+ "eval_blimp_filtered_avg": 0.7155223880597015,
714
+ "eval_blimp_filtered_std": 0.005000433138834185,
715
+ "step": 100
716
+ },
717
+ {
718
+ "epoch": 0.95,
719
+ "eval_blimp_supplement_avg": 0.8405172413793104,
720
+ "eval_blimp_supplement_std": 0.016486001732879434,
721
+ "step": 100
722
+ },
723
+ {
724
+ "epoch": 0.95,
725
+ "eval_vqa_filtered_avg": 0.52,
726
+ "eval_vqa_filtered_std": 0.05021167315686779,
727
+ "step": 100
728
+ },
729
+ {
730
+ "epoch": 0.95,
731
+ "eval_winoground_filtered_avg": 0.64,
732
+ "eval_winoground_filtered_std": 0.04824181513244218,
733
+ "step": 100
734
+ },
735
+ {
736
+ "epoch": 0.96,
737
+ "grad_norm": 0.5504516732077648,
738
+ "learning_rate": 0.00018655106050235548,
739
+ "loss": 0.4393,
740
+ "step": 101
741
+ },
742
+ {
743
+ "epoch": 0.97,
744
+ "grad_norm": 0.5801589113252366,
745
+ "learning_rate": 0.00018624025983134644,
746
+ "loss": 0.468,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.98,
751
+ "grad_norm": 0.5273944337529535,
752
+ "learning_rate": 0.00018592617387679306,
753
+ "loss": 0.439,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.99,
758
+ "grad_norm": 0.508609381383424,
759
+ "learning_rate": 0.00018560881460365724,
760
+ "loss": 0.4272,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 1.0,
765
+ "grad_norm": 0.5396859577867195,
766
+ "learning_rate": 0.0001852881941015964,
767
+ "loss": 0.4362,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 1.01,
772
+ "grad_norm": 0.5122858999271028,
773
+ "learning_rate": 0.00018496432458450294,
774
+ "loss": 0.3893,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 1.02,
779
+ "grad_norm": 0.49626561438760436,
780
+ "learning_rate": 0.00018463721839003915,
781
+ "loss": 0.3498,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 1.03,
786
+ "grad_norm": 0.48748413013987063,
787
+ "learning_rate": 0.000184306887979167,
788
+ "loss": 0.3256,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 1.04,
793
+ "grad_norm": 0.5310280563857716,
794
+ "learning_rate": 0.00018397334593567348,
795
+ "loss": 0.3225,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 1.05,
800
+ "grad_norm": 0.6232514021230662,
801
+ "learning_rate": 0.00018363660496569127,
802
+ "loss": 0.3489,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 1.05,
807
+ "grad_norm": 0.5274577320762,
808
+ "learning_rate": 0.00018329667789721485,
809
+ "loss": 0.3123,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 1.06,
814
+ "grad_norm": 0.5096311315676365,
815
+ "learning_rate": 0.00018295357767961144,
816
+ "loss": 0.3325,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 1.07,
821
+ "grad_norm": 0.4613577097438129,
822
+ "learning_rate": 0.00018260731738312818,
823
+ "loss": 0.2936,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 1.08,
828
+ "grad_norm": 0.4997938044342101,
829
+ "learning_rate": 0.00018225791019839375,
830
+ "loss": 0.3351,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 1.09,
835
+ "grad_norm": 0.538085494988463,
836
+ "learning_rate": 0.00018190536943591624,
837
+ "loss": 0.329,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 1.1,
842
+ "grad_norm": 0.5567068979809859,
843
+ "learning_rate": 0.00018154970852557603,
844
+ "loss": 0.318,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 1.11,
849
+ "grad_norm": 0.5548141608588357,
850
+ "learning_rate": 0.0001811909410161139,
851
+ "loss": 0.3289,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 1.12,
856
+ "grad_norm": 0.47326466614968965,
857
+ "learning_rate": 0.0001808290805746153,
858
+ "loss": 0.3076,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 1.13,
863
+ "grad_norm": 0.47629585466918467,
864
+ "learning_rate": 0.00018046414098598948,
865
+ "loss": 0.3016,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 1.14,
870
+ "grad_norm": 0.44135735344426463,
871
+ "learning_rate": 0.00018009613615244436,
872
+ "loss": 0.2704,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 1.15,
877
+ "grad_norm": 0.5127645747027901,
878
+ "learning_rate": 0.000179725080092957,
879
+ "loss": 0.2887,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 1.16,
884
+ "grad_norm": 0.5209981172771183,
885
+ "learning_rate": 0.0001793509869427395,
886
+ "loss": 0.2938,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 1.17,
891
+ "grad_norm": 0.5481082193558409,
892
+ "learning_rate": 0.00017897387095270058,
893
+ "loss": 0.3191,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 1.18,
898
+ "grad_norm": 0.4770065158307258,
899
+ "learning_rate": 0.0001785937464889027,
900
+ "loss": 0.2795,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 1.19,
905
+ "grad_norm": 0.44845204938493194,
906
+ "learning_rate": 0.0001782106280320147,
907
+ "loss": 0.2667,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 1.2,
912
+ "grad_norm": 0.47824147005907164,
913
+ "learning_rate": 0.00017782453017676025,
914
+ "loss": 0.267,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 1.21,
919
+ "grad_norm": 0.501015317452837,
920
+ "learning_rate": 0.00017743546763136187,
921
+ "loss": 0.2831,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 1.22,
926
+ "grad_norm": 0.5232536606095718,
927
+ "learning_rate": 0.00017704345521698058,
928
+ "loss": 0.2769,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 1.23,
933
+ "grad_norm": 0.5495388553709665,
934
+ "learning_rate": 0.00017664850786715136,
935
+ "loss": 0.3031,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 1.24,
940
+ "grad_norm": 0.5371555106361774,
941
+ "learning_rate": 0.00017625064062721415,
942
+ "loss": 0.2955,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 1.24,
947
+ "grad_norm": 0.4716773551397148,
948
+ "learning_rate": 0.00017584986865374082,
949
+ "loss": 0.2666,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 1.25,
954
+ "grad_norm": 0.5089124561646106,
955
+ "learning_rate": 0.00017544620721395777,
956
+ "loss": 0.3379,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 1.26,
961
+ "grad_norm": 0.4715340007422714,
962
+ "learning_rate": 0.00017503967168516426,
963
+ "loss": 0.2771,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 1.27,
968
+ "grad_norm": 0.43502563576445413,
969
+ "learning_rate": 0.0001746302775541467,
970
+ "loss": 0.2423,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 1.28,
975
+ "grad_norm": 0.4967705692007805,
976
+ "learning_rate": 0.00017421804041658863,
977
+ "loss": 0.2498,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 1.29,
982
+ "grad_norm": 0.49127370733051945,
983
+ "learning_rate": 0.00017380297597647667,
984
+ "loss": 0.2616,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 1.3,
989
+ "grad_norm": 0.47835649282708265,
990
+ "learning_rate": 0.00017338510004550223,
991
+ "loss": 0.241,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 1.31,
996
+ "grad_norm": 0.4843464174553606,
997
+ "learning_rate": 0.00017296442854245915,
998
+ "loss": 0.2458,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 1.32,
1003
+ "grad_norm": 0.5209405133977896,
1004
+ "learning_rate": 0.00017254097749263734,
1005
+ "loss": 0.2452,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 1.33,
1010
+ "grad_norm": 0.4709574288825739,
1011
+ "learning_rate": 0.0001721147630272123,
1012
+ "loss": 0.2627,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 1.34,
1017
+ "grad_norm": 0.4752105435022234,
1018
+ "learning_rate": 0.00017168580138263062,
1019
+ "loss": 0.2527,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 1.35,
1024
+ "grad_norm": 0.48781843284289905,
1025
+ "learning_rate": 0.00017125410889999134,
1026
+ "loss": 0.2356,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 1.36,
1031
+ "grad_norm": 0.5731736183258567,
1032
+ "learning_rate": 0.00017081970202442362,
1033
+ "loss": 0.2668,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 1.37,
1038
+ "grad_norm": 0.48105126464697834,
1039
+ "learning_rate": 0.0001703825973044602,
1040
+ "loss": 0.2454,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 1.38,
1045
+ "grad_norm": 0.5280645599674879,
1046
+ "learning_rate": 0.00016994281139140688,
1047
+ "loss": 0.2454,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 1.39,
1052
+ "grad_norm": 0.47876489284248624,
1053
+ "learning_rate": 0.0001695003610387084,
1054
+ "loss": 0.2463,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 1.4,
1059
+ "grad_norm": 0.48826354198860017,
1060
+ "learning_rate": 0.00016905526310130999,
1061
+ "loss": 0.2295,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 1.41,
1066
+ "grad_norm": 0.47715494831436517,
1067
+ "learning_rate": 0.0001686075345350156,
1068
+ "loss": 0.252,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 1.42,
1073
+ "grad_norm": 0.5152105233009641,
1074
+ "learning_rate": 0.0001681571923958416,
1075
+ "loss": 0.2771,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 1.43,
1080
+ "grad_norm": 0.4990883717055415,
1081
+ "learning_rate": 0.00016770425383936735,
1082
+ "loss": 0.2497,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 1.43,
1087
+ "grad_norm": 0.4674093996422124,
1088
+ "learning_rate": 0.00016724873612008155,
1089
+ "loss": 0.2441,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 1.44,
1094
+ "grad_norm": 0.4432102664091143,
1095
+ "learning_rate": 0.00016679065659072487,
1096
+ "loss": 0.2418,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 1.45,
1101
+ "grad_norm": 0.4677926556162063,
1102
+ "learning_rate": 0.00016633003270162902,
1103
+ "loss": 0.2483,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 1.46,
1108
+ "grad_norm": 0.5050389021999718,
1109
+ "learning_rate": 0.00016586688200005193,
1110
+ "loss": 0.225,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 1.47,
1115
+ "grad_norm": 0.538150442089787,
1116
+ "learning_rate": 0.00016540122212950934,
1117
+ "loss": 0.2629,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 1.48,
1122
+ "grad_norm": 0.4831894197759429,
1123
+ "learning_rate": 0.00016493307082910249,
1124
+ "loss": 0.2539,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 1.49,
1129
+ "grad_norm": 0.4864294249801108,
1130
+ "learning_rate": 0.00016446244593284277,
1131
+ "loss": 0.2638,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 1.5,
1136
+ "grad_norm": 0.46236092553249764,
1137
+ "learning_rate": 0.00016398936536897183,
1138
+ "loss": 0.2255,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 1.51,
1143
+ "grad_norm": 0.4963120760517666,
1144
+ "learning_rate": 0.00016351384715927898,
1145
+ "loss": 0.2524,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 1.52,
1150
+ "grad_norm": 0.5210286477375989,
1151
+ "learning_rate": 0.00016303590941841458,
1152
+ "loss": 0.225,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 1.53,
1157
+ "grad_norm": 0.5288475623534257,
1158
+ "learning_rate": 0.0001625555703531998,
1159
+ "loss": 0.2428,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 1.54,
1164
+ "grad_norm": 0.4973215047467683,
1165
+ "learning_rate": 0.00016207284826193335,
1166
+ "loss": 0.2522,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 1.55,
1171
+ "grad_norm": 0.44826317640998203,
1172
+ "learning_rate": 0.00016158776153369402,
1173
+ "loss": 0.2019,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 1.56,
1178
+ "grad_norm": 0.45392654459830534,
1179
+ "learning_rate": 0.0001611003286476406,
1180
+ "loss": 0.2338,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 1.57,
1185
+ "grad_norm": 0.4430521150056381,
1186
+ "learning_rate": 0.00016061056817230754,
1187
+ "loss": 0.2273,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 1.58,
1192
+ "grad_norm": 0.44345119147374473,
1193
+ "learning_rate": 0.00016011849876489776,
1194
+ "loss": 0.211,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 1.59,
1199
+ "grad_norm": 0.4808061249544928,
1200
+ "learning_rate": 0.000159624139170572,
1201
+ "loss": 0.2104,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 1.6,
1206
+ "grad_norm": 0.5573402749682285,
1207
+ "learning_rate": 0.00015912750822173445,
1208
+ "loss": 0.2492,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 1.61,
1213
+ "grad_norm": 0.5334950652460796,
1214
+ "learning_rate": 0.00015862862483731574,
1215
+ "loss": 0.2187,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 1.62,
1220
+ "grad_norm": 0.49497739813798797,
1221
+ "learning_rate": 0.00015812750802205187,
1222
+ "loss": 0.2097,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 1.62,
1227
+ "grad_norm": 0.44446540691990566,
1228
+ "learning_rate": 0.00015762417686576038,
1229
+ "loss": 0.204,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 1.63,
1234
+ "grad_norm": 0.42142200135464725,
1235
+ "learning_rate": 0.0001571186505426132,
1236
+ "loss": 0.1989,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 1.64,
1241
+ "grad_norm": 0.4328533901196503,
1242
+ "learning_rate": 0.00015661094831040598,
1243
+ "loss": 0.2173,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 1.65,
1248
+ "grad_norm": 0.43093996542664664,
1249
+ "learning_rate": 0.00015610108950982494,
1250
+ "loss": 0.1865,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 1.66,
1255
+ "grad_norm": 0.4850613308932528,
1256
+ "learning_rate": 0.00015558909356370944,
1257
+ "loss": 0.2181,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 1.67,
1262
+ "grad_norm": 0.47485870685329246,
1263
+ "learning_rate": 0.00015507497997631266,
1264
+ "loss": 0.2223,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 1.68,
1269
+ "grad_norm": 0.42085147271583295,
1270
+ "learning_rate": 0.0001545587683325583,
1271
+ "loss": 0.1845,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 1.69,
1276
+ "grad_norm": 0.4479801309419239,
1277
+ "learning_rate": 0.00015404047829729457,
1278
+ "loss": 0.1987,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 1.7,
1283
+ "grad_norm": 0.4624584058381783,
1284
+ "learning_rate": 0.00015352012961454507,
1285
+ "loss": 0.217,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 1.71,
1290
+ "grad_norm": 0.44005765649196454,
1291
+ "learning_rate": 0.00015299774210675657,
1292
+ "loss": 0.1837,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 1.72,
1297
+ "grad_norm": 0.4508346255489124,
1298
+ "learning_rate": 0.00015247333567404406,
1299
+ "loss": 0.2007,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 1.73,
1304
+ "grad_norm": 0.40396006791211914,
1305
+ "learning_rate": 0.00015194693029343248,
1306
+ "loss": 0.1866,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 1.74,
1311
+ "grad_norm": 0.44558839018398966,
1312
+ "learning_rate": 0.00015141854601809581,
1313
+ "loss": 0.1967,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 1.75,
1318
+ "grad_norm": 0.4337334328022437,
1319
+ "learning_rate": 0.00015088820297659314,
1320
+ "loss": 0.1891,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 1.76,
1325
+ "grad_norm": 0.4636781912221849,
1326
+ "learning_rate": 0.00015035592137210187,
1327
+ "loss": 0.193,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 1.77,
1332
+ "grad_norm": 0.47955885394967973,
1333
+ "learning_rate": 0.00014982172148164804,
1334
+ "loss": 0.1793,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 1.78,
1339
+ "grad_norm": 0.4721310395975314,
1340
+ "learning_rate": 0.00014928562365533392,
1341
+ "loss": 0.186,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 1.79,
1346
+ "grad_norm": 0.4737141537120664,
1347
+ "learning_rate": 0.00014874764831556285,
1348
+ "loss": 0.2058,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 1.8,
1353
+ "grad_norm": 0.40830849621087567,
1354
+ "learning_rate": 0.00014820781595626116,
1355
+ "loss": 0.1822,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 1.81,
1360
+ "grad_norm": 0.4272142710058541,
1361
+ "learning_rate": 0.0001476661471420975,
1362
+ "loss": 0.2057,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 1.81,
1367
+ "grad_norm": 0.4212227727031309,
1368
+ "learning_rate": 0.0001471226625076993,
1369
+ "loss": 0.1845,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 1.82,
1374
+ "grad_norm": 0.39660108389275345,
1375
+ "learning_rate": 0.0001465773827568671,
1376
+ "loss": 0.1769,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 1.83,
1381
+ "grad_norm": 0.38828383424285384,
1382
+ "learning_rate": 0.00014603032866178538,
1383
+ "loss": 0.1699,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 1.84,
1388
+ "grad_norm": 0.3681031142044674,
1389
+ "learning_rate": 0.00014548152106223157,
1390
+ "loss": 0.1456,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 1.85,
1395
+ "grad_norm": 0.46248659870169556,
1396
+ "learning_rate": 0.00014493098086478196,
1397
+ "loss": 0.1846,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 1.86,
1402
+ "grad_norm": 0.4437664820090981,
1403
+ "learning_rate": 0.00014437872904201542,
1404
+ "loss": 0.1706,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 1.87,
1409
+ "grad_norm": 0.4410375026146085,
1410
+ "learning_rate": 0.0001438247866317145,
1411
+ "loss": 0.1757,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 1.88,
1416
+ "grad_norm": 0.4290870801703047,
1417
+ "learning_rate": 0.00014326917473606366,
1418
+ "loss": 0.1777,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 1.89,
1423
+ "grad_norm": 0.4812130220306999,
1424
+ "learning_rate": 0.00014271191452084597,
1425
+ "loss": 0.2013,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 1.9,
1430
+ "grad_norm": 0.4314920290891278,
1431
+ "learning_rate": 0.00014215302721463623,
1432
+ "loss": 0.1857,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 1.9,
1437
+ "eval_blimp_filtered_avg": 0.7161194029850746,
1438
+ "eval_blimp_filtered_std": 0.005001692965803923,
1439
+ "step": 200
1440
+ },
1441
+ {
1442
+ "epoch": 1.9,
1443
+ "eval_blimp_supplement_avg": 0.8211206896551724,
1444
+ "eval_blimp_supplement_std": 0.016785621805327337,
1445
+ "step": 200
1446
+ },
1447
+ {
1448
+ "epoch": 1.9,
1449
+ "eval_vqa_filtered_avg": 0.51,
1450
+ "eval_vqa_filtered_std": 0.05024183937956912,
1451
+ "step": 200
1452
+ },
1453
+ {
1454
+ "epoch": 1.9,
1455
+ "eval_winoground_filtered_avg": 0.62,
1456
+ "eval_winoground_filtered_std": 0.04878317312145633,
1457
+ "step": 200
1458
+ },
1459
+ {
1460
+ "epoch": 1.91,
1461
+ "grad_norm": 0.41562514975066434,
1462
+ "learning_rate": 0.0001415925341079927,
1463
+ "loss": 0.21,
1464
+ "step": 201
1465
+ },
1466
+ {
1467
+ "epoch": 1.92,
1468
+ "grad_norm": 0.37833993286875955,
1469
+ "learning_rate": 0.00014103045655264576,
1470
+ "loss": 0.1659,
1471
+ "step": 202
1472
+ },
1473
+ {
1474
+ "epoch": 1.93,
1475
+ "grad_norm": 0.3880529818353851,
1476
+ "learning_rate": 0.00014046681596068466,
1477
+ "loss": 0.1638,
1478
+ "step": 203
1479
+ },
1480
+ {
1481
+ "epoch": 1.94,
1482
+ "grad_norm": 0.40159118156434603,
1483
+ "learning_rate": 0.00013990163380374194,
1484
+ "loss": 0.1768,
1485
+ "step": 204
1486
+ },
1487
+ {
1488
+ "epoch": 1.95,
1489
+ "grad_norm": 0.4086449128732129,
1490
+ "learning_rate": 0.00013933493161217523,
1491
+ "loss": 0.1544,
1492
+ "step": 205
1493
+ },
1494
+ {
1495
+ "epoch": 1.96,
1496
+ "grad_norm": 0.3808287729283849,
1497
+ "learning_rate": 0.0001387667309742472,
1498
+ "loss": 0.1366,
1499
+ "step": 206
1500
+ },
1501
+ {
1502
+ "epoch": 1.97,
1503
+ "grad_norm": 0.39609061286446773,
1504
+ "learning_rate": 0.0001381970535353032,
1505
+ "loss": 0.1494,
1506
+ "step": 207
1507
+ },
1508
+ {
1509
+ "epoch": 1.98,
1510
+ "grad_norm": 0.40847272653729905,
1511
+ "learning_rate": 0.00013762592099694665,
1512
+ "loss": 0.1615,
1513
+ "step": 208
1514
+ },
1515
+ {
1516
+ "epoch": 1.99,
1517
+ "grad_norm": 0.4334994696681873,
1518
+ "learning_rate": 0.00013705335511621228,
1519
+ "loss": 0.1542,
1520
+ "step": 209
1521
+ },
1522
+ {
1523
+ "epoch": 2.0,
1524
+ "grad_norm": 0.4546384761691546,
1525
+ "learning_rate": 0.00013647937770473737,
1526
+ "loss": 0.1834,
1527
+ "step": 210
1528
+ },
1529
+ {
1530
+ "epoch": 2.0,
1531
+ "grad_norm": 0.36130610610645814,
1532
+ "learning_rate": 0.00013590401062793083,
1533
+ "loss": 0.123,
1534
+ "step": 211
1535
+ },
1536
+ {
1537
+ "epoch": 2.01,
1538
+ "grad_norm": 0.29975302946848653,
1539
+ "learning_rate": 0.0001353272758041402,
1540
+ "loss": 0.0824,
1541
+ "step": 212
1542
+ },
1543
+ {
1544
+ "epoch": 2.02,
1545
+ "grad_norm": 0.29392603086414587,
1546
+ "learning_rate": 0.00013474919520381671,
1547
+ "loss": 0.0836,
1548
+ "step": 213
1549
+ },
1550
+ {
1551
+ "epoch": 2.03,
1552
+ "grad_norm": 0.33169221984700814,
1553
+ "learning_rate": 0.00013416979084867852,
1554
+ "loss": 0.0683,
1555
+ "step": 214
1556
+ },
1557
+ {
1558
+ "epoch": 2.04,
1559
+ "grad_norm": 0.39192700338704206,
1560
+ "learning_rate": 0.00013358908481087134,
1561
+ "loss": 0.0804,
1562
+ "step": 215
1563
+ },
1564
+ {
1565
+ "epoch": 2.05,
1566
+ "grad_norm": 0.42443737109460977,
1567
+ "learning_rate": 0.0001330070992121281,
1568
+ "loss": 0.0797,
1569
+ "step": 216
1570
+ },
1571
+ {
1572
+ "epoch": 2.06,
1573
+ "grad_norm": 0.42848813761714244,
1574
+ "learning_rate": 0.00013242385622292592,
1575
+ "loss": 0.0776,
1576
+ "step": 217
1577
+ },
1578
+ {
1579
+ "epoch": 2.07,
1580
+ "grad_norm": 0.37448633759803696,
1581
+ "learning_rate": 0.00013183937806164172,
1582
+ "loss": 0.0739,
1583
+ "step": 218
1584
+ },
1585
+ {
1586
+ "epoch": 2.08,
1587
+ "grad_norm": 0.3437440816482259,
1588
+ "learning_rate": 0.00013125368699370567,
1589
+ "loss": 0.0652,
1590
+ "step": 219
1591
+ },
1592
+ {
1593
+ "epoch": 2.09,
1594
+ "grad_norm": 0.356415907025676,
1595
+ "learning_rate": 0.0001306668053307531,
1596
+ "loss": 0.0778,
1597
+ "step": 220
1598
+ },
1599
+ {
1600
+ "epoch": 2.1,
1601
+ "grad_norm": 0.30675625825005026,
1602
+ "learning_rate": 0.00013007875542977448,
1603
+ "loss": 0.0665,
1604
+ "step": 221
1605
+ },
1606
+ {
1607
+ "epoch": 2.11,
1608
+ "grad_norm": 0.29794655672460485,
1609
+ "learning_rate": 0.00012948955969226383,
1610
+ "loss": 0.0696,
1611
+ "step": 222
1612
+ },
1613
+ {
1614
+ "epoch": 2.12,
1615
+ "grad_norm": 0.30163505061461343,
1616
+ "learning_rate": 0.00012889924056336532,
1617
+ "loss": 0.0705,
1618
+ "step": 223
1619
+ },
1620
+ {
1621
+ "epoch": 2.13,
1622
+ "grad_norm": 0.32541739323213426,
1623
+ "learning_rate": 0.00012830782053101805,
1624
+ "loss": 0.0733,
1625
+ "step": 224
1626
+ },
1627
+ {
1628
+ "epoch": 2.14,
1629
+ "grad_norm": 0.31121536090331003,
1630
+ "learning_rate": 0.00012771532212509974,
1631
+ "loss": 0.0711,
1632
+ "step": 225
1633
+ },
1634
+ {
1635
+ "epoch": 2.15,
1636
+ "grad_norm": 0.34593292210442944,
1637
+ "learning_rate": 0.00012712176791656807,
1638
+ "loss": 0.0788,
1639
+ "step": 226
1640
+ },
1641
+ {
1642
+ "epoch": 2.16,
1643
+ "grad_norm": 0.33946278651997686,
1644
+ "learning_rate": 0.0001265271805166012,
1645
+ "loss": 0.0677,
1646
+ "step": 227
1647
+ },
1648
+ {
1649
+ "epoch": 2.17,
1650
+ "grad_norm": 0.3400898219352628,
1651
+ "learning_rate": 0.0001259315825757362,
1652
+ "loss": 0.0643,
1653
+ "step": 228
1654
+ },
1655
+ {
1656
+ "epoch": 2.18,
1657
+ "grad_norm": 0.3813085350755264,
1658
+ "learning_rate": 0.00012533499678300618,
1659
+ "loss": 0.0761,
1660
+ "step": 229
1661
+ },
1662
+ {
1663
+ "epoch": 2.19,
1664
+ "grad_norm": 0.3523012248149677,
1665
+ "learning_rate": 0.00012473744586507604,
1666
+ "loss": 0.0648,
1667
+ "step": 230
1668
+ },
1669
+ {
1670
+ "epoch": 2.19,
1671
+ "grad_norm": 0.37842862853695125,
1672
+ "learning_rate": 0.00012413895258537675,
1673
+ "loss": 0.0812,
1674
+ "step": 231
1675
+ },
1676
+ {
1677
+ "epoch": 2.2,
1678
+ "grad_norm": 0.39475455813661525,
1679
+ "learning_rate": 0.00012353953974323807,
1680
+ "loss": 0.0801,
1681
+ "step": 232
1682
+ },
1683
+ {
1684
+ "epoch": 2.21,
1685
+ "grad_norm": 0.3205081471986943,
1686
+ "learning_rate": 0.00012293923017302002,
1687
+ "loss": 0.0677,
1688
+ "step": 233
1689
+ },
1690
+ {
1691
+ "epoch": 2.22,
1692
+ "grad_norm": 0.31006899448135294,
1693
+ "learning_rate": 0.0001223380467432432,
1694
+ "loss": 0.07,
1695
+ "step": 234
1696
+ },
1697
+ {
1698
+ "epoch": 2.23,
1699
+ "grad_norm": 0.3048520942780853,
1700
+ "learning_rate": 0.00012173601235571742,
1701
+ "loss": 0.0615,
1702
+ "step": 235
1703
+ },
1704
+ {
1705
+ "epoch": 2.24,
1706
+ "grad_norm": 0.3425413653893973,
1707
+ "learning_rate": 0.0001211331499446693,
1708
+ "loss": 0.0658,
1709
+ "step": 236
1710
+ },
1711
+ {
1712
+ "epoch": 2.25,
1713
+ "grad_norm": 0.31929344956491607,
1714
+ "learning_rate": 0.00012052948247586873,
1715
+ "loss": 0.0653,
1716
+ "step": 237
1717
+ },
1718
+ {
1719
+ "epoch": 2.26,
1720
+ "grad_norm": 0.3414359773691709,
1721
+ "learning_rate": 0.00011992503294575383,
1722
+ "loss": 0.0723,
1723
+ "step": 238
1724
+ },
1725
+ {
1726
+ "epoch": 2.27,
1727
+ "grad_norm": 0.32978160245312554,
1728
+ "learning_rate": 0.00011931982438055505,
1729
+ "loss": 0.07,
1730
+ "step": 239
1731
+ },
1732
+ {
1733
+ "epoch": 2.28,
1734
+ "grad_norm": 0.33271868205929617,
1735
+ "learning_rate": 0.00011871387983541789,
1736
+ "loss": 0.0672,
1737
+ "step": 240
1738
+ },
1739
+ {
1740
+ "epoch": 2.29,
1741
+ "grad_norm": 0.29862145989444433,
1742
+ "learning_rate": 0.00011810722239352467,
1743
+ "loss": 0.0603,
1744
+ "step": 241
1745
+ },
1746
+ {
1747
+ "epoch": 2.3,
1748
+ "grad_norm": 0.34485364985513034,
1749
+ "learning_rate": 0.00011749987516521523,
1750
+ "loss": 0.0632,
1751
+ "step": 242
1752
+ },
1753
+ {
1754
+ "epoch": 2.31,
1755
+ "grad_norm": 0.3299899118013224,
1756
+ "learning_rate": 0.00011689186128710654,
1757
+ "loss": 0.0601,
1758
+ "step": 243
1759
+ },
1760
+ {
1761
+ "epoch": 2.32,
1762
+ "grad_norm": 0.29635972892096896,
1763
+ "learning_rate": 0.00011628320392121117,
1764
+ "loss": 0.0558,
1765
+ "step": 244
1766
+ },
1767
+ {
1768
+ "epoch": 2.33,
1769
+ "grad_norm": 0.3414458592363874,
1770
+ "learning_rate": 0.0001156739262540552,
1771
+ "loss": 0.0703,
1772
+ "step": 245
1773
+ },
1774
+ {
1775
+ "epoch": 2.34,
1776
+ "grad_norm": 0.3280087622706941,
1777
+ "learning_rate": 0.00011506405149579468,
1778
+ "loss": 0.0657,
1779
+ "step": 246
1780
+ },
1781
+ {
1782
+ "epoch": 2.35,
1783
+ "grad_norm": 0.373086375777386,
1784
+ "learning_rate": 0.00011445360287933165,
1785
+ "loss": 0.0668,
1786
+ "step": 247
1787
+ },
1788
+ {
1789
+ "epoch": 2.36,
1790
+ "grad_norm": 0.2937645914714354,
1791
+ "learning_rate": 0.00011384260365942904,
1792
+ "loss": 0.0612,
1793
+ "step": 248
1794
+ },
1795
+ {
1796
+ "epoch": 2.37,
1797
+ "grad_norm": 0.39022311054047737,
1798
+ "learning_rate": 0.00011323107711182473,
1799
+ "loss": 0.0762,
1800
+ "step": 249
1801
+ },
1802
+ {
1803
+ "epoch": 2.38,
1804
+ "grad_norm": 0.3345521008714258,
1805
+ "learning_rate": 0.00011261904653234485,
1806
+ "loss": 0.0711,
1807
+ "step": 250
1808
+ },
1809
+ {
1810
+ "epoch": 2.38,
1811
+ "grad_norm": 0.30608871062806836,
1812
+ "learning_rate": 0.00011200653523601652,
1813
+ "loss": 0.0617,
1814
+ "step": 251
1815
+ },
1816
+ {
1817
+ "epoch": 2.39,
1818
+ "grad_norm": 0.30714147902477945,
1819
+ "learning_rate": 0.00011139356655617945,
1820
+ "loss": 0.063,
1821
+ "step": 252
1822
+ },
1823
+ {
1824
+ "epoch": 2.4,
1825
+ "grad_norm": 0.31051190204375445,
1826
+ "learning_rate": 0.00011078016384359724,
1827
+ "loss": 0.0659,
1828
+ "step": 253
1829
+ },
1830
+ {
1831
+ "epoch": 2.41,
1832
+ "grad_norm": 0.3071085278813772,
1833
+ "learning_rate": 0.00011016635046556772,
1834
+ "loss": 0.061,
1835
+ "step": 254
1836
+ },
1837
+ {
1838
+ "epoch": 2.42,
1839
+ "grad_norm": 0.3045837343462885,
1840
+ "learning_rate": 0.00010955214980503284,
1841
+ "loss": 0.0597,
1842
+ "step": 255
1843
+ },
1844
+ {
1845
+ "epoch": 2.43,
1846
+ "grad_norm": 0.3049959198680976,
1847
+ "learning_rate": 0.00010893758525968789,
1848
+ "loss": 0.0587,
1849
+ "step": 256
1850
+ },
1851
+ {
1852
+ "epoch": 2.44,
1853
+ "grad_norm": 0.3168437149994661,
1854
+ "learning_rate": 0.00010832268024109025,
1855
+ "loss": 0.0559,
1856
+ "step": 257
1857
+ },
1858
+ {
1859
+ "epoch": 2.45,
1860
+ "grad_norm": 0.3024342626013227,
1861
+ "learning_rate": 0.00010770745817376742,
1862
+ "loss": 0.0583,
1863
+ "step": 258
1864
+ },
1865
+ {
1866
+ "epoch": 2.46,
1867
+ "grad_norm": 0.3188509232471995,
1868
+ "learning_rate": 0.0001070919424943247,
1869
+ "loss": 0.061,
1870
+ "step": 259
1871
+ },
1872
+ {
1873
+ "epoch": 2.47,
1874
+ "grad_norm": 0.3381945814712772,
1875
+ "learning_rate": 0.0001064761566505525,
1876
+ "loss": 0.0648,
1877
+ "step": 260
1878
+ },
1879
+ {
1880
+ "epoch": 2.48,
1881
+ "grad_norm": 0.3131931451431926,
1882
+ "learning_rate": 0.00010586012410053292,
1883
+ "loss": 0.0624,
1884
+ "step": 261
1885
+ },
1886
+ {
1887
+ "epoch": 2.49,
1888
+ "grad_norm": 0.32809637984753304,
1889
+ "learning_rate": 0.00010524386831174628,
1890
+ "loss": 0.0627,
1891
+ "step": 262
1892
+ },
1893
+ {
1894
+ "epoch": 2.5,
1895
+ "grad_norm": 0.2832796499168925,
1896
+ "learning_rate": 0.00010462741276017711,
1897
+ "loss": 0.0535,
1898
+ "step": 263
1899
+ },
1900
+ {
1901
+ "epoch": 2.51,
1902
+ "grad_norm": 0.3334141162384235,
1903
+ "learning_rate": 0.00010401078092941971,
1904
+ "loss": 0.061,
1905
+ "step": 264
1906
+ },
1907
+ {
1908
+ "epoch": 2.52,
1909
+ "grad_norm": 0.27653747850590626,
1910
+ "learning_rate": 0.00010339399630978373,
1911
+ "loss": 0.0497,
1912
+ "step": 265
1913
+ },
1914
+ {
1915
+ "epoch": 2.53,
1916
+ "grad_norm": 0.32205480409336124,
1917
+ "learning_rate": 0.00010277708239739924,
1918
+ "loss": 0.0658,
1919
+ "step": 266
1920
+ },
1921
+ {
1922
+ "epoch": 2.54,
1923
+ "grad_norm": 0.310079147965717,
1924
+ "learning_rate": 0.0001021600626933217,
1925
+ "loss": 0.0525,
1926
+ "step": 267
1927
+ },
1928
+ {
1929
+ "epoch": 2.55,
1930
+ "grad_norm": 0.31094425691461797,
1931
+ "learning_rate": 0.00010154296070263649,
1932
+ "loss": 0.0619,
1933
+ "step": 268
1934
+ },
1935
+ {
1936
+ "epoch": 2.56,
1937
+ "grad_norm": 0.33419799536496597,
1938
+ "learning_rate": 0.00010092579993356386,
1939
+ "loss": 0.0615,
1940
+ "step": 269
1941
+ },
1942
+ {
1943
+ "epoch": 2.57,
1944
+ "grad_norm": 0.3343121767672678,
1945
+ "learning_rate": 0.00010030860389656305,
1946
+ "loss": 0.0663,
1947
+ "step": 270
1948
+ },
1949
+ {
1950
+ "epoch": 2.57,
1951
+ "grad_norm": 0.3516117623617434,
1952
+ "learning_rate": 9.969139610343696e-05,
1953
+ "loss": 0.0662,
1954
+ "step": 271
1955
+ },
1956
+ {
1957
+ "epoch": 2.58,
1958
+ "grad_norm": 0.31796912631433194,
1959
+ "learning_rate": 9.907420006643619e-05,
1960
+ "loss": 0.0624,
1961
+ "step": 272
1962
+ },
1963
+ {
1964
+ "epoch": 2.59,
1965
+ "grad_norm": 0.29219460425245597,
1966
+ "learning_rate": 9.845703929736351e-05,
1967
+ "loss": 0.0596,
1968
+ "step": 273
1969
+ },
1970
+ {
1971
+ "epoch": 2.6,
1972
+ "grad_norm": 0.316635170830544,
1973
+ "learning_rate": 9.783993730667831e-05,
1974
+ "loss": 0.0659,
1975
+ "step": 274
1976
+ },
1977
+ {
1978
+ "epoch": 2.61,
1979
+ "grad_norm": 0.33766616368603597,
1980
+ "learning_rate": 9.722291760260077e-05,
1981
+ "loss": 0.0646,
1982
+ "step": 275
1983
+ },
1984
+ {
1985
+ "epoch": 2.62,
1986
+ "grad_norm": 0.31287192455811574,
1987
+ "learning_rate": 9.66060036902163e-05,
1988
+ "loss": 0.0585,
1989
+ "step": 276
1990
+ },
1991
+ {
1992
+ "epoch": 2.63,
1993
+ "grad_norm": 0.28964582015181484,
1994
+ "learning_rate": 9.598921907058033e-05,
1995
+ "loss": 0.0543,
1996
+ "step": 277
1997
+ },
1998
+ {
1999
+ "epoch": 2.64,
2000
+ "grad_norm": 0.3037919396698326,
2001
+ "learning_rate": 9.53725872398229e-05,
2002
+ "loss": 0.0512,
2003
+ "step": 278
2004
+ },
2005
+ {
2006
+ "epoch": 2.65,
2007
+ "grad_norm": 0.3229974938313004,
2008
+ "learning_rate": 9.475613168825374e-05,
2009
+ "loss": 0.0531,
2010
+ "step": 279
2011
+ },
2012
+ {
2013
+ "epoch": 2.66,
2014
+ "grad_norm": 0.29881091304580676,
2015
+ "learning_rate": 9.413987589946711e-05,
2016
+ "loss": 0.0569,
2017
+ "step": 280
2018
+ },
2019
+ {
2020
+ "epoch": 2.67,
2021
+ "grad_norm": 0.29692909307641674,
2022
+ "learning_rate": 9.352384334944753e-05,
2023
+ "loss": 0.0547,
2024
+ "step": 281
2025
+ },
2026
+ {
2027
+ "epoch": 2.68,
2028
+ "grad_norm": 0.33439942628885455,
2029
+ "learning_rate": 9.290805750567532e-05,
2030
+ "loss": 0.0622,
2031
+ "step": 282
2032
+ },
2033
+ {
2034
+ "epoch": 2.69,
2035
+ "grad_norm": 0.2991141437988068,
2036
+ "learning_rate": 9.22925418262326e-05,
2037
+ "loss": 0.0464,
2038
+ "step": 283
2039
+ },
2040
+ {
2041
+ "epoch": 2.7,
2042
+ "grad_norm": 0.3171911760038229,
2043
+ "learning_rate": 9.167731975890976e-05,
2044
+ "loss": 0.059,
2045
+ "step": 284
2046
+ },
2047
+ {
2048
+ "epoch": 2.71,
2049
+ "grad_norm": 0.30072460150102115,
2050
+ "learning_rate": 9.106241474031212e-05,
2051
+ "loss": 0.0559,
2052
+ "step": 285
2053
+ },
2054
+ {
2055
+ "epoch": 2.72,
2056
+ "grad_norm": 0.3301896190647226,
2057
+ "learning_rate": 9.04478501949672e-05,
2058
+ "loss": 0.0514,
2059
+ "step": 286
2060
+ },
2061
+ {
2062
+ "epoch": 2.73,
2063
+ "grad_norm": 0.3298071637508188,
2064
+ "learning_rate": 8.983364953443227e-05,
2065
+ "loss": 0.0618,
2066
+ "step": 287
2067
+ },
2068
+ {
2069
+ "epoch": 2.74,
2070
+ "grad_norm": 0.3497185839244567,
2071
+ "learning_rate": 8.921983615640277e-05,
2072
+ "loss": 0.065,
2073
+ "step": 288
2074
+ },
2075
+ {
2076
+ "epoch": 2.75,
2077
+ "grad_norm": 0.33084725547728233,
2078
+ "learning_rate": 8.860643344382056e-05,
2079
+ "loss": 0.0527,
2080
+ "step": 289
2081
+ },
2082
+ {
2083
+ "epoch": 2.76,
2084
+ "grad_norm": 0.33012822636415956,
2085
+ "learning_rate": 8.79934647639835e-05,
2086
+ "loss": 0.0666,
2087
+ "step": 290
2088
+ },
2089
+ {
2090
+ "epoch": 2.76,
2091
+ "grad_norm": 0.3151687548518561,
2092
+ "learning_rate": 8.738095346765518e-05,
2093
+ "loss": 0.0573,
2094
+ "step": 291
2095
+ },
2096
+ {
2097
+ "epoch": 2.77,
2098
+ "grad_norm": 0.30346203875619676,
2099
+ "learning_rate": 8.676892288817531e-05,
2100
+ "loss": 0.0491,
2101
+ "step": 292
2102
+ },
2103
+ {
2104
+ "epoch": 2.78,
2105
+ "grad_norm": 0.3133369298353677,
2106
+ "learning_rate": 8.615739634057098e-05,
2107
+ "loss": 0.0595,
2108
+ "step": 293
2109
+ },
2110
+ {
2111
+ "epoch": 2.79,
2112
+ "grad_norm": 0.28715782085999497,
2113
+ "learning_rate": 8.554639712066836e-05,
2114
+ "loss": 0.0542,
2115
+ "step": 294
2116
+ },
2117
+ {
2118
+ "epoch": 2.8,
2119
+ "grad_norm": 0.2815995010771035,
2120
+ "learning_rate": 8.493594850420537e-05,
2121
+ "loss": 0.0551,
2122
+ "step": 295
2123
+ },
2124
+ {
2125
+ "epoch": 2.81,
2126
+ "grad_norm": 0.280576878443274,
2127
+ "learning_rate": 8.432607374594484e-05,
2128
+ "loss": 0.0488,
2129
+ "step": 296
2130
+ },
2131
+ {
2132
+ "epoch": 2.82,
2133
+ "grad_norm": 0.298809991890747,
2134
+ "learning_rate": 8.371679607878884e-05,
2135
+ "loss": 0.0544,
2136
+ "step": 297
2137
+ },
2138
+ {
2139
+ "epoch": 2.83,
2140
+ "grad_norm": 0.30088222272143067,
2141
+ "learning_rate": 8.310813871289348e-05,
2142
+ "loss": 0.0591,
2143
+ "step": 298
2144
+ },
2145
+ {
2146
+ "epoch": 2.84,
2147
+ "grad_norm": 0.3237358977236424,
2148
+ "learning_rate": 8.250012483478478e-05,
2149
+ "loss": 0.0547,
2150
+ "step": 299
2151
+ },
2152
+ {
2153
+ "epoch": 2.85,
2154
+ "grad_norm": 0.34075237005827885,
2155
+ "learning_rate": 8.189277760647537e-05,
2156
+ "loss": 0.0566,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 2.85,
2161
+ "eval_blimp_filtered_avg": 0.7037313432835821,
2162
+ "eval_blimp_filtered_std": 0.005058972315437875,
2163
+ "step": 300
2164
+ },
2165
+ {
2166
+ "epoch": 2.85,
2167
+ "eval_blimp_supplement_avg": 0.8103448275862069,
2168
+ "eval_blimp_supplement_std": 0.017321145118445798,
2169
+ "step": 300
2170
+ },
2171
+ {
2172
+ "epoch": 2.85,
2173
+ "eval_vqa_filtered_avg": 0.53,
2174
+ "eval_vqa_filtered_std": 0.0501613558046592,
2175
+ "step": 300
2176
+ },
2177
+ {
2178
+ "epoch": 2.85,
2179
+ "eval_winoground_filtered_avg": 0.68,
2180
+ "eval_winoground_filtered_std": 0.046882617226215034,
2181
+ "step": 300
2182
+ },
2183
+ {
2184
+ "epoch": 2.86,
2185
+ "grad_norm": 0.3237263865460515,
2186
+ "learning_rate": 8.128612016458215e-05,
2187
+ "loss": 0.059,
2188
+ "step": 301
2189
+ },
2190
+ {
2191
+ "epoch": 2.87,
2192
+ "grad_norm": 0.2977357286247905,
2193
+ "learning_rate": 8.068017561944499e-05,
2194
+ "loss": 0.0492,
2195
+ "step": 302
2196
+ },
2197
+ {
2198
+ "epoch": 2.88,
2199
+ "grad_norm": 0.29591506818063545,
2200
+ "learning_rate": 8.00749670542462e-05,
2201
+ "loss": 0.052,
2202
+ "step": 303
2203
+ },
2204
+ {
2205
+ "epoch": 2.89,
2206
+ "grad_norm": 0.2789469075911483,
2207
+ "learning_rate": 7.94705175241313e-05,
2208
+ "loss": 0.0455,
2209
+ "step": 304
2210
+ },
2211
+ {
2212
+ "epoch": 2.9,
2213
+ "grad_norm": 0.2997082343784124,
2214
+ "learning_rate": 7.886685005533072e-05,
2215
+ "loss": 0.0498,
2216
+ "step": 305
2217
+ },
2218
+ {
2219
+ "epoch": 2.91,
2220
+ "grad_norm": 0.30157528073661777,
2221
+ "learning_rate": 7.82639876442826e-05,
2222
+ "loss": 0.0567,
2223
+ "step": 306
2224
+ },
2225
+ {
2226
+ "epoch": 2.92,
2227
+ "grad_norm": 0.32803298910194756,
2228
+ "learning_rate": 7.76619532567568e-05,
2229
+ "loss": 0.0622,
2230
+ "step": 307
2231
+ },
2232
+ {
2233
+ "epoch": 2.93,
2234
+ "grad_norm": 0.28556449374878695,
2235
+ "learning_rate": 7.706076982697999e-05,
2236
+ "loss": 0.0489,
2237
+ "step": 308
2238
+ },
2239
+ {
2240
+ "epoch": 2.94,
2241
+ "grad_norm": 0.32287162854623286,
2242
+ "learning_rate": 7.646046025676198e-05,
2243
+ "loss": 0.066,
2244
+ "step": 309
2245
+ },
2246
+ {
2247
+ "epoch": 2.95,
2248
+ "grad_norm": 0.3384064716667544,
2249
+ "learning_rate": 7.586104741462325e-05,
2250
+ "loss": 0.0629,
2251
+ "step": 310
2252
+ },
2253
+ {
2254
+ "epoch": 2.95,
2255
+ "grad_norm": 0.3005901634146794,
2256
+ "learning_rate": 7.526255413492395e-05,
2257
+ "loss": 0.051,
2258
+ "step": 311
2259
+ },
2260
+ {
2261
+ "epoch": 2.96,
2262
+ "grad_norm": 0.2907146546357962,
2263
+ "learning_rate": 7.466500321699383e-05,
2264
+ "loss": 0.0546,
2265
+ "step": 312
2266
+ },
2267
+ {
2268
+ "epoch": 2.97,
2269
+ "grad_norm": 0.30779520364750435,
2270
+ "learning_rate": 7.40684174242638e-05,
2271
+ "loss": 0.058,
2272
+ "step": 313
2273
+ },
2274
+ {
2275
+ "epoch": 2.98,
2276
+ "grad_norm": 0.29074373091101263,
2277
+ "learning_rate": 7.347281948339879e-05,
2278
+ "loss": 0.0463,
2279
+ "step": 314
2280
+ },
2281
+ {
2282
+ "epoch": 2.99,
2283
+ "grad_norm": 0.32970798475445445,
2284
+ "learning_rate": 7.287823208343192e-05,
2285
+ "loss": 0.0589,
2286
+ "step": 315
2287
+ },
2288
+ {
2289
+ "epoch": 3.0,
2290
+ "grad_norm": 0.2798345327195924,
2291
+ "learning_rate": 7.228467787490028e-05,
2292
+ "loss": 0.0438,
2293
+ "step": 316
2294
+ },
2295
+ {
2296
+ "epoch": 3.01,
2297
+ "grad_norm": 0.18326848967204043,
2298
+ "learning_rate": 7.169217946898197e-05,
2299
+ "loss": 0.0225,
2300
+ "step": 317
2301
+ },
2302
+ {
2303
+ "epoch": 3.02,
2304
+ "grad_norm": 0.18022372679373735,
2305
+ "learning_rate": 7.110075943663472e-05,
2306
+ "loss": 0.0161,
2307
+ "step": 318
2308
+ },
2309
+ {
2310
+ "epoch": 3.03,
2311
+ "grad_norm": 0.1633153575928502,
2312
+ "learning_rate": 7.051044030773618e-05,
2313
+ "loss": 0.0153,
2314
+ "step": 319
2315
+ },
2316
+ {
2317
+ "epoch": 3.04,
2318
+ "grad_norm": 0.17802284328446474,
2319
+ "learning_rate": 6.992124457022553e-05,
2320
+ "loss": 0.0176,
2321
+ "step": 320
2322
+ },
2323
+ {
2324
+ "epoch": 3.05,
2325
+ "grad_norm": 0.17359891604740127,
2326
+ "learning_rate": 6.933319466924693e-05,
2327
+ "loss": 0.0162,
2328
+ "step": 321
2329
+ },
2330
+ {
2331
+ "epoch": 3.06,
2332
+ "grad_norm": 0.2202987501804585,
2333
+ "learning_rate": 6.874631300629435e-05,
2334
+ "loss": 0.0162,
2335
+ "step": 322
2336
+ },
2337
+ {
2338
+ "epoch": 3.07,
2339
+ "grad_norm": 0.22277821921264357,
2340
+ "learning_rate": 6.81606219383583e-05,
2341
+ "loss": 0.0187,
2342
+ "step": 323
2343
+ },
2344
+ {
2345
+ "epoch": 3.08,
2346
+ "grad_norm": 0.18724963681022663,
2347
+ "learning_rate": 6.757614377707409e-05,
2348
+ "loss": 0.0153,
2349
+ "step": 324
2350
+ },
2351
+ {
2352
+ "epoch": 3.09,
2353
+ "grad_norm": 0.21995220887794256,
2354
+ "learning_rate": 6.699290078787193e-05,
2355
+ "loss": 0.0188,
2356
+ "step": 325
2357
+ },
2358
+ {
2359
+ "epoch": 3.1,
2360
+ "grad_norm": 0.1967935793635855,
2361
+ "learning_rate": 6.641091518912867e-05,
2362
+ "loss": 0.0156,
2363
+ "step": 326
2364
+ },
2365
+ {
2366
+ "epoch": 3.11,
2367
+ "grad_norm": 0.20661934683104752,
2368
+ "learning_rate": 6.583020915132152e-05,
2369
+ "loss": 0.0158,
2370
+ "step": 327
2371
+ },
2372
+ {
2373
+ "epoch": 3.12,
2374
+ "grad_norm": 0.2422474266231083,
2375
+ "learning_rate": 6.525080479618331e-05,
2376
+ "loss": 0.0177,
2377
+ "step": 328
2378
+ },
2379
+ {
2380
+ "epoch": 3.13,
2381
+ "grad_norm": 0.18354685059507367,
2382
+ "learning_rate": 6.467272419585984e-05,
2383
+ "loss": 0.013,
2384
+ "step": 329
2385
+ },
2386
+ {
2387
+ "epoch": 3.14,
2388
+ "grad_norm": 0.22423754187379397,
2389
+ "learning_rate": 6.40959893720692e-05,
2390
+ "loss": 0.0188,
2391
+ "step": 330
2392
+ },
2393
+ {
2394
+ "epoch": 3.14,
2395
+ "grad_norm": 0.18994008796265852,
2396
+ "learning_rate": 6.352062229526266e-05,
2397
+ "loss": 0.0132,
2398
+ "step": 331
2399
+ },
2400
+ {
2401
+ "epoch": 3.15,
2402
+ "grad_norm": 0.24715301748493912,
2403
+ "learning_rate": 6.294664488378776e-05,
2404
+ "loss": 0.015,
2405
+ "step": 332
2406
+ },
2407
+ {
2408
+ "epoch": 3.16,
2409
+ "grad_norm": 0.17280498203848704,
2410
+ "learning_rate": 6.237407900305335e-05,
2411
+ "loss": 0.0138,
2412
+ "step": 333
2413
+ },
2414
+ {
2415
+ "epoch": 3.17,
2416
+ "grad_norm": 0.21773200395950232,
2417
+ "learning_rate": 6.180294646469679e-05,
2418
+ "loss": 0.0155,
2419
+ "step": 334
2420
+ },
2421
+ {
2422
+ "epoch": 3.18,
2423
+ "grad_norm": 0.2144971485793242,
2424
+ "learning_rate": 6.123326902575282e-05,
2425
+ "loss": 0.0158,
2426
+ "step": 335
2427
+ },
2428
+ {
2429
+ "epoch": 3.19,
2430
+ "grad_norm": 0.18331926033535073,
2431
+ "learning_rate": 6.06650683878248e-05,
2432
+ "loss": 0.013,
2433
+ "step": 336
2434
+ },
2435
+ {
2436
+ "epoch": 3.2,
2437
+ "grad_norm": 0.1788180130126268,
2438
+ "learning_rate": 6.009836619625809e-05,
2439
+ "loss": 0.0133,
2440
+ "step": 337
2441
+ },
2442
+ {
2443
+ "epoch": 3.21,
2444
+ "grad_norm": 0.20337677688861636,
2445
+ "learning_rate": 5.953318403931532e-05,
2446
+ "loss": 0.0129,
2447
+ "step": 338
2448
+ },
2449
+ {
2450
+ "epoch": 3.22,
2451
+ "grad_norm": 0.20853998405220736,
2452
+ "learning_rate": 5.896954344735426e-05,
2453
+ "loss": 0.0176,
2454
+ "step": 339
2455
+ },
2456
+ {
2457
+ "epoch": 3.23,
2458
+ "grad_norm": 0.1919639102705018,
2459
+ "learning_rate": 5.840746589200732e-05,
2460
+ "loss": 0.0144,
2461
+ "step": 340
2462
+ },
2463
+ {
2464
+ "epoch": 3.24,
2465
+ "grad_norm": 0.2134469059873606,
2466
+ "learning_rate": 5.784697278536379e-05,
2467
+ "loss": 0.0138,
2468
+ "step": 341
2469
+ },
2470
+ {
2471
+ "epoch": 3.25,
2472
+ "grad_norm": 0.18435084201272836,
2473
+ "learning_rate": 5.728808547915405e-05,
2474
+ "loss": 0.0135,
2475
+ "step": 342
2476
+ },
2477
+ {
2478
+ "epoch": 3.26,
2479
+ "grad_norm": 0.19554570393158438,
2480
+ "learning_rate": 5.673082526393634e-05,
2481
+ "loss": 0.015,
2482
+ "step": 343
2483
+ },
2484
+ {
2485
+ "epoch": 3.27,
2486
+ "grad_norm": 0.18522448379098544,
2487
+ "learning_rate": 5.617521336828556e-05,
2488
+ "loss": 0.0129,
2489
+ "step": 344
2490
+ },
2491
+ {
2492
+ "epoch": 3.28,
2493
+ "grad_norm": 0.190207008998555,
2494
+ "learning_rate": 5.5621270957984573e-05,
2495
+ "loss": 0.0161,
2496
+ "step": 345
2497
+ },
2498
+ {
2499
+ "epoch": 3.29,
2500
+ "grad_norm": 0.19594053008897275,
2501
+ "learning_rate": 5.506901913521808e-05,
2502
+ "loss": 0.0162,
2503
+ "step": 346
2504
+ },
2505
+ {
2506
+ "epoch": 3.3,
2507
+ "grad_norm": 0.20111569255746164,
2508
+ "learning_rate": 5.451847893776845e-05,
2509
+ "loss": 0.0147,
2510
+ "step": 347
2511
+ },
2512
+ {
2513
+ "epoch": 3.31,
2514
+ "grad_norm": 0.20867562278084897,
2515
+ "learning_rate": 5.396967133821461e-05,
2516
+ "loss": 0.0154,
2517
+ "step": 348
2518
+ },
2519
+ {
2520
+ "epoch": 3.32,
2521
+ "grad_norm": 0.16028325232055693,
2522
+ "learning_rate": 5.342261724313292e-05,
2523
+ "loss": 0.0117,
2524
+ "step": 349
2525
+ },
2526
+ {
2527
+ "epoch": 3.33,
2528
+ "grad_norm": 0.14992620939570764,
2529
+ "learning_rate": 5.28773374923007e-05,
2530
+ "loss": 0.0106,
2531
+ "step": 350
2532
+ },
2533
+ {
2534
+ "epoch": 3.33,
2535
+ "grad_norm": 0.20669460754401175,
2536
+ "learning_rate": 5.2333852857902575e-05,
2537
+ "loss": 0.0161,
2538
+ "step": 351
2539
+ },
2540
+ {
2541
+ "epoch": 3.34,
2542
+ "grad_norm": 0.21934716169620833,
2543
+ "learning_rate": 5.1792184043738855e-05,
2544
+ "loss": 0.0128,
2545
+ "step": 352
2546
+ },
2547
+ {
2548
+ "epoch": 3.35,
2549
+ "grad_norm": 0.18204794157825063,
2550
+ "learning_rate": 5.1252351684437136e-05,
2551
+ "loss": 0.0129,
2552
+ "step": 353
2553
+ },
2554
+ {
2555
+ "epoch": 3.36,
2556
+ "grad_norm": 0.21363608639584963,
2557
+ "learning_rate": 5.071437634466609e-05,
2558
+ "loss": 0.0105,
2559
+ "step": 354
2560
+ },
2561
+ {
2562
+ "epoch": 3.37,
2563
+ "grad_norm": 0.15881770971724649,
2564
+ "learning_rate": 5.0178278518351983e-05,
2565
+ "loss": 0.0096,
2566
+ "step": 355
2567
+ },
2568
+ {
2569
+ "epoch": 3.38,
2570
+ "grad_norm": 0.1980006966366768,
2571
+ "learning_rate": 4.964407862789817e-05,
2572
+ "loss": 0.0119,
2573
+ "step": 356
2574
+ },
2575
+ {
2576
+ "epoch": 3.39,
2577
+ "grad_norm": 0.21004802159627842,
2578
+ "learning_rate": 4.911179702340688e-05,
2579
+ "loss": 0.0119,
2580
+ "step": 357
2581
+ },
2582
+ {
2583
+ "epoch": 3.4,
2584
+ "grad_norm": 0.20419756258161648,
2585
+ "learning_rate": 4.85814539819042e-05,
2586
+ "loss": 0.0145,
2587
+ "step": 358
2588
+ },
2589
+ {
2590
+ "epoch": 3.41,
2591
+ "grad_norm": 0.1565818058300373,
2592
+ "learning_rate": 4.8053069706567554e-05,
2593
+ "loss": 0.0105,
2594
+ "step": 359
2595
+ },
2596
+ {
2597
+ "epoch": 3.42,
2598
+ "grad_norm": 0.19501698471957343,
2599
+ "learning_rate": 4.752666432595596e-05,
2600
+ "loss": 0.0126,
2601
+ "step": 360
2602
+ },
2603
+ {
2604
+ "epoch": 3.43,
2605
+ "grad_norm": 0.20941486180216556,
2606
+ "learning_rate": 4.700225789324343e-05,
2607
+ "loss": 0.0105,
2608
+ "step": 361
2609
+ },
2610
+ {
2611
+ "epoch": 3.44,
2612
+ "grad_norm": 0.18304197382791004,
2613
+ "learning_rate": 4.647987038545496e-05,
2614
+ "loss": 0.011,
2615
+ "step": 362
2616
+ },
2617
+ {
2618
+ "epoch": 3.45,
2619
+ "grad_norm": 0.16720171411001336,
2620
+ "learning_rate": 4.595952170270542e-05,
2621
+ "loss": 0.0112,
2622
+ "step": 363
2623
+ },
2624
+ {
2625
+ "epoch": 3.46,
2626
+ "grad_norm": 0.22478251297433013,
2627
+ "learning_rate": 4.544123166744172e-05,
2628
+ "loss": 0.0118,
2629
+ "step": 364
2630
+ },
2631
+ {
2632
+ "epoch": 3.47,
2633
+ "grad_norm": 0.1598572948562243,
2634
+ "learning_rate": 4.492502002368738e-05,
2635
+ "loss": 0.0107,
2636
+ "step": 365
2637
+ },
2638
+ {
2639
+ "epoch": 3.48,
2640
+ "grad_norm": 0.22373563049772874,
2641
+ "learning_rate": 4.4410906436290566e-05,
2642
+ "loss": 0.0104,
2643
+ "step": 366
2644
+ },
2645
+ {
2646
+ "epoch": 3.49,
2647
+ "grad_norm": 0.16802667132434534,
2648
+ "learning_rate": 4.38989104901751e-05,
2649
+ "loss": 0.0114,
2650
+ "step": 367
2651
+ },
2652
+ {
2653
+ "epoch": 3.5,
2654
+ "grad_norm": 0.24550738449688075,
2655
+ "learning_rate": 4.3389051689594e-05,
2656
+ "loss": 0.0121,
2657
+ "step": 368
2658
+ },
2659
+ {
2660
+ "epoch": 3.51,
2661
+ "grad_norm": 0.1660066244443363,
2662
+ "learning_rate": 4.288134945738684e-05,
2663
+ "loss": 0.0099,
2664
+ "step": 369
2665
+ },
2666
+ {
2667
+ "epoch": 3.52,
2668
+ "grad_norm": 0.1783889244909253,
2669
+ "learning_rate": 4.237582313423962e-05,
2670
+ "loss": 0.0094,
2671
+ "step": 370
2672
+ },
2673
+ {
2674
+ "epoch": 3.52,
2675
+ "grad_norm": 0.17141038466777303,
2676
+ "learning_rate": 4.187249197794813e-05,
2677
+ "loss": 0.0095,
2678
+ "step": 371
2679
+ },
2680
+ {
2681
+ "epoch": 3.53,
2682
+ "grad_norm": 0.1893721805088239,
2683
+ "learning_rate": 4.137137516268426e-05,
2684
+ "loss": 0.013,
2685
+ "step": 372
2686
+ },
2687
+ {
2688
+ "epoch": 3.54,
2689
+ "grad_norm": 0.16935951673752134,
2690
+ "learning_rate": 4.0872491778265535e-05,
2691
+ "loss": 0.0091,
2692
+ "step": 373
2693
+ },
2694
+ {
2695
+ "epoch": 3.55,
2696
+ "grad_norm": 0.13309068523326859,
2697
+ "learning_rate": 4.037586082942805e-05,
2698
+ "loss": 0.0091,
2699
+ "step": 374
2700
+ },
2701
+ {
2702
+ "epoch": 3.56,
2703
+ "grad_norm": 0.18791651271841342,
2704
+ "learning_rate": 3.988150123510224e-05,
2705
+ "loss": 0.0121,
2706
+ "step": 375
2707
+ },
2708
+ {
2709
+ "epoch": 3.57,
2710
+ "grad_norm": 0.1559825545952661,
2711
+ "learning_rate": 3.938943182769246e-05,
2712
+ "loss": 0.0102,
2713
+ "step": 376
2714
+ },
2715
+ {
2716
+ "epoch": 3.58,
2717
+ "grad_norm": 0.2261919531211638,
2718
+ "learning_rate": 3.88996713523594e-05,
2719
+ "loss": 0.0127,
2720
+ "step": 377
2721
+ },
2722
+ {
2723
+ "epoch": 3.59,
2724
+ "grad_norm": 0.20792420146527377,
2725
+ "learning_rate": 3.841223846630599e-05,
2726
+ "loss": 0.013,
2727
+ "step": 378
2728
+ },
2729
+ {
2730
+ "epoch": 3.6,
2731
+ "grad_norm": 0.16486082885129608,
2732
+ "learning_rate": 3.792715173806669e-05,
2733
+ "loss": 0.0105,
2734
+ "step": 379
2735
+ },
2736
+ {
2737
+ "epoch": 3.61,
2738
+ "grad_norm": 0.1549020176177142,
2739
+ "learning_rate": 3.74444296468002e-05,
2740
+ "loss": 0.0098,
2741
+ "step": 380
2742
+ },
2743
+ {
2744
+ "epoch": 3.62,
2745
+ "grad_norm": 0.17250200199106172,
2746
+ "learning_rate": 3.696409058158544e-05,
2747
+ "loss": 0.0109,
2748
+ "step": 381
2749
+ },
2750
+ {
2751
+ "epoch": 3.63,
2752
+ "grad_norm": 0.1415293330470341,
2753
+ "learning_rate": 3.6486152840721046e-05,
2754
+ "loss": 0.0084,
2755
+ "step": 382
2756
+ },
2757
+ {
2758
+ "epoch": 3.64,
2759
+ "grad_norm": 0.14461810975420877,
2760
+ "learning_rate": 3.6010634631028226e-05,
2761
+ "loss": 0.0084,
2762
+ "step": 383
2763
+ },
2764
+ {
2765
+ "epoch": 3.65,
2766
+ "grad_norm": 0.1557012557289619,
2767
+ "learning_rate": 3.553755406715724e-05,
2768
+ "loss": 0.0089,
2769
+ "step": 384
2770
+ },
2771
+ {
2772
+ "epoch": 3.66,
2773
+ "grad_norm": 0.15752891661687976,
2774
+ "learning_rate": 3.506692917089751e-05,
2775
+ "loss": 0.0109,
2776
+ "step": 385
2777
+ },
2778
+ {
2779
+ "epoch": 3.67,
2780
+ "grad_norm": 0.1694876915505117,
2781
+ "learning_rate": 3.459877787049072e-05,
2782
+ "loss": 0.009,
2783
+ "step": 386
2784
+ },
2785
+ {
2786
+ "epoch": 3.68,
2787
+ "grad_norm": 0.1582663784415179,
2788
+ "learning_rate": 3.413311799994808e-05,
2789
+ "loss": 0.0095,
2790
+ "step": 387
2791
+ },
2792
+ {
2793
+ "epoch": 3.69,
2794
+ "grad_norm": 0.13693031068741818,
2795
+ "learning_rate": 3.366996729837102e-05,
2796
+ "loss": 0.0092,
2797
+ "step": 388
2798
+ },
2799
+ {
2800
+ "epoch": 3.7,
2801
+ "grad_norm": 0.14543112940410688,
2802
+ "learning_rate": 3.320934340927513e-05,
2803
+ "loss": 0.0108,
2804
+ "step": 389
2805
+ },
2806
+ {
2807
+ "epoch": 3.71,
2808
+ "grad_norm": 0.19389482832864774,
2809
+ "learning_rate": 3.275126387991847e-05,
2810
+ "loss": 0.0098,
2811
+ "step": 390
2812
+ },
2813
+ {
2814
+ "epoch": 3.71,
2815
+ "grad_norm": 0.15797165592004603,
2816
+ "learning_rate": 3.229574616063268e-05,
2817
+ "loss": 0.0076,
2818
+ "step": 391
2819
+ },
2820
+ {
2821
+ "epoch": 3.72,
2822
+ "grad_norm": 0.21281942854700847,
2823
+ "learning_rate": 3.184280760415843e-05,
2824
+ "loss": 0.0142,
2825
+ "step": 392
2826
+ },
2827
+ {
2828
+ "epoch": 3.73,
2829
+ "grad_norm": 0.12498130411986656,
2830
+ "learning_rate": 3.1392465464984455e-05,
2831
+ "loss": 0.0081,
2832
+ "step": 393
2833
+ },
2834
+ {
2835
+ "epoch": 3.74,
2836
+ "grad_norm": 0.1152125429659436,
2837
+ "learning_rate": 3.094473689869002e-05,
2838
+ "loss": 0.0058,
2839
+ "step": 394
2840
+ },
2841
+ {
2842
+ "epoch": 3.75,
2843
+ "grad_norm": 0.1567733530080216,
2844
+ "learning_rate": 3.0499638961291623e-05,
2845
+ "loss": 0.011,
2846
+ "step": 395
2847
+ },
2848
+ {
2849
+ "epoch": 3.76,
2850
+ "grad_norm": 0.14500898906990572,
2851
+ "learning_rate": 3.0057188608593147e-05,
2852
+ "loss": 0.0085,
2853
+ "step": 396
2854
+ },
2855
+ {
2856
+ "epoch": 3.77,
2857
+ "grad_norm": 0.16163974543952728,
2858
+ "learning_rate": 2.9617402695539808e-05,
2859
+ "loss": 0.013,
2860
+ "step": 397
2861
+ },
2862
+ {
2863
+ "epoch": 3.78,
2864
+ "grad_norm": 0.13868168811451842,
2865
+ "learning_rate": 2.9180297975576364e-05,
2866
+ "loss": 0.0084,
2867
+ "step": 398
2868
+ },
2869
+ {
2870
+ "epoch": 3.79,
2871
+ "grad_norm": 0.17847032901949134,
2872
+ "learning_rate": 2.8745891100008683e-05,
2873
+ "loss": 0.0121,
2874
+ "step": 399
2875
+ },
2876
+ {
2877
+ "epoch": 3.8,
2878
+ "grad_norm": 0.17527442252411723,
2879
+ "learning_rate": 2.83141986173694e-05,
2880
+ "loss": 0.0084,
2881
+ "step": 400
2882
+ },
2883
+ {
2884
+ "epoch": 3.8,
2885
+ "eval_blimp_filtered_avg": 0.7053731343283582,
2886
+ "eval_blimp_filtered_std": 0.005043001462199571,
2887
+ "step": 400
2888
+ },
2889
+ {
2890
+ "epoch": 3.8,
2891
+ "eval_blimp_supplement_avg": 0.8125,
2892
+ "eval_blimp_supplement_std": 0.01736311122127593,
2893
+ "step": 400
2894
+ },
2895
+ {
2896
+ "epoch": 3.8,
2897
+ "eval_vqa_filtered_avg": 0.52,
2898
+ "eval_vqa_filtered_std": 0.05021167315686779,
2899
+ "step": 400
2900
+ },
2901
+ {
2902
+ "epoch": 3.8,
2903
+ "eval_winoground_filtered_avg": 0.64,
2904
+ "eval_winoground_filtered_std": 0.048241815132442176,
2905
+ "step": 400
2906
+ },
2907
+ {
2908
+ "epoch": 3.81,
2909
+ "grad_norm": 0.14598157841040266,
2910
+ "learning_rate": 2.788523697278773e-05,
2911
+ "loss": 0.0093,
2912
+ "step": 401
2913
+ },
2914
+ {
2915
+ "epoch": 3.82,
2916
+ "grad_norm": 0.20150542514971506,
2917
+ "learning_rate": 2.7459022507362686e-05,
2918
+ "loss": 0.0122,
2919
+ "step": 402
2920
+ },
2921
+ {
2922
+ "epoch": 3.83,
2923
+ "grad_norm": 0.18255123614923588,
2924
+ "learning_rate": 2.7035571457540865e-05,
2925
+ "loss": 0.0103,
2926
+ "step": 403
2927
+ },
2928
+ {
2929
+ "epoch": 3.84,
2930
+ "grad_norm": 0.16704045474943452,
2931
+ "learning_rate": 2.6614899954497795e-05,
2932
+ "loss": 0.0114,
2933
+ "step": 404
2934
+ },
2935
+ {
2936
+ "epoch": 3.85,
2937
+ "grad_norm": 0.14683721625679494,
2938
+ "learning_rate": 2.619702402352332e-05,
2939
+ "loss": 0.01,
2940
+ "step": 405
2941
+ },
2942
+ {
2943
+ "epoch": 3.86,
2944
+ "grad_norm": 0.18144743721435366,
2945
+ "learning_rate": 2.5781959583411374e-05,
2946
+ "loss": 0.0129,
2947
+ "step": 406
2948
+ },
2949
+ {
2950
+ "epoch": 3.87,
2951
+ "grad_norm": 0.19646570441433073,
2952
+ "learning_rate": 2.5369722445853304e-05,
2953
+ "loss": 0.0143,
2954
+ "step": 407
2955
+ },
2956
+ {
2957
+ "epoch": 3.88,
2958
+ "grad_norm": 0.1668088181727681,
2959
+ "learning_rate": 2.4960328314835745e-05,
2960
+ "loss": 0.0089,
2961
+ "step": 408
2962
+ },
2963
+ {
2964
+ "epoch": 3.89,
2965
+ "grad_norm": 0.16111476451284476,
2966
+ "learning_rate": 2.4553792786042262e-05,
2967
+ "loss": 0.0091,
2968
+ "step": 409
2969
+ },
2970
+ {
2971
+ "epoch": 3.9,
2972
+ "grad_norm": 0.17729690845562673,
2973
+ "learning_rate": 2.4150131346259197e-05,
2974
+ "loss": 0.0103,
2975
+ "step": 410
2976
+ },
2977
+ {
2978
+ "epoch": 3.9,
2979
+ "grad_norm": 0.15155895346947004,
2980
+ "learning_rate": 2.3749359372785883e-05,
2981
+ "loss": 0.0096,
2982
+ "step": 411
2983
+ },
2984
+ {
2985
+ "epoch": 3.91,
2986
+ "grad_norm": 0.15041370885333255,
2987
+ "learning_rate": 2.3351492132848664e-05,
2988
+ "loss": 0.0085,
2989
+ "step": 412
2990
+ },
2991
+ {
2992
+ "epoch": 3.92,
2993
+ "grad_norm": 0.12197907148956355,
2994
+ "learning_rate": 2.2956544783019418e-05,
2995
+ "loss": 0.0067,
2996
+ "step": 413
2997
+ },
2998
+ {
2999
+ "epoch": 3.93,
3000
+ "grad_norm": 0.1788434056496877,
3001
+ "learning_rate": 2.2564532368638146e-05,
3002
+ "loss": 0.01,
3003
+ "step": 414
3004
+ },
3005
+ {
3006
+ "epoch": 3.94,
3007
+ "grad_norm": 0.19269466130772045,
3008
+ "learning_rate": 2.2175469823239768e-05,
3009
+ "loss": 0.0117,
3010
+ "step": 415
3011
+ },
3012
+ {
3013
+ "epoch": 3.95,
3014
+ "grad_norm": 0.15780826445252463,
3015
+ "learning_rate": 2.1789371967985338e-05,
3016
+ "loss": 0.0101,
3017
+ "step": 416
3018
+ },
3019
+ {
3020
+ "epoch": 3.96,
3021
+ "grad_norm": 0.19229144408434373,
3022
+ "learning_rate": 2.140625351109733e-05,
3023
+ "loss": 0.0084,
3024
+ "step": 417
3025
+ },
3026
+ {
3027
+ "epoch": 3.97,
3028
+ "grad_norm": 0.15474486143047034,
3029
+ "learning_rate": 2.1026129047299436e-05,
3030
+ "loss": 0.0067,
3031
+ "step": 418
3032
+ },
3033
+ {
3034
+ "epoch": 3.98,
3035
+ "grad_norm": 0.15864166155594778,
3036
+ "learning_rate": 2.0649013057260546e-05,
3037
+ "loss": 0.0098,
3038
+ "step": 419
3039
+ },
3040
+ {
3041
+ "epoch": 3.99,
3042
+ "grad_norm": 0.22515244613844015,
3043
+ "learning_rate": 2.0274919907043033e-05,
3044
+ "loss": 0.0094,
3045
+ "step": 420
3046
+ },
3047
+ {
3048
+ "epoch": 4.0,
3049
+ "grad_norm": 0.18684872878382638,
3050
+ "learning_rate": 1.9903863847555648e-05,
3051
+ "loss": 0.0127,
3052
+ "step": 421
3053
+ },
3054
+ {
3055
+ "epoch": 4.01,
3056
+ "grad_norm": 0.06270483785922072,
3057
+ "learning_rate": 1.9535859014010526e-05,
3058
+ "loss": 0.0028,
3059
+ "step": 422
3060
+ },
3061
+ {
3062
+ "epoch": 4.02,
3063
+ "grad_norm": 0.09948637260912774,
3064
+ "learning_rate": 1.917091942538469e-05,
3065
+ "loss": 0.0037,
3066
+ "step": 423
3067
+ },
3068
+ {
3069
+ "epoch": 4.03,
3070
+ "grad_norm": 0.07530065845248647,
3071
+ "learning_rate": 1.880905898388612e-05,
3072
+ "loss": 0.0039,
3073
+ "step": 424
3074
+ },
3075
+ {
3076
+ "epoch": 4.04,
3077
+ "grad_norm": 0.054461890750773165,
3078
+ "learning_rate": 1.8450291474423998e-05,
3079
+ "loss": 0.0025,
3080
+ "step": 425
3081
+ },
3082
+ {
3083
+ "epoch": 4.05,
3084
+ "grad_norm": 0.08002877578075594,
3085
+ "learning_rate": 1.8094630564083736e-05,
3086
+ "loss": 0.0035,
3087
+ "step": 426
3088
+ },
3089
+ {
3090
+ "epoch": 4.06,
3091
+ "grad_norm": 0.05746226463965698,
3092
+ "learning_rate": 1.7742089801606276e-05,
3093
+ "loss": 0.0025,
3094
+ "step": 427
3095
+ },
3096
+ {
3097
+ "epoch": 4.07,
3098
+ "grad_norm": 0.0633358139605444,
3099
+ "learning_rate": 1.7392682616871837e-05,
3100
+ "loss": 0.0027,
3101
+ "step": 428
3102
+ },
3103
+ {
3104
+ "epoch": 4.08,
3105
+ "grad_norm": 0.06509683268742919,
3106
+ "learning_rate": 1.7046422320388556e-05,
3107
+ "loss": 0.0027,
3108
+ "step": 429
3109
+ },
3110
+ {
3111
+ "epoch": 4.09,
3112
+ "grad_norm": 0.054571154616853274,
3113
+ "learning_rate": 1.6703322102785168e-05,
3114
+ "loss": 0.0026,
3115
+ "step": 430
3116
+ },
3117
+ {
3118
+ "epoch": 4.1,
3119
+ "grad_norm": 0.06888564779650448,
3120
+ "learning_rate": 1.6363395034308703e-05,
3121
+ "loss": 0.0027,
3122
+ "step": 431
3123
+ },
3124
+ {
3125
+ "epoch": 4.1,
3126
+ "grad_norm": 0.05307117129834359,
3127
+ "learning_rate": 1.6026654064326553e-05,
3128
+ "loss": 0.0025,
3129
+ "step": 432
3130
+ },
3131
+ {
3132
+ "epoch": 4.11,
3133
+ "grad_norm": 0.06598879328529111,
3134
+ "learning_rate": 1.5693112020833013e-05,
3135
+ "loss": 0.003,
3136
+ "step": 433
3137
+ },
3138
+ {
3139
+ "epoch": 4.12,
3140
+ "grad_norm": 0.054752236275106794,
3141
+ "learning_rate": 1.5362781609960852e-05,
3142
+ "loss": 0.0025,
3143
+ "step": 434
3144
+ },
3145
+ {
3146
+ "epoch": 4.13,
3147
+ "grad_norm": 0.07106963888787232,
3148
+ "learning_rate": 1.5035675415497063e-05,
3149
+ "loss": 0.0031,
3150
+ "step": 435
3151
+ },
3152
+ {
3153
+ "epoch": 4.14,
3154
+ "grad_norm": 0.052548572683446884,
3155
+ "learning_rate": 1.471180589840363e-05,
3156
+ "loss": 0.0025,
3157
+ "step": 436
3158
+ },
3159
+ {
3160
+ "epoch": 4.15,
3161
+ "grad_norm": 0.08828036910254508,
3162
+ "learning_rate": 1.4391185396342789e-05,
3163
+ "loss": 0.0038,
3164
+ "step": 437
3165
+ },
3166
+ {
3167
+ "epoch": 4.16,
3168
+ "grad_norm": 0.09463459893212552,
3169
+ "learning_rate": 1.4073826123206946e-05,
3170
+ "loss": 0.0038,
3171
+ "step": 438
3172
+ },
3173
+ {
3174
+ "epoch": 4.17,
3175
+ "grad_norm": 0.08002928457971342,
3176
+ "learning_rate": 1.375974016865359e-05,
3177
+ "loss": 0.0031,
3178
+ "step": 439
3179
+ },
3180
+ {
3181
+ "epoch": 4.18,
3182
+ "grad_norm": 0.07631532690730236,
3183
+ "learning_rate": 1.3448939497644509e-05,
3184
+ "loss": 0.0031,
3185
+ "step": 440
3186
+ },
3187
+ {
3188
+ "epoch": 4.19,
3189
+ "grad_norm": 0.04831761603516682,
3190
+ "learning_rate": 1.3141435949990188e-05,
3191
+ "loss": 0.0027,
3192
+ "step": 441
3193
+ },
3194
+ {
3195
+ "epoch": 4.2,
3196
+ "grad_norm": 0.07344003153336562,
3197
+ "learning_rate": 1.2837241239898667e-05,
3198
+ "loss": 0.0032,
3199
+ "step": 442
3200
+ },
3201
+ {
3202
+ "epoch": 4.21,
3203
+ "grad_norm": 0.08305075630986966,
3204
+ "learning_rate": 1.253636695552931e-05,
3205
+ "loss": 0.003,
3206
+ "step": 443
3207
+ },
3208
+ {
3209
+ "epoch": 4.22,
3210
+ "grad_norm": 0.1034575433958594,
3211
+ "learning_rate": 1.2238824558551365e-05,
3212
+ "loss": 0.0039,
3213
+ "step": 444
3214
+ },
3215
+ {
3216
+ "epoch": 4.23,
3217
+ "grad_norm": 0.06655324788558148,
3218
+ "learning_rate": 1.1944625383707374e-05,
3219
+ "loss": 0.003,
3220
+ "step": 445
3221
+ },
3222
+ {
3223
+ "epoch": 4.24,
3224
+ "grad_norm": 0.0790599253839735,
3225
+ "learning_rate": 1.1653780638381328e-05,
3226
+ "loss": 0.0029,
3227
+ "step": 446
3228
+ },
3229
+ {
3230
+ "epoch": 4.25,
3231
+ "grad_norm": 0.04198685628145689,
3232
+ "learning_rate": 1.1366301402171775e-05,
3233
+ "loss": 0.0017,
3234
+ "step": 447
3235
+ },
3236
+ {
3237
+ "epoch": 4.26,
3238
+ "grad_norm": 0.06439353264983554,
3239
+ "learning_rate": 1.1082198626469686e-05,
3240
+ "loss": 0.0024,
3241
+ "step": 448
3242
+ },
3243
+ {
3244
+ "epoch": 4.27,
3245
+ "grad_norm": 0.07762450043477247,
3246
+ "learning_rate": 1.0801483134041268e-05,
3247
+ "loss": 0.0027,
3248
+ "step": 449
3249
+ },
3250
+ {
3251
+ "epoch": 4.28,
3252
+ "grad_norm": 0.07856883953783565,
3253
+ "learning_rate": 1.0524165618615845e-05,
3254
+ "loss": 0.0033,
3255
+ "step": 450
3256
+ },
3257
+ {
3258
+ "epoch": 4.29,
3259
+ "grad_norm": 0.07929308057852809,
3260
+ "learning_rate": 1.0250256644478195e-05,
3261
+ "loss": 0.003,
3262
+ "step": 451
3263
+ },
3264
+ {
3265
+ "epoch": 4.29,
3266
+ "grad_norm": 0.0587512154822952,
3267
+ "learning_rate": 9.979766646066368e-06,
3268
+ "loss": 0.0027,
3269
+ "step": 452
3270
+ },
3271
+ {
3272
+ "epoch": 4.3,
3273
+ "grad_norm": 0.06109551507247056,
3274
+ "learning_rate": 9.71270592757404e-06,
3275
+ "loss": 0.0032,
3276
+ "step": 453
3277
+ },
3278
+ {
3279
+ "epoch": 4.31,
3280
+ "grad_norm": 0.05909029031199419,
3281
+ "learning_rate": 9.449084662557982e-06,
3282
+ "loss": 0.0026,
3283
+ "step": 454
3284
+ },
3285
+ {
3286
+ "epoch": 4.32,
3287
+ "grad_norm": 0.0814055458144323,
3288
+ "learning_rate": 9.188912893550695e-06,
3289
+ "loss": 0.0026,
3290
+ "step": 455
3291
+ },
3292
+ {
3293
+ "epoch": 4.33,
3294
+ "grad_norm": 0.07735385332942207,
3295
+ "learning_rate": 8.932200531677537e-06,
3296
+ "loss": 0.0028,
3297
+ "step": 456
3298
+ },
3299
+ {
3300
+ "epoch": 4.34,
3301
+ "grad_norm": 0.08519595591969155,
3302
+ "learning_rate": 8.678957356279371e-06,
3303
+ "loss": 0.0024,
3304
+ "step": 457
3305
+ },
3306
+ {
3307
+ "epoch": 4.35,
3308
+ "grad_norm": 0.055031384326470804,
3309
+ "learning_rate": 8.429193014540015e-06,
3310
+ "loss": 0.0026,
3311
+ "step": 458
3312
+ },
3313
+ {
3314
+ "epoch": 4.36,
3315
+ "grad_norm": 0.05387324401647046,
3316
+ "learning_rate": 8.182917021118663e-06,
3317
+ "loss": 0.0026,
3318
+ "step": 459
3319
+ },
3320
+ {
3321
+ "epoch": 4.37,
3322
+ "grad_norm": 0.07168879976269556,
3323
+ "learning_rate": 7.940138757787507e-06,
3324
+ "loss": 0.0032,
3325
+ "step": 460
3326
+ },
3327
+ {
3328
+ "epoch": 4.38,
3329
+ "grad_norm": 0.07661756681904786,
3330
+ "learning_rate": 7.700867473074224e-06,
3331
+ "loss": 0.0035,
3332
+ "step": 461
3333
+ },
3334
+ {
3335
+ "epoch": 4.39,
3336
+ "grad_norm": 0.09486930411075328,
3337
+ "learning_rate": 7.46511228190977e-06,
3338
+ "loss": 0.0049,
3339
+ "step": 462
3340
+ },
3341
+ {
3342
+ "epoch": 4.4,
3343
+ "grad_norm": 0.0679530025111762,
3344
+ "learning_rate": 7.232882165281141e-06,
3345
+ "loss": 0.0026,
3346
+ "step": 463
3347
+ },
3348
+ {
3349
+ "epoch": 4.41,
3350
+ "grad_norm": 0.06514922044267304,
3351
+ "learning_rate": 7.004185969889187e-06,
3352
+ "loss": 0.0027,
3353
+ "step": 464
3354
+ },
3355
+ {
3356
+ "epoch": 4.42,
3357
+ "grad_norm": 0.06706026131022384,
3358
+ "learning_rate": 6.7790324078116364e-06,
3359
+ "loss": 0.0027,
3360
+ "step": 465
3361
+ },
3362
+ {
3363
+ "epoch": 4.43,
3364
+ "grad_norm": 0.07709046890424658,
3365
+ "learning_rate": 6.557430056171221e-06,
3366
+ "loss": 0.0033,
3367
+ "step": 466
3368
+ },
3369
+ {
3370
+ "epoch": 4.44,
3371
+ "grad_norm": 0.051443041020356704,
3372
+ "learning_rate": 6.339387356808912e-06,
3373
+ "loss": 0.0026,
3374
+ "step": 467
3375
+ },
3376
+ {
3377
+ "epoch": 4.45,
3378
+ "grad_norm": 0.060318722923432995,
3379
+ "learning_rate": 6.124912615962341e-06,
3380
+ "loss": 0.0028,
3381
+ "step": 468
3382
+ },
3383
+ {
3384
+ "epoch": 4.46,
3385
+ "grad_norm": 0.062212012735137795,
3386
+ "learning_rate": 5.9140140039494084e-06,
3387
+ "loss": 0.0025,
3388
+ "step": 469
3389
+ },
3390
+ {
3391
+ "epoch": 4.47,
3392
+ "grad_norm": 0.06556299474776538,
3393
+ "learning_rate": 5.706699554856964e-06,
3394
+ "loss": 0.0023,
3395
+ "step": 470
3396
+ },
3397
+ {
3398
+ "epoch": 4.48,
3399
+ "grad_norm": 0.08649267044276539,
3400
+ "learning_rate": 5.502977166234857e-06,
3401
+ "loss": 0.0035,
3402
+ "step": 471
3403
+ },
3404
+ {
3405
+ "epoch": 4.48,
3406
+ "grad_norm": 0.08526822145924882,
3407
+ "learning_rate": 5.302854598794937e-06,
3408
+ "loss": 0.003,
3409
+ "step": 472
3410
+ },
3411
+ {
3412
+ "epoch": 4.49,
3413
+ "grad_norm": 0.04133711118453636,
3414
+ "learning_rate": 5.106339476115596e-06,
3415
+ "loss": 0.0019,
3416
+ "step": 473
3417
+ },
3418
+ {
3419
+ "epoch": 4.5,
3420
+ "grad_norm": 0.05708577094578342,
3421
+ "learning_rate": 4.913439284351207e-06,
3422
+ "loss": 0.0026,
3423
+ "step": 474
3424
+ },
3425
+ {
3426
+ "epoch": 4.51,
3427
+ "grad_norm": 0.07367912633186298,
3428
+ "learning_rate": 4.724161371946978e-06,
3429
+ "loss": 0.0029,
3430
+ "step": 475
3431
+ },
3432
+ {
3433
+ "epoch": 4.52,
3434
+ "grad_norm": 0.08135320771271103,
3435
+ "learning_rate": 4.538512949359075e-06,
3436
+ "loss": 0.0027,
3437
+ "step": 476
3438
+ },
3439
+ {
3440
+ "epoch": 4.53,
3441
+ "grad_norm": 0.0849858165893086,
3442
+ "learning_rate": 4.356501088779841e-06,
3443
+ "loss": 0.0027,
3444
+ "step": 477
3445
+ },
3446
+ {
3447
+ "epoch": 4.54,
3448
+ "grad_norm": 0.05260609110954984,
3449
+ "learning_rate": 4.178132723868477e-06,
3450
+ "loss": 0.0019,
3451
+ "step": 478
3452
+ },
3453
+ {
3454
+ "epoch": 4.55,
3455
+ "grad_norm": 0.0795477617292828,
3456
+ "learning_rate": 4.003414649486892e-06,
3457
+ "loss": 0.0032,
3458
+ "step": 479
3459
+ },
3460
+ {
3461
+ "epoch": 4.56,
3462
+ "grad_norm": 0.08161922179718771,
3463
+ "learning_rate": 3.832353521440768e-06,
3464
+ "loss": 0.0026,
3465
+ "step": 480
3466
+ },
3467
+ {
3468
+ "epoch": 4.57,
3469
+ "grad_norm": 0.06830643544893618,
3470
+ "learning_rate": 3.6649558562261375e-06,
3471
+ "loss": 0.0032,
3472
+ "step": 481
3473
+ },
3474
+ {
3475
+ "epoch": 4.58,
3476
+ "grad_norm": 0.08641205617098656,
3477
+ "learning_rate": 3.501228030781034e-06,
3478
+ "loss": 0.0028,
3479
+ "step": 482
3480
+ },
3481
+ {
3482
+ "epoch": 4.59,
3483
+ "grad_norm": 0.04921706287498077,
3484
+ "learning_rate": 3.341176282242653e-06,
3485
+ "loss": 0.0021,
3486
+ "step": 483
3487
+ },
3488
+ {
3489
+ "epoch": 4.6,
3490
+ "grad_norm": 0.05901589705081983,
3491
+ "learning_rate": 3.184806707709698e-06,
3492
+ "loss": 0.0027,
3493
+ "step": 484
3494
+ },
3495
+ {
3496
+ "epoch": 4.61,
3497
+ "grad_norm": 0.08562934355546689,
3498
+ "learning_rate": 3.0321252640100885e-06,
3499
+ "loss": 0.0035,
3500
+ "step": 485
3501
+ },
3502
+ {
3503
+ "epoch": 4.62,
3504
+ "grad_norm": 0.056139936545776606,
3505
+ "learning_rate": 2.88313776747412e-06,
3506
+ "loss": 0.0027,
3507
+ "step": 486
3508
+ },
3509
+ {
3510
+ "epoch": 4.63,
3511
+ "grad_norm": 0.06574452787357139,
3512
+ "learning_rate": 2.7378498937128404e-06,
3513
+ "loss": 0.0031,
3514
+ "step": 487
3515
+ },
3516
+ {
3517
+ "epoch": 4.64,
3518
+ "grad_norm": 0.06295208396607756,
3519
+ "learning_rate": 2.5962671774018234e-06,
3520
+ "loss": 0.0029,
3521
+ "step": 488
3522
+ },
3523
+ {
3524
+ "epoch": 4.65,
3525
+ "grad_norm": 0.06348707610420529,
3526
+ "learning_rate": 2.458395012070369e-06,
3527
+ "loss": 0.0027,
3528
+ "step": 489
3529
+ },
3530
+ {
3531
+ "epoch": 4.66,
3532
+ "grad_norm": 0.06438459591992919,
3533
+ "learning_rate": 2.3242386498960266e-06,
3534
+ "loss": 0.003,
3535
+ "step": 490
3536
+ },
3537
+ {
3538
+ "epoch": 4.67,
3539
+ "grad_norm": 0.0936033257355208,
3540
+ "learning_rate": 2.1938032015044964e-06,
3541
+ "loss": 0.0053,
3542
+ "step": 491
3543
+ },
3544
+ {
3545
+ "epoch": 4.67,
3546
+ "grad_norm": 0.0712704009642112,
3547
+ "learning_rate": 2.067093635774975e-06,
3548
+ "loss": 0.0033,
3549
+ "step": 492
3550
+ },
3551
+ {
3552
+ "epoch": 4.68,
3553
+ "grad_norm": 0.05278839840964536,
3554
+ "learning_rate": 1.9441147796508407e-06,
3555
+ "loss": 0.0025,
3556
+ "step": 493
3557
+ },
3558
+ {
3559
+ "epoch": 4.69,
3560
+ "grad_norm": 0.05158800004403027,
3561
+ "learning_rate": 1.8248713179557786e-06,
3562
+ "loss": 0.002,
3563
+ "step": 494
3564
+ },
3565
+ {
3566
+ "epoch": 4.7,
3567
+ "grad_norm": 0.06302315225352234,
3568
+ "learning_rate": 1.7093677932153218e-06,
3569
+ "loss": 0.002,
3570
+ "step": 495
3571
+ },
3572
+ {
3573
+ "epoch": 4.71,
3574
+ "grad_norm": 0.09014451602286425,
3575
+ "learning_rate": 1.5976086054838025e-06,
3576
+ "loss": 0.0031,
3577
+ "step": 496
3578
+ },
3579
+ {
3580
+ "epoch": 4.72,
3581
+ "grad_norm": 0.08249201483869177,
3582
+ "learning_rate": 1.4895980121767627e-06,
3583
+ "loss": 0.0029,
3584
+ "step": 497
3585
+ },
3586
+ {
3587
+ "epoch": 4.73,
3588
+ "grad_norm": 0.07887788932672342,
3589
+ "learning_rate": 1.3853401279086854e-06,
3590
+ "loss": 0.0028,
3591
+ "step": 498
3592
+ },
3593
+ {
3594
+ "epoch": 4.74,
3595
+ "grad_norm": 0.09271365227044996,
3596
+ "learning_rate": 1.2848389243363512e-06,
3597
+ "loss": 0.0026,
3598
+ "step": 499
3599
+ },
3600
+ {
3601
+ "epoch": 4.75,
3602
+ "grad_norm": 0.05191622392926365,
3603
+ "learning_rate": 1.1880982300074838e-06,
3604
+ "loss": 0.0027,
3605
+ "step": 500
3606
+ },
3607
+ {
3608
+ "epoch": 4.75,
3609
+ "eval_blimp_filtered_avg": 0.7105970149253731,
3610
+ "eval_blimp_filtered_std": 0.005015059082306442,
3611
+ "step": 500
3612
+ },
3613
+ {
3614
+ "epoch": 4.75,
3615
+ "eval_blimp_supplement_avg": 0.8146551724137931,
3616
+ "eval_blimp_supplement_std": 0.01739418193453382,
3617
+ "step": 500
3618
+ },
3619
+ {
3620
+ "epoch": 4.75,
3621
+ "eval_vqa_filtered_avg": 0.52,
3622
+ "eval_vqa_filtered_std": 0.05021167315686779,
3623
+ "step": 500
3624
+ },
3625
+ {
3626
+ "epoch": 4.75,
3627
+ "eval_winoground_filtered_avg": 0.64,
3628
+ "eval_winoground_filtered_std": 0.048241815132442176,
3629
+ "step": 500
3630
+ }
3631
+ ],
3632
+ "logging_steps": 1.0,
3633
+ "max_steps": 525,
3634
+ "num_input_tokens_seen": 0,
3635
+ "num_train_epochs": 5,
3636
+ "save_steps": 500,
3637
+ "total_flos": 394333829201920.0,
3638
+ "train_batch_size": 40,
3639
+ "trial_name": null,
3640
+ "trial_params": null
3641
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08b5f65153ee777fbd3d7179f8557cd50d2f8195b4001cff264a353dcb84007a
3
+ size 7032
checkpoint-500/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.5-7b",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 4096,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_resampler_type": null,
24
+ "mm_use_im_patch_token": false,
25
+ "mm_use_im_start_end": false,
26
+ "mm_vision_select_feature": "patch",
27
+ "mm_vision_select_layer": -2,
28
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
29
+ "model_type": "llava_llama",
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 32,
32
+ "num_key_value_heads": 32,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "tokenizer_model_max_length": 2048,
40
+ "tokenizer_padding_side": "right",
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.39.3",
43
+ "tune_mm_mlp_adapter": false,
44
+ "tune_mm_vision_resampler": false,
45
+ "unfreeze_mm_vision_tower": false,
46
+ "use_cache": true,
47
+ "use_mm_proj": true,
48
+ "vocab_size": 32000
49
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4256d30527b68662b35b87c465a72acf392ee1cb4c248edee2238d360ce1f04e
3
+ size 41961648
trainer_state.json ADDED
@@ -0,0 +1,3825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.98812351543943,
5
+ "eval_steps": 100,
6
+ "global_step": 525,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 4.008147055910771,
14
+ "learning_rate": 1.25e-05,
15
+ "loss": 4.2415,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.02,
20
+ "grad_norm": 4.04569203441769,
21
+ "learning_rate": 2.5e-05,
22
+ "loss": 4.3121,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.03,
27
+ "grad_norm": 3.865746651377984,
28
+ "learning_rate": 3.7500000000000003e-05,
29
+ "loss": 4.3208,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.04,
34
+ "grad_norm": 2.6407193073379105,
35
+ "learning_rate": 5e-05,
36
+ "loss": 3.8848,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.05,
41
+ "grad_norm": 2.451159328560232,
42
+ "learning_rate": 6.25e-05,
43
+ "loss": 3.4391,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.06,
48
+ "grad_norm": 1.8259504797317525,
49
+ "learning_rate": 7.500000000000001e-05,
50
+ "loss": 3.0656,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "grad_norm": 1.1881779175566867,
56
+ "learning_rate": 8.75e-05,
57
+ "loss": 2.8135,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.08,
62
+ "grad_norm": 1.614839668966139,
63
+ "learning_rate": 0.0001,
64
+ "loss": 2.7319,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.09,
69
+ "grad_norm": 1.5198673994210212,
70
+ "learning_rate": 0.00011250000000000001,
71
+ "loss": 2.6903,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.1,
76
+ "grad_norm": 1.0044025931610727,
77
+ "learning_rate": 0.000125,
78
+ "loss": 2.584,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.1,
83
+ "grad_norm": 1.1531821793787296,
84
+ "learning_rate": 0.0001375,
85
+ "loss": 2.586,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.11,
90
+ "grad_norm": 0.6210600474209341,
91
+ "learning_rate": 0.00015000000000000001,
92
+ "loss": 2.5298,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.12,
97
+ "grad_norm": 0.5025244204180619,
98
+ "learning_rate": 0.00016250000000000002,
99
+ "loss": 2.4665,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.13,
104
+ "grad_norm": 0.5058788641352842,
105
+ "learning_rate": 0.000175,
106
+ "loss": 2.4194,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.14,
111
+ "grad_norm": 0.44571801666869537,
112
+ "learning_rate": 0.0001875,
113
+ "loss": 2.3531,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.15,
118
+ "grad_norm": 0.44028009268534757,
119
+ "learning_rate": 0.0002,
120
+ "loss": 2.2749,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.16,
125
+ "grad_norm": 0.42473118020142525,
126
+ "learning_rate": 0.00019999809527270051,
127
+ "loss": 2.2587,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.17,
132
+ "grad_norm": 0.465029302165452,
133
+ "learning_rate": 0.0001999923811633618,
134
+ "loss": 2.2196,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.18,
139
+ "grad_norm": 0.49040381415815754,
140
+ "learning_rate": 0.00019998285788966027,
141
+ "loss": 2.2061,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.19,
146
+ "grad_norm": 0.4160855034634493,
147
+ "learning_rate": 0.00019996952581438068,
148
+ "loss": 2.1173,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.2,
153
+ "grad_norm": 0.45625369964232165,
154
+ "learning_rate": 0.00019995238544540241,
155
+ "loss": 2.1267,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.21,
160
+ "grad_norm": 0.42551849567803673,
161
+ "learning_rate": 0.00019993143743568,
162
+ "loss": 2.0976,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.22,
167
+ "grad_norm": 0.5100052595965069,
168
+ "learning_rate": 0.0001999066825832184,
169
+ "loss": 2.0428,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.23,
174
+ "grad_norm": 0.4717525078599394,
175
+ "learning_rate": 0.00019987812183104247,
176
+ "loss": 2.0068,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.24,
181
+ "grad_norm": 0.5596905853419681,
182
+ "learning_rate": 0.0001998457562671611,
183
+ "loss": 2.0303,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.25,
188
+ "grad_norm": 0.4931645550169434,
189
+ "learning_rate": 0.00019980958712452577,
190
+ "loss": 1.9722,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.26,
195
+ "grad_norm": 0.4433810930704678,
196
+ "learning_rate": 0.0001997696157809835,
197
+ "loss": 1.957,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.27,
202
+ "grad_norm": 0.5522396650266582,
203
+ "learning_rate": 0.0001997258437592245,
204
+ "loss": 1.915,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.28,
209
+ "grad_norm": 0.49861222066728145,
210
+ "learning_rate": 0.00019967827272672408,
211
+ "loss": 1.8303,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.29,
216
+ "grad_norm": 0.6169911964169147,
217
+ "learning_rate": 0.00019962690449567912,
218
+ "loss": 1.8454,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.29,
223
+ "grad_norm": 0.5639780725078123,
224
+ "learning_rate": 0.000199571741022939,
225
+ "loss": 1.8068,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.3,
230
+ "grad_norm": 0.6302805853808786,
231
+ "learning_rate": 0.0001995127844099313,
232
+ "loss": 1.7166,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.31,
237
+ "grad_norm": 0.6494693483139545,
238
+ "learning_rate": 0.00019945003690258125,
239
+ "loss": 1.6433,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.32,
244
+ "grad_norm": 0.7598443409498918,
245
+ "learning_rate": 0.00019938350089122682,
246
+ "loss": 1.7081,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.33,
251
+ "grad_norm": 0.6512764391881087,
252
+ "learning_rate": 0.00019931317891052708,
253
+ "loss": 1.6436,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.34,
258
+ "grad_norm": 0.6953537359048508,
259
+ "learning_rate": 0.00019923907363936593,
260
+ "loss": 1.5862,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.35,
265
+ "grad_norm": 0.6011387829084072,
266
+ "learning_rate": 0.00019916118790075008,
267
+ "loss": 1.5432,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.36,
272
+ "grad_norm": 0.659130437748028,
273
+ "learning_rate": 0.00019907952466170138,
274
+ "loss": 1.5132,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.37,
279
+ "grad_norm": 0.7211467253555573,
280
+ "learning_rate": 0.00019899408703314385,
281
+ "loss": 1.506,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.38,
286
+ "grad_norm": 0.7006890038987398,
287
+ "learning_rate": 0.0001989048782697851,
288
+ "loss": 1.4498,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.39,
293
+ "grad_norm": 0.64642158324997,
294
+ "learning_rate": 0.00019881190176999255,
295
+ "loss": 1.4478,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.4,
300
+ "grad_norm": 0.6608085069521318,
301
+ "learning_rate": 0.00019871516107566366,
302
+ "loss": 1.3542,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.41,
307
+ "grad_norm": 0.7707478188072372,
308
+ "learning_rate": 0.0001986146598720913,
309
+ "loss": 1.3309,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.42,
314
+ "grad_norm": 0.8119298049916807,
315
+ "learning_rate": 0.00019851040198782326,
316
+ "loss": 1.345,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.43,
321
+ "grad_norm": 0.7712308653234212,
322
+ "learning_rate": 0.0001984023913945162,
323
+ "loss": 1.3076,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.44,
328
+ "grad_norm": 0.682341709525683,
329
+ "learning_rate": 0.0001982906322067847,
330
+ "loss": 1.2565,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.45,
335
+ "grad_norm": 0.7071991083514119,
336
+ "learning_rate": 0.00019817512868204425,
337
+ "loss": 1.1796,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.46,
342
+ "grad_norm": 0.745222014713615,
343
+ "learning_rate": 0.00019805588522034916,
344
+ "loss": 1.1649,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.47,
349
+ "grad_norm": 0.7158459299510994,
350
+ "learning_rate": 0.00019793290636422505,
351
+ "loss": 1.2109,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.48,
356
+ "grad_norm": 0.7335821144549012,
357
+ "learning_rate": 0.00019780619679849552,
358
+ "loss": 1.1475,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.48,
363
+ "grad_norm": 0.7804306024320766,
364
+ "learning_rate": 0.000197675761350104,
365
+ "loss": 1.1068,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.49,
370
+ "grad_norm": 0.8274924156959725,
371
+ "learning_rate": 0.00019754160498792965,
372
+ "loss": 1.1839,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.5,
377
+ "grad_norm": 0.8840482383868431,
378
+ "learning_rate": 0.0001974037328225982,
379
+ "loss": 1.0928,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.51,
384
+ "grad_norm": 0.7224652999279871,
385
+ "learning_rate": 0.00019726215010628718,
386
+ "loss": 1.0299,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.52,
391
+ "grad_norm": 0.7109288879933862,
392
+ "learning_rate": 0.0001971168622325259,
393
+ "loss": 1.0436,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.53,
398
+ "grad_norm": 0.7650325966583326,
399
+ "learning_rate": 0.00019696787473598993,
400
+ "loss": 1.041,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.54,
405
+ "grad_norm": 0.7307809391946058,
406
+ "learning_rate": 0.00019681519329229033,
407
+ "loss": 1.0195,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.55,
412
+ "grad_norm": 0.6873943623441443,
413
+ "learning_rate": 0.00019665882371775733,
414
+ "loss": 0.972,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.56,
419
+ "grad_norm": 0.8185924734616268,
420
+ "learning_rate": 0.00019649877196921896,
421
+ "loss": 0.9986,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.57,
426
+ "grad_norm": 0.7907558585543373,
427
+ "learning_rate": 0.00019633504414377388,
428
+ "loss": 0.9201,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.58,
433
+ "grad_norm": 0.7216280408288712,
434
+ "learning_rate": 0.00019616764647855926,
435
+ "loss": 0.9976,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.59,
440
+ "grad_norm": 0.6946470891456141,
441
+ "learning_rate": 0.00019599658535051314,
442
+ "loss": 0.9008,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.6,
447
+ "grad_norm": 0.6470248283451219,
448
+ "learning_rate": 0.00019582186727613152,
449
+ "loss": 0.8226,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.61,
454
+ "grad_norm": 0.8297915622585336,
455
+ "learning_rate": 0.00019564349891122018,
456
+ "loss": 0.8825,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.62,
461
+ "grad_norm": 0.7018515834126928,
462
+ "learning_rate": 0.00019546148705064097,
463
+ "loss": 0.8521,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.63,
468
+ "grad_norm": 0.6119835758734723,
469
+ "learning_rate": 0.00019527583862805303,
470
+ "loss": 0.7872,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.64,
475
+ "grad_norm": 0.6396036538427098,
476
+ "learning_rate": 0.00019508656071564882,
477
+ "loss": 0.7887,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.65,
482
+ "grad_norm": 0.6712059239435435,
483
+ "learning_rate": 0.00019489366052388441,
484
+ "loss": 0.8406,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.66,
489
+ "grad_norm": 0.6498227189328728,
490
+ "learning_rate": 0.00019469714540120507,
491
+ "loss": 0.7109,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.67,
496
+ "grad_norm": 0.6950957852561941,
497
+ "learning_rate": 0.00019449702283376517,
498
+ "loss": 0.7008,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.67,
503
+ "grad_norm": 0.6415745385783075,
504
+ "learning_rate": 0.00019429330044514305,
505
+ "loss": 0.6808,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.68,
510
+ "grad_norm": 0.6774461765802887,
511
+ "learning_rate": 0.0001940859859960506,
512
+ "loss": 0.7122,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.69,
517
+ "grad_norm": 0.6335543398879422,
518
+ "learning_rate": 0.00019387508738403768,
519
+ "loss": 0.6826,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.7,
524
+ "grad_norm": 0.6455659601218003,
525
+ "learning_rate": 0.0001936606126431911,
526
+ "loss": 0.7342,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.71,
531
+ "grad_norm": 0.6804108080708727,
532
+ "learning_rate": 0.00019344256994382878,
533
+ "loss": 0.6983,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.72,
538
+ "grad_norm": 0.6233570198373359,
539
+ "learning_rate": 0.00019322096759218836,
540
+ "loss": 0.6426,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.73,
545
+ "grad_norm": 0.6354196060962453,
546
+ "learning_rate": 0.00019299581403011082,
547
+ "loss": 0.6978,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.74,
552
+ "grad_norm": 0.6723728632702363,
553
+ "learning_rate": 0.0001927671178347189,
554
+ "loss": 0.6449,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.75,
559
+ "grad_norm": 0.6055794839258588,
560
+ "learning_rate": 0.00019253488771809024,
561
+ "loss": 0.6608,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.76,
566
+ "grad_norm": 0.6032563228830964,
567
+ "learning_rate": 0.0001922991325269258,
568
+ "loss": 0.6691,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.77,
573
+ "grad_norm": 0.5917538532836075,
574
+ "learning_rate": 0.00019205986124221251,
575
+ "loss": 0.6418,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.78,
580
+ "grad_norm": 0.6558132078005496,
581
+ "learning_rate": 0.00019181708297888133,
582
+ "loss": 0.6562,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.79,
587
+ "grad_norm": 0.6110330049943966,
588
+ "learning_rate": 0.00019157080698546,
589
+ "loss": 0.5855,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.8,
594
+ "grad_norm": 0.6481622083495842,
595
+ "learning_rate": 0.00019132104264372063,
596
+ "loss": 0.628,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.81,
601
+ "grad_norm": 0.5730813607452849,
602
+ "learning_rate": 0.0001910677994683225,
603
+ "loss": 0.5476,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.82,
608
+ "grad_norm": 0.6938507563801335,
609
+ "learning_rate": 0.00019081108710644932,
610
+ "loss": 0.6018,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.83,
615
+ "grad_norm": 0.625439427503205,
616
+ "learning_rate": 0.00019055091533744202,
617
+ "loss": 0.5735,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.84,
622
+ "grad_norm": 0.6628596764324554,
623
+ "learning_rate": 0.00019028729407242597,
624
+ "loss": 0.5389,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.85,
629
+ "grad_norm": 0.6112099968245533,
630
+ "learning_rate": 0.00019002023335393364,
631
+ "loss": 0.5235,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.86,
636
+ "grad_norm": 0.6098216223216336,
637
+ "learning_rate": 0.0001897497433555218,
638
+ "loss": 0.6058,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.86,
643
+ "grad_norm": 0.6469247467013166,
644
+ "learning_rate": 0.0001894758343813842,
645
+ "loss": 0.5524,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.87,
650
+ "grad_norm": 0.6344920759870597,
651
+ "learning_rate": 0.00018919851686595874,
652
+ "loss": 0.5605,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.88,
657
+ "grad_norm": 0.6756355159547938,
658
+ "learning_rate": 0.00018891780137353034,
659
+ "loss": 0.5096,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.89,
664
+ "grad_norm": 0.6439314455537293,
665
+ "learning_rate": 0.00018863369859782825,
666
+ "loss": 0.5516,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.9,
671
+ "grad_norm": 0.5567728554741562,
672
+ "learning_rate": 0.0001883462193616187,
673
+ "loss": 0.4576,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.91,
678
+ "grad_norm": 0.553595533418767,
679
+ "learning_rate": 0.00018805537461629265,
680
+ "loss": 0.4947,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.92,
685
+ "grad_norm": 0.6200223910647112,
686
+ "learning_rate": 0.00018776117544144863,
687
+ "loss": 0.5073,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.93,
692
+ "grad_norm": 0.6294322114297511,
693
+ "learning_rate": 0.00018746363304447073,
694
+ "loss": 0.4938,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.94,
699
+ "grad_norm": 0.6000145257745209,
700
+ "learning_rate": 0.00018716275876010135,
701
+ "loss": 0.473,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.95,
706
+ "grad_norm": 0.5927861897994469,
707
+ "learning_rate": 0.00018685856405000983,
708
+ "loss": 0.4724,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.95,
713
+ "eval_blimp_filtered_avg": 0.7155223880597015,
714
+ "eval_blimp_filtered_std": 0.005000433138834185,
715
+ "step": 100
716
+ },
717
+ {
718
+ "epoch": 0.95,
719
+ "eval_blimp_supplement_avg": 0.8405172413793104,
720
+ "eval_blimp_supplement_std": 0.016486001732879434,
721
+ "step": 100
722
+ },
723
+ {
724
+ "epoch": 0.95,
725
+ "eval_vqa_filtered_avg": 0.52,
726
+ "eval_vqa_filtered_std": 0.05021167315686779,
727
+ "step": 100
728
+ },
729
+ {
730
+ "epoch": 0.95,
731
+ "eval_winoground_filtered_avg": 0.64,
732
+ "eval_winoground_filtered_std": 0.04824181513244218,
733
+ "step": 100
734
+ },
735
+ {
736
+ "epoch": 0.96,
737
+ "grad_norm": 0.5504516732077648,
738
+ "learning_rate": 0.00018655106050235548,
739
+ "loss": 0.4393,
740
+ "step": 101
741
+ },
742
+ {
743
+ "epoch": 0.97,
744
+ "grad_norm": 0.5801589113252366,
745
+ "learning_rate": 0.00018624025983134644,
746
+ "loss": 0.468,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.98,
751
+ "grad_norm": 0.5273944337529535,
752
+ "learning_rate": 0.00018592617387679306,
753
+ "loss": 0.439,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.99,
758
+ "grad_norm": 0.508609381383424,
759
+ "learning_rate": 0.00018560881460365724,
760
+ "loss": 0.4272,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 1.0,
765
+ "grad_norm": 0.5396859577867195,
766
+ "learning_rate": 0.0001852881941015964,
767
+ "loss": 0.4362,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 1.01,
772
+ "grad_norm": 0.5122858999271028,
773
+ "learning_rate": 0.00018496432458450294,
774
+ "loss": 0.3893,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 1.02,
779
+ "grad_norm": 0.49626561438760436,
780
+ "learning_rate": 0.00018463721839003915,
781
+ "loss": 0.3498,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 1.03,
786
+ "grad_norm": 0.48748413013987063,
787
+ "learning_rate": 0.000184306887979167,
788
+ "loss": 0.3256,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 1.04,
793
+ "grad_norm": 0.5310280563857716,
794
+ "learning_rate": 0.00018397334593567348,
795
+ "loss": 0.3225,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 1.05,
800
+ "grad_norm": 0.6232514021230662,
801
+ "learning_rate": 0.00018363660496569127,
802
+ "loss": 0.3489,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 1.05,
807
+ "grad_norm": 0.5274577320762,
808
+ "learning_rate": 0.00018329667789721485,
809
+ "loss": 0.3123,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 1.06,
814
+ "grad_norm": 0.5096311315676365,
815
+ "learning_rate": 0.00018295357767961144,
816
+ "loss": 0.3325,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 1.07,
821
+ "grad_norm": 0.4613577097438129,
822
+ "learning_rate": 0.00018260731738312818,
823
+ "loss": 0.2936,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 1.08,
828
+ "grad_norm": 0.4997938044342101,
829
+ "learning_rate": 0.00018225791019839375,
830
+ "loss": 0.3351,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 1.09,
835
+ "grad_norm": 0.538085494988463,
836
+ "learning_rate": 0.00018190536943591624,
837
+ "loss": 0.329,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 1.1,
842
+ "grad_norm": 0.5567068979809859,
843
+ "learning_rate": 0.00018154970852557603,
844
+ "loss": 0.318,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 1.11,
849
+ "grad_norm": 0.5548141608588357,
850
+ "learning_rate": 0.0001811909410161139,
851
+ "loss": 0.3289,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 1.12,
856
+ "grad_norm": 0.47326466614968965,
857
+ "learning_rate": 0.0001808290805746153,
858
+ "loss": 0.3076,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 1.13,
863
+ "grad_norm": 0.47629585466918467,
864
+ "learning_rate": 0.00018046414098598948,
865
+ "loss": 0.3016,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 1.14,
870
+ "grad_norm": 0.44135735344426463,
871
+ "learning_rate": 0.00018009613615244436,
872
+ "loss": 0.2704,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 1.15,
877
+ "grad_norm": 0.5127645747027901,
878
+ "learning_rate": 0.000179725080092957,
879
+ "loss": 0.2887,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 1.16,
884
+ "grad_norm": 0.5209981172771183,
885
+ "learning_rate": 0.0001793509869427395,
886
+ "loss": 0.2938,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 1.17,
891
+ "grad_norm": 0.5481082193558409,
892
+ "learning_rate": 0.00017897387095270058,
893
+ "loss": 0.3191,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 1.18,
898
+ "grad_norm": 0.4770065158307258,
899
+ "learning_rate": 0.0001785937464889027,
900
+ "loss": 0.2795,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 1.19,
905
+ "grad_norm": 0.44845204938493194,
906
+ "learning_rate": 0.0001782106280320147,
907
+ "loss": 0.2667,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 1.2,
912
+ "grad_norm": 0.47824147005907164,
913
+ "learning_rate": 0.00017782453017676025,
914
+ "loss": 0.267,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 1.21,
919
+ "grad_norm": 0.501015317452837,
920
+ "learning_rate": 0.00017743546763136187,
921
+ "loss": 0.2831,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 1.22,
926
+ "grad_norm": 0.5232536606095718,
927
+ "learning_rate": 0.00017704345521698058,
928
+ "loss": 0.2769,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 1.23,
933
+ "grad_norm": 0.5495388553709665,
934
+ "learning_rate": 0.00017664850786715136,
935
+ "loss": 0.3031,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 1.24,
940
+ "grad_norm": 0.5371555106361774,
941
+ "learning_rate": 0.00017625064062721415,
942
+ "loss": 0.2955,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 1.24,
947
+ "grad_norm": 0.4716773551397148,
948
+ "learning_rate": 0.00017584986865374082,
949
+ "loss": 0.2666,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 1.25,
954
+ "grad_norm": 0.5089124561646106,
955
+ "learning_rate": 0.00017544620721395777,
956
+ "loss": 0.3379,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 1.26,
961
+ "grad_norm": 0.4715340007422714,
962
+ "learning_rate": 0.00017503967168516426,
963
+ "loss": 0.2771,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 1.27,
968
+ "grad_norm": 0.43502563576445413,
969
+ "learning_rate": 0.0001746302775541467,
970
+ "loss": 0.2423,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 1.28,
975
+ "grad_norm": 0.4967705692007805,
976
+ "learning_rate": 0.00017421804041658863,
977
+ "loss": 0.2498,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 1.29,
982
+ "grad_norm": 0.49127370733051945,
983
+ "learning_rate": 0.00017380297597647667,
984
+ "loss": 0.2616,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 1.3,
989
+ "grad_norm": 0.47835649282708265,
990
+ "learning_rate": 0.00017338510004550223,
991
+ "loss": 0.241,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 1.31,
996
+ "grad_norm": 0.4843464174553606,
997
+ "learning_rate": 0.00017296442854245915,
998
+ "loss": 0.2458,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 1.32,
1003
+ "grad_norm": 0.5209405133977896,
1004
+ "learning_rate": 0.00017254097749263734,
1005
+ "loss": 0.2452,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 1.33,
1010
+ "grad_norm": 0.4709574288825739,
1011
+ "learning_rate": 0.0001721147630272123,
1012
+ "loss": 0.2627,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 1.34,
1017
+ "grad_norm": 0.4752105435022234,
1018
+ "learning_rate": 0.00017168580138263062,
1019
+ "loss": 0.2527,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 1.35,
1024
+ "grad_norm": 0.48781843284289905,
1025
+ "learning_rate": 0.00017125410889999134,
1026
+ "loss": 0.2356,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 1.36,
1031
+ "grad_norm": 0.5731736183258567,
1032
+ "learning_rate": 0.00017081970202442362,
1033
+ "loss": 0.2668,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 1.37,
1038
+ "grad_norm": 0.48105126464697834,
1039
+ "learning_rate": 0.0001703825973044602,
1040
+ "loss": 0.2454,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 1.38,
1045
+ "grad_norm": 0.5280645599674879,
1046
+ "learning_rate": 0.00016994281139140688,
1047
+ "loss": 0.2454,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 1.39,
1052
+ "grad_norm": 0.47876489284248624,
1053
+ "learning_rate": 0.0001695003610387084,
1054
+ "loss": 0.2463,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 1.4,
1059
+ "grad_norm": 0.48826354198860017,
1060
+ "learning_rate": 0.00016905526310130999,
1061
+ "loss": 0.2295,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 1.41,
1066
+ "grad_norm": 0.47715494831436517,
1067
+ "learning_rate": 0.0001686075345350156,
1068
+ "loss": 0.252,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 1.42,
1073
+ "grad_norm": 0.5152105233009641,
1074
+ "learning_rate": 0.0001681571923958416,
1075
+ "loss": 0.2771,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 1.43,
1080
+ "grad_norm": 0.4990883717055415,
1081
+ "learning_rate": 0.00016770425383936735,
1082
+ "loss": 0.2497,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 1.43,
1087
+ "grad_norm": 0.4674093996422124,
1088
+ "learning_rate": 0.00016724873612008155,
1089
+ "loss": 0.2441,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 1.44,
1094
+ "grad_norm": 0.4432102664091143,
1095
+ "learning_rate": 0.00016679065659072487,
1096
+ "loss": 0.2418,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 1.45,
1101
+ "grad_norm": 0.4677926556162063,
1102
+ "learning_rate": 0.00016633003270162902,
1103
+ "loss": 0.2483,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 1.46,
1108
+ "grad_norm": 0.5050389021999718,
1109
+ "learning_rate": 0.00016586688200005193,
1110
+ "loss": 0.225,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 1.47,
1115
+ "grad_norm": 0.538150442089787,
1116
+ "learning_rate": 0.00016540122212950934,
1117
+ "loss": 0.2629,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 1.48,
1122
+ "grad_norm": 0.4831894197759429,
1123
+ "learning_rate": 0.00016493307082910249,
1124
+ "loss": 0.2539,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 1.49,
1129
+ "grad_norm": 0.4864294249801108,
1130
+ "learning_rate": 0.00016446244593284277,
1131
+ "loss": 0.2638,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 1.5,
1136
+ "grad_norm": 0.46236092553249764,
1137
+ "learning_rate": 0.00016398936536897183,
1138
+ "loss": 0.2255,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 1.51,
1143
+ "grad_norm": 0.4963120760517666,
1144
+ "learning_rate": 0.00016351384715927898,
1145
+ "loss": 0.2524,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 1.52,
1150
+ "grad_norm": 0.5210286477375989,
1151
+ "learning_rate": 0.00016303590941841458,
1152
+ "loss": 0.225,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 1.53,
1157
+ "grad_norm": 0.5288475623534257,
1158
+ "learning_rate": 0.0001625555703531998,
1159
+ "loss": 0.2428,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 1.54,
1164
+ "grad_norm": 0.4973215047467683,
1165
+ "learning_rate": 0.00016207284826193335,
1166
+ "loss": 0.2522,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 1.55,
1171
+ "grad_norm": 0.44826317640998203,
1172
+ "learning_rate": 0.00016158776153369402,
1173
+ "loss": 0.2019,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 1.56,
1178
+ "grad_norm": 0.45392654459830534,
1179
+ "learning_rate": 0.0001611003286476406,
1180
+ "loss": 0.2338,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 1.57,
1185
+ "grad_norm": 0.4430521150056381,
1186
+ "learning_rate": 0.00016061056817230754,
1187
+ "loss": 0.2273,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 1.58,
1192
+ "grad_norm": 0.44345119147374473,
1193
+ "learning_rate": 0.00016011849876489776,
1194
+ "loss": 0.211,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 1.59,
1199
+ "grad_norm": 0.4808061249544928,
1200
+ "learning_rate": 0.000159624139170572,
1201
+ "loss": 0.2104,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 1.6,
1206
+ "grad_norm": 0.5573402749682285,
1207
+ "learning_rate": 0.00015912750822173445,
1208
+ "loss": 0.2492,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 1.61,
1213
+ "grad_norm": 0.5334950652460796,
1214
+ "learning_rate": 0.00015862862483731574,
1215
+ "loss": 0.2187,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 1.62,
1220
+ "grad_norm": 0.49497739813798797,
1221
+ "learning_rate": 0.00015812750802205187,
1222
+ "loss": 0.2097,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 1.62,
1227
+ "grad_norm": 0.44446540691990566,
1228
+ "learning_rate": 0.00015762417686576038,
1229
+ "loss": 0.204,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 1.63,
1234
+ "grad_norm": 0.42142200135464725,
1235
+ "learning_rate": 0.0001571186505426132,
1236
+ "loss": 0.1989,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 1.64,
1241
+ "grad_norm": 0.4328533901196503,
1242
+ "learning_rate": 0.00015661094831040598,
1243
+ "loss": 0.2173,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 1.65,
1248
+ "grad_norm": 0.43093996542664664,
1249
+ "learning_rate": 0.00015610108950982494,
1250
+ "loss": 0.1865,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 1.66,
1255
+ "grad_norm": 0.4850613308932528,
1256
+ "learning_rate": 0.00015558909356370944,
1257
+ "loss": 0.2181,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 1.67,
1262
+ "grad_norm": 0.47485870685329246,
1263
+ "learning_rate": 0.00015507497997631266,
1264
+ "loss": 0.2223,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 1.68,
1269
+ "grad_norm": 0.42085147271583295,
1270
+ "learning_rate": 0.0001545587683325583,
1271
+ "loss": 0.1845,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 1.69,
1276
+ "grad_norm": 0.4479801309419239,
1277
+ "learning_rate": 0.00015404047829729457,
1278
+ "loss": 0.1987,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 1.7,
1283
+ "grad_norm": 0.4624584058381783,
1284
+ "learning_rate": 0.00015352012961454507,
1285
+ "loss": 0.217,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 1.71,
1290
+ "grad_norm": 0.44005765649196454,
1291
+ "learning_rate": 0.00015299774210675657,
1292
+ "loss": 0.1837,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 1.72,
1297
+ "grad_norm": 0.4508346255489124,
1298
+ "learning_rate": 0.00015247333567404406,
1299
+ "loss": 0.2007,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 1.73,
1304
+ "grad_norm": 0.40396006791211914,
1305
+ "learning_rate": 0.00015194693029343248,
1306
+ "loss": 0.1866,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 1.74,
1311
+ "grad_norm": 0.44558839018398966,
1312
+ "learning_rate": 0.00015141854601809581,
1313
+ "loss": 0.1967,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 1.75,
1318
+ "grad_norm": 0.4337334328022437,
1319
+ "learning_rate": 0.00015088820297659314,
1320
+ "loss": 0.1891,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 1.76,
1325
+ "grad_norm": 0.4636781912221849,
1326
+ "learning_rate": 0.00015035592137210187,
1327
+ "loss": 0.193,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 1.77,
1332
+ "grad_norm": 0.47955885394967973,
1333
+ "learning_rate": 0.00014982172148164804,
1334
+ "loss": 0.1793,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 1.78,
1339
+ "grad_norm": 0.4721310395975314,
1340
+ "learning_rate": 0.00014928562365533392,
1341
+ "loss": 0.186,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 1.79,
1346
+ "grad_norm": 0.4737141537120664,
1347
+ "learning_rate": 0.00014874764831556285,
1348
+ "loss": 0.2058,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 1.8,
1353
+ "grad_norm": 0.40830849621087567,
1354
+ "learning_rate": 0.00014820781595626116,
1355
+ "loss": 0.1822,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 1.81,
1360
+ "grad_norm": 0.4272142710058541,
1361
+ "learning_rate": 0.0001476661471420975,
1362
+ "loss": 0.2057,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 1.81,
1367
+ "grad_norm": 0.4212227727031309,
1368
+ "learning_rate": 0.0001471226625076993,
1369
+ "loss": 0.1845,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 1.82,
1374
+ "grad_norm": 0.39660108389275345,
1375
+ "learning_rate": 0.0001465773827568671,
1376
+ "loss": 0.1769,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 1.83,
1381
+ "grad_norm": 0.38828383424285384,
1382
+ "learning_rate": 0.00014603032866178538,
1383
+ "loss": 0.1699,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 1.84,
1388
+ "grad_norm": 0.3681031142044674,
1389
+ "learning_rate": 0.00014548152106223157,
1390
+ "loss": 0.1456,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 1.85,
1395
+ "grad_norm": 0.46248659870169556,
1396
+ "learning_rate": 0.00014493098086478196,
1397
+ "loss": 0.1846,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 1.86,
1402
+ "grad_norm": 0.4437664820090981,
1403
+ "learning_rate": 0.00014437872904201542,
1404
+ "loss": 0.1706,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 1.87,
1409
+ "grad_norm": 0.4410375026146085,
1410
+ "learning_rate": 0.0001438247866317145,
1411
+ "loss": 0.1757,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 1.88,
1416
+ "grad_norm": 0.4290870801703047,
1417
+ "learning_rate": 0.00014326917473606366,
1418
+ "loss": 0.1777,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 1.89,
1423
+ "grad_norm": 0.4812130220306999,
1424
+ "learning_rate": 0.00014271191452084597,
1425
+ "loss": 0.2013,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 1.9,
1430
+ "grad_norm": 0.4314920290891278,
1431
+ "learning_rate": 0.00014215302721463623,
1432
+ "loss": 0.1857,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 1.9,
1437
+ "eval_blimp_filtered_avg": 0.7161194029850746,
1438
+ "eval_blimp_filtered_std": 0.005001692965803923,
1439
+ "step": 200
1440
+ },
1441
+ {
1442
+ "epoch": 1.9,
1443
+ "eval_blimp_supplement_avg": 0.8211206896551724,
1444
+ "eval_blimp_supplement_std": 0.016785621805327337,
1445
+ "step": 200
1446
+ },
1447
+ {
1448
+ "epoch": 1.9,
1449
+ "eval_vqa_filtered_avg": 0.51,
1450
+ "eval_vqa_filtered_std": 0.05024183937956912,
1451
+ "step": 200
1452
+ },
1453
+ {
1454
+ "epoch": 1.9,
1455
+ "eval_winoground_filtered_avg": 0.62,
1456
+ "eval_winoground_filtered_std": 0.04878317312145633,
1457
+ "step": 200
1458
+ },
1459
+ {
1460
+ "epoch": 1.91,
1461
+ "grad_norm": 0.41562514975066434,
1462
+ "learning_rate": 0.0001415925341079927,
1463
+ "loss": 0.21,
1464
+ "step": 201
1465
+ },
1466
+ {
1467
+ "epoch": 1.92,
1468
+ "grad_norm": 0.37833993286875955,
1469
+ "learning_rate": 0.00014103045655264576,
1470
+ "loss": 0.1659,
1471
+ "step": 202
1472
+ },
1473
+ {
1474
+ "epoch": 1.93,
1475
+ "grad_norm": 0.3880529818353851,
1476
+ "learning_rate": 0.00014046681596068466,
1477
+ "loss": 0.1638,
1478
+ "step": 203
1479
+ },
1480
+ {
1481
+ "epoch": 1.94,
1482
+ "grad_norm": 0.40159118156434603,
1483
+ "learning_rate": 0.00013990163380374194,
1484
+ "loss": 0.1768,
1485
+ "step": 204
1486
+ },
1487
+ {
1488
+ "epoch": 1.95,
1489
+ "grad_norm": 0.4086449128732129,
1490
+ "learning_rate": 0.00013933493161217523,
1491
+ "loss": 0.1544,
1492
+ "step": 205
1493
+ },
1494
+ {
1495
+ "epoch": 1.96,
1496
+ "grad_norm": 0.3808287729283849,
1497
+ "learning_rate": 0.0001387667309742472,
1498
+ "loss": 0.1366,
1499
+ "step": 206
1500
+ },
1501
+ {
1502
+ "epoch": 1.97,
1503
+ "grad_norm": 0.39609061286446773,
1504
+ "learning_rate": 0.0001381970535353032,
1505
+ "loss": 0.1494,
1506
+ "step": 207
1507
+ },
1508
+ {
1509
+ "epoch": 1.98,
1510
+ "grad_norm": 0.40847272653729905,
1511
+ "learning_rate": 0.00013762592099694665,
1512
+ "loss": 0.1615,
1513
+ "step": 208
1514
+ },
1515
+ {
1516
+ "epoch": 1.99,
1517
+ "grad_norm": 0.4334994696681873,
1518
+ "learning_rate": 0.00013705335511621228,
1519
+ "loss": 0.1542,
1520
+ "step": 209
1521
+ },
1522
+ {
1523
+ "epoch": 2.0,
1524
+ "grad_norm": 0.4546384761691546,
1525
+ "learning_rate": 0.00013647937770473737,
1526
+ "loss": 0.1834,
1527
+ "step": 210
1528
+ },
1529
+ {
1530
+ "epoch": 2.0,
1531
+ "grad_norm": 0.36130610610645814,
1532
+ "learning_rate": 0.00013590401062793083,
1533
+ "loss": 0.123,
1534
+ "step": 211
1535
+ },
1536
+ {
1537
+ "epoch": 2.01,
1538
+ "grad_norm": 0.29975302946848653,
1539
+ "learning_rate": 0.0001353272758041402,
1540
+ "loss": 0.0824,
1541
+ "step": 212
1542
+ },
1543
+ {
1544
+ "epoch": 2.02,
1545
+ "grad_norm": 0.29392603086414587,
1546
+ "learning_rate": 0.00013474919520381671,
1547
+ "loss": 0.0836,
1548
+ "step": 213
1549
+ },
1550
+ {
1551
+ "epoch": 2.03,
1552
+ "grad_norm": 0.33169221984700814,
1553
+ "learning_rate": 0.00013416979084867852,
1554
+ "loss": 0.0683,
1555
+ "step": 214
1556
+ },
1557
+ {
1558
+ "epoch": 2.04,
1559
+ "grad_norm": 0.39192700338704206,
1560
+ "learning_rate": 0.00013358908481087134,
1561
+ "loss": 0.0804,
1562
+ "step": 215
1563
+ },
1564
+ {
1565
+ "epoch": 2.05,
1566
+ "grad_norm": 0.42443737109460977,
1567
+ "learning_rate": 0.0001330070992121281,
1568
+ "loss": 0.0797,
1569
+ "step": 216
1570
+ },
1571
+ {
1572
+ "epoch": 2.06,
1573
+ "grad_norm": 0.42848813761714244,
1574
+ "learning_rate": 0.00013242385622292592,
1575
+ "loss": 0.0776,
1576
+ "step": 217
1577
+ },
1578
+ {
1579
+ "epoch": 2.07,
1580
+ "grad_norm": 0.37448633759803696,
1581
+ "learning_rate": 0.00013183937806164172,
1582
+ "loss": 0.0739,
1583
+ "step": 218
1584
+ },
1585
+ {
1586
+ "epoch": 2.08,
1587
+ "grad_norm": 0.3437440816482259,
1588
+ "learning_rate": 0.00013125368699370567,
1589
+ "loss": 0.0652,
1590
+ "step": 219
1591
+ },
1592
+ {
1593
+ "epoch": 2.09,
1594
+ "grad_norm": 0.356415907025676,
1595
+ "learning_rate": 0.0001306668053307531,
1596
+ "loss": 0.0778,
1597
+ "step": 220
1598
+ },
1599
+ {
1600
+ "epoch": 2.1,
1601
+ "grad_norm": 0.30675625825005026,
1602
+ "learning_rate": 0.00013007875542977448,
1603
+ "loss": 0.0665,
1604
+ "step": 221
1605
+ },
1606
+ {
1607
+ "epoch": 2.11,
1608
+ "grad_norm": 0.29794655672460485,
1609
+ "learning_rate": 0.00012948955969226383,
1610
+ "loss": 0.0696,
1611
+ "step": 222
1612
+ },
1613
+ {
1614
+ "epoch": 2.12,
1615
+ "grad_norm": 0.30163505061461343,
1616
+ "learning_rate": 0.00012889924056336532,
1617
+ "loss": 0.0705,
1618
+ "step": 223
1619
+ },
1620
+ {
1621
+ "epoch": 2.13,
1622
+ "grad_norm": 0.32541739323213426,
1623
+ "learning_rate": 0.00012830782053101805,
1624
+ "loss": 0.0733,
1625
+ "step": 224
1626
+ },
1627
+ {
1628
+ "epoch": 2.14,
1629
+ "grad_norm": 0.31121536090331003,
1630
+ "learning_rate": 0.00012771532212509974,
1631
+ "loss": 0.0711,
1632
+ "step": 225
1633
+ },
1634
+ {
1635
+ "epoch": 2.15,
1636
+ "grad_norm": 0.34593292210442944,
1637
+ "learning_rate": 0.00012712176791656807,
1638
+ "loss": 0.0788,
1639
+ "step": 226
1640
+ },
1641
+ {
1642
+ "epoch": 2.16,
1643
+ "grad_norm": 0.33946278651997686,
1644
+ "learning_rate": 0.0001265271805166012,
1645
+ "loss": 0.0677,
1646
+ "step": 227
1647
+ },
1648
+ {
1649
+ "epoch": 2.17,
1650
+ "grad_norm": 0.3400898219352628,
1651
+ "learning_rate": 0.0001259315825757362,
1652
+ "loss": 0.0643,
1653
+ "step": 228
1654
+ },
1655
+ {
1656
+ "epoch": 2.18,
1657
+ "grad_norm": 0.3813085350755264,
1658
+ "learning_rate": 0.00012533499678300618,
1659
+ "loss": 0.0761,
1660
+ "step": 229
1661
+ },
1662
+ {
1663
+ "epoch": 2.19,
1664
+ "grad_norm": 0.3523012248149677,
1665
+ "learning_rate": 0.00012473744586507604,
1666
+ "loss": 0.0648,
1667
+ "step": 230
1668
+ },
1669
+ {
1670
+ "epoch": 2.19,
1671
+ "grad_norm": 0.37842862853695125,
1672
+ "learning_rate": 0.00012413895258537675,
1673
+ "loss": 0.0812,
1674
+ "step": 231
1675
+ },
1676
+ {
1677
+ "epoch": 2.2,
1678
+ "grad_norm": 0.39475455813661525,
1679
+ "learning_rate": 0.00012353953974323807,
1680
+ "loss": 0.0801,
1681
+ "step": 232
1682
+ },
1683
+ {
1684
+ "epoch": 2.21,
1685
+ "grad_norm": 0.3205081471986943,
1686
+ "learning_rate": 0.00012293923017302002,
1687
+ "loss": 0.0677,
1688
+ "step": 233
1689
+ },
1690
+ {
1691
+ "epoch": 2.22,
1692
+ "grad_norm": 0.31006899448135294,
1693
+ "learning_rate": 0.0001223380467432432,
1694
+ "loss": 0.07,
1695
+ "step": 234
1696
+ },
1697
+ {
1698
+ "epoch": 2.23,
1699
+ "grad_norm": 0.3048520942780853,
1700
+ "learning_rate": 0.00012173601235571742,
1701
+ "loss": 0.0615,
1702
+ "step": 235
1703
+ },
1704
+ {
1705
+ "epoch": 2.24,
1706
+ "grad_norm": 0.3425413653893973,
1707
+ "learning_rate": 0.0001211331499446693,
1708
+ "loss": 0.0658,
1709
+ "step": 236
1710
+ },
1711
+ {
1712
+ "epoch": 2.25,
1713
+ "grad_norm": 0.31929344956491607,
1714
+ "learning_rate": 0.00012052948247586873,
1715
+ "loss": 0.0653,
1716
+ "step": 237
1717
+ },
1718
+ {
1719
+ "epoch": 2.26,
1720
+ "grad_norm": 0.3414359773691709,
1721
+ "learning_rate": 0.00011992503294575383,
1722
+ "loss": 0.0723,
1723
+ "step": 238
1724
+ },
1725
+ {
1726
+ "epoch": 2.27,
1727
+ "grad_norm": 0.32978160245312554,
1728
+ "learning_rate": 0.00011931982438055505,
1729
+ "loss": 0.07,
1730
+ "step": 239
1731
+ },
1732
+ {
1733
+ "epoch": 2.28,
1734
+ "grad_norm": 0.33271868205929617,
1735
+ "learning_rate": 0.00011871387983541789,
1736
+ "loss": 0.0672,
1737
+ "step": 240
1738
+ },
1739
+ {
1740
+ "epoch": 2.29,
1741
+ "grad_norm": 0.29862145989444433,
1742
+ "learning_rate": 0.00011810722239352467,
1743
+ "loss": 0.0603,
1744
+ "step": 241
1745
+ },
1746
+ {
1747
+ "epoch": 2.3,
1748
+ "grad_norm": 0.34485364985513034,
1749
+ "learning_rate": 0.00011749987516521523,
1750
+ "loss": 0.0632,
1751
+ "step": 242
1752
+ },
1753
+ {
1754
+ "epoch": 2.31,
1755
+ "grad_norm": 0.3299899118013224,
1756
+ "learning_rate": 0.00011689186128710654,
1757
+ "loss": 0.0601,
1758
+ "step": 243
1759
+ },
1760
+ {
1761
+ "epoch": 2.32,
1762
+ "grad_norm": 0.29635972892096896,
1763
+ "learning_rate": 0.00011628320392121117,
1764
+ "loss": 0.0558,
1765
+ "step": 244
1766
+ },
1767
+ {
1768
+ "epoch": 2.33,
1769
+ "grad_norm": 0.3414458592363874,
1770
+ "learning_rate": 0.0001156739262540552,
1771
+ "loss": 0.0703,
1772
+ "step": 245
1773
+ },
1774
+ {
1775
+ "epoch": 2.34,
1776
+ "grad_norm": 0.3280087622706941,
1777
+ "learning_rate": 0.00011506405149579468,
1778
+ "loss": 0.0657,
1779
+ "step": 246
1780
+ },
1781
+ {
1782
+ "epoch": 2.35,
1783
+ "grad_norm": 0.373086375777386,
1784
+ "learning_rate": 0.00011445360287933165,
1785
+ "loss": 0.0668,
1786
+ "step": 247
1787
+ },
1788
+ {
1789
+ "epoch": 2.36,
1790
+ "grad_norm": 0.2937645914714354,
1791
+ "learning_rate": 0.00011384260365942904,
1792
+ "loss": 0.0612,
1793
+ "step": 248
1794
+ },
1795
+ {
1796
+ "epoch": 2.37,
1797
+ "grad_norm": 0.39022311054047737,
1798
+ "learning_rate": 0.00011323107711182473,
1799
+ "loss": 0.0762,
1800
+ "step": 249
1801
+ },
1802
+ {
1803
+ "epoch": 2.38,
1804
+ "grad_norm": 0.3345521008714258,
1805
+ "learning_rate": 0.00011261904653234485,
1806
+ "loss": 0.0711,
1807
+ "step": 250
1808
+ },
1809
+ {
1810
+ "epoch": 2.38,
1811
+ "grad_norm": 0.30608871062806836,
1812
+ "learning_rate": 0.00011200653523601652,
1813
+ "loss": 0.0617,
1814
+ "step": 251
1815
+ },
1816
+ {
1817
+ "epoch": 2.39,
1818
+ "grad_norm": 0.30714147902477945,
1819
+ "learning_rate": 0.00011139356655617945,
1820
+ "loss": 0.063,
1821
+ "step": 252
1822
+ },
1823
+ {
1824
+ "epoch": 2.4,
1825
+ "grad_norm": 0.31051190204375445,
1826
+ "learning_rate": 0.00011078016384359724,
1827
+ "loss": 0.0659,
1828
+ "step": 253
1829
+ },
1830
+ {
1831
+ "epoch": 2.41,
1832
+ "grad_norm": 0.3071085278813772,
1833
+ "learning_rate": 0.00011016635046556772,
1834
+ "loss": 0.061,
1835
+ "step": 254
1836
+ },
1837
+ {
1838
+ "epoch": 2.42,
1839
+ "grad_norm": 0.3045837343462885,
1840
+ "learning_rate": 0.00010955214980503284,
1841
+ "loss": 0.0597,
1842
+ "step": 255
1843
+ },
1844
+ {
1845
+ "epoch": 2.43,
1846
+ "grad_norm": 0.3049959198680976,
1847
+ "learning_rate": 0.00010893758525968789,
1848
+ "loss": 0.0587,
1849
+ "step": 256
1850
+ },
1851
+ {
1852
+ "epoch": 2.44,
1853
+ "grad_norm": 0.3168437149994661,
1854
+ "learning_rate": 0.00010832268024109025,
1855
+ "loss": 0.0559,
1856
+ "step": 257
1857
+ },
1858
+ {
1859
+ "epoch": 2.45,
1860
+ "grad_norm": 0.3024342626013227,
1861
+ "learning_rate": 0.00010770745817376742,
1862
+ "loss": 0.0583,
1863
+ "step": 258
1864
+ },
1865
+ {
1866
+ "epoch": 2.46,
1867
+ "grad_norm": 0.3188509232471995,
1868
+ "learning_rate": 0.0001070919424943247,
1869
+ "loss": 0.061,
1870
+ "step": 259
1871
+ },
1872
+ {
1873
+ "epoch": 2.47,
1874
+ "grad_norm": 0.3381945814712772,
1875
+ "learning_rate": 0.0001064761566505525,
1876
+ "loss": 0.0648,
1877
+ "step": 260
1878
+ },
1879
+ {
1880
+ "epoch": 2.48,
1881
+ "grad_norm": 0.3131931451431926,
1882
+ "learning_rate": 0.00010586012410053292,
1883
+ "loss": 0.0624,
1884
+ "step": 261
1885
+ },
1886
+ {
1887
+ "epoch": 2.49,
1888
+ "grad_norm": 0.32809637984753304,
1889
+ "learning_rate": 0.00010524386831174628,
1890
+ "loss": 0.0627,
1891
+ "step": 262
1892
+ },
1893
+ {
1894
+ "epoch": 2.5,
1895
+ "grad_norm": 0.2832796499168925,
1896
+ "learning_rate": 0.00010462741276017711,
1897
+ "loss": 0.0535,
1898
+ "step": 263
1899
+ },
1900
+ {
1901
+ "epoch": 2.51,
1902
+ "grad_norm": 0.3334141162384235,
1903
+ "learning_rate": 0.00010401078092941971,
1904
+ "loss": 0.061,
1905
+ "step": 264
1906
+ },
1907
+ {
1908
+ "epoch": 2.52,
1909
+ "grad_norm": 0.27653747850590626,
1910
+ "learning_rate": 0.00010339399630978373,
1911
+ "loss": 0.0497,
1912
+ "step": 265
1913
+ },
1914
+ {
1915
+ "epoch": 2.53,
1916
+ "grad_norm": 0.32205480409336124,
1917
+ "learning_rate": 0.00010277708239739924,
1918
+ "loss": 0.0658,
1919
+ "step": 266
1920
+ },
1921
+ {
1922
+ "epoch": 2.54,
1923
+ "grad_norm": 0.310079147965717,
1924
+ "learning_rate": 0.0001021600626933217,
1925
+ "loss": 0.0525,
1926
+ "step": 267
1927
+ },
1928
+ {
1929
+ "epoch": 2.55,
1930
+ "grad_norm": 0.31094425691461797,
1931
+ "learning_rate": 0.00010154296070263649,
1932
+ "loss": 0.0619,
1933
+ "step": 268
1934
+ },
1935
+ {
1936
+ "epoch": 2.56,
1937
+ "grad_norm": 0.33419799536496597,
1938
+ "learning_rate": 0.00010092579993356386,
1939
+ "loss": 0.0615,
1940
+ "step": 269
1941
+ },
1942
+ {
1943
+ "epoch": 2.57,
1944
+ "grad_norm": 0.3343121767672678,
1945
+ "learning_rate": 0.00010030860389656305,
1946
+ "loss": 0.0663,
1947
+ "step": 270
1948
+ },
1949
+ {
1950
+ "epoch": 2.57,
1951
+ "grad_norm": 0.3516117623617434,
1952
+ "learning_rate": 9.969139610343696e-05,
1953
+ "loss": 0.0662,
1954
+ "step": 271
1955
+ },
1956
+ {
1957
+ "epoch": 2.58,
1958
+ "grad_norm": 0.31796912631433194,
1959
+ "learning_rate": 9.907420006643619e-05,
1960
+ "loss": 0.0624,
1961
+ "step": 272
1962
+ },
1963
+ {
1964
+ "epoch": 2.59,
1965
+ "grad_norm": 0.29219460425245597,
1966
+ "learning_rate": 9.845703929736351e-05,
1967
+ "loss": 0.0596,
1968
+ "step": 273
1969
+ },
1970
+ {
1971
+ "epoch": 2.6,
1972
+ "grad_norm": 0.316635170830544,
1973
+ "learning_rate": 9.783993730667831e-05,
1974
+ "loss": 0.0659,
1975
+ "step": 274
1976
+ },
1977
+ {
1978
+ "epoch": 2.61,
1979
+ "grad_norm": 0.33766616368603597,
1980
+ "learning_rate": 9.722291760260077e-05,
1981
+ "loss": 0.0646,
1982
+ "step": 275
1983
+ },
1984
+ {
1985
+ "epoch": 2.62,
1986
+ "grad_norm": 0.31287192455811574,
1987
+ "learning_rate": 9.66060036902163e-05,
1988
+ "loss": 0.0585,
1989
+ "step": 276
1990
+ },
1991
+ {
1992
+ "epoch": 2.63,
1993
+ "grad_norm": 0.28964582015181484,
1994
+ "learning_rate": 9.598921907058033e-05,
1995
+ "loss": 0.0543,
1996
+ "step": 277
1997
+ },
1998
+ {
1999
+ "epoch": 2.64,
2000
+ "grad_norm": 0.3037919396698326,
2001
+ "learning_rate": 9.53725872398229e-05,
2002
+ "loss": 0.0512,
2003
+ "step": 278
2004
+ },
2005
+ {
2006
+ "epoch": 2.65,
2007
+ "grad_norm": 0.3229974938313004,
2008
+ "learning_rate": 9.475613168825374e-05,
2009
+ "loss": 0.0531,
2010
+ "step": 279
2011
+ },
2012
+ {
2013
+ "epoch": 2.66,
2014
+ "grad_norm": 0.29881091304580676,
2015
+ "learning_rate": 9.413987589946711e-05,
2016
+ "loss": 0.0569,
2017
+ "step": 280
2018
+ },
2019
+ {
2020
+ "epoch": 2.67,
2021
+ "grad_norm": 0.29692909307641674,
2022
+ "learning_rate": 9.352384334944753e-05,
2023
+ "loss": 0.0547,
2024
+ "step": 281
2025
+ },
2026
+ {
2027
+ "epoch": 2.68,
2028
+ "grad_norm": 0.33439942628885455,
2029
+ "learning_rate": 9.290805750567532e-05,
2030
+ "loss": 0.0622,
2031
+ "step": 282
2032
+ },
2033
+ {
2034
+ "epoch": 2.69,
2035
+ "grad_norm": 0.2991141437988068,
2036
+ "learning_rate": 9.22925418262326e-05,
2037
+ "loss": 0.0464,
2038
+ "step": 283
2039
+ },
2040
+ {
2041
+ "epoch": 2.7,
2042
+ "grad_norm": 0.3171911760038229,
2043
+ "learning_rate": 9.167731975890976e-05,
2044
+ "loss": 0.059,
2045
+ "step": 284
2046
+ },
2047
+ {
2048
+ "epoch": 2.71,
2049
+ "grad_norm": 0.30072460150102115,
2050
+ "learning_rate": 9.106241474031212e-05,
2051
+ "loss": 0.0559,
2052
+ "step": 285
2053
+ },
2054
+ {
2055
+ "epoch": 2.72,
2056
+ "grad_norm": 0.3301896190647226,
2057
+ "learning_rate": 9.04478501949672e-05,
2058
+ "loss": 0.0514,
2059
+ "step": 286
2060
+ },
2061
+ {
2062
+ "epoch": 2.73,
2063
+ "grad_norm": 0.3298071637508188,
2064
+ "learning_rate": 8.983364953443227e-05,
2065
+ "loss": 0.0618,
2066
+ "step": 287
2067
+ },
2068
+ {
2069
+ "epoch": 2.74,
2070
+ "grad_norm": 0.3497185839244567,
2071
+ "learning_rate": 8.921983615640277e-05,
2072
+ "loss": 0.065,
2073
+ "step": 288
2074
+ },
2075
+ {
2076
+ "epoch": 2.75,
2077
+ "grad_norm": 0.33084725547728233,
2078
+ "learning_rate": 8.860643344382056e-05,
2079
+ "loss": 0.0527,
2080
+ "step": 289
2081
+ },
2082
+ {
2083
+ "epoch": 2.76,
2084
+ "grad_norm": 0.33012822636415956,
2085
+ "learning_rate": 8.79934647639835e-05,
2086
+ "loss": 0.0666,
2087
+ "step": 290
2088
+ },
2089
+ {
2090
+ "epoch": 2.76,
2091
+ "grad_norm": 0.3151687548518561,
2092
+ "learning_rate": 8.738095346765518e-05,
2093
+ "loss": 0.0573,
2094
+ "step": 291
2095
+ },
2096
+ {
2097
+ "epoch": 2.77,
2098
+ "grad_norm": 0.30346203875619676,
2099
+ "learning_rate": 8.676892288817531e-05,
2100
+ "loss": 0.0491,
2101
+ "step": 292
2102
+ },
2103
+ {
2104
+ "epoch": 2.78,
2105
+ "grad_norm": 0.3133369298353677,
2106
+ "learning_rate": 8.615739634057098e-05,
2107
+ "loss": 0.0595,
2108
+ "step": 293
2109
+ },
2110
+ {
2111
+ "epoch": 2.79,
2112
+ "grad_norm": 0.28715782085999497,
2113
+ "learning_rate": 8.554639712066836e-05,
2114
+ "loss": 0.0542,
2115
+ "step": 294
2116
+ },
2117
+ {
2118
+ "epoch": 2.8,
2119
+ "grad_norm": 0.2815995010771035,
2120
+ "learning_rate": 8.493594850420537e-05,
2121
+ "loss": 0.0551,
2122
+ "step": 295
2123
+ },
2124
+ {
2125
+ "epoch": 2.81,
2126
+ "grad_norm": 0.280576878443274,
2127
+ "learning_rate": 8.432607374594484e-05,
2128
+ "loss": 0.0488,
2129
+ "step": 296
2130
+ },
2131
+ {
2132
+ "epoch": 2.82,
2133
+ "grad_norm": 0.298809991890747,
2134
+ "learning_rate": 8.371679607878884e-05,
2135
+ "loss": 0.0544,
2136
+ "step": 297
2137
+ },
2138
+ {
2139
+ "epoch": 2.83,
2140
+ "grad_norm": 0.30088222272143067,
2141
+ "learning_rate": 8.310813871289348e-05,
2142
+ "loss": 0.0591,
2143
+ "step": 298
2144
+ },
2145
+ {
2146
+ "epoch": 2.84,
2147
+ "grad_norm": 0.3237358977236424,
2148
+ "learning_rate": 8.250012483478478e-05,
2149
+ "loss": 0.0547,
2150
+ "step": 299
2151
+ },
2152
+ {
2153
+ "epoch": 2.85,
2154
+ "grad_norm": 0.34075237005827885,
2155
+ "learning_rate": 8.189277760647537e-05,
2156
+ "loss": 0.0566,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 2.85,
2161
+ "eval_blimp_filtered_avg": 0.7037313432835821,
2162
+ "eval_blimp_filtered_std": 0.005058972315437875,
2163
+ "step": 300
2164
+ },
2165
+ {
2166
+ "epoch": 2.85,
2167
+ "eval_blimp_supplement_avg": 0.8103448275862069,
2168
+ "eval_blimp_supplement_std": 0.017321145118445798,
2169
+ "step": 300
2170
+ },
2171
+ {
2172
+ "epoch": 2.85,
2173
+ "eval_vqa_filtered_avg": 0.53,
2174
+ "eval_vqa_filtered_std": 0.0501613558046592,
2175
+ "step": 300
2176
+ },
2177
+ {
2178
+ "epoch": 2.85,
2179
+ "eval_winoground_filtered_avg": 0.68,
2180
+ "eval_winoground_filtered_std": 0.046882617226215034,
2181
+ "step": 300
2182
+ },
2183
+ {
2184
+ "epoch": 2.86,
2185
+ "grad_norm": 0.3237263865460515,
2186
+ "learning_rate": 8.128612016458215e-05,
2187
+ "loss": 0.059,
2188
+ "step": 301
2189
+ },
2190
+ {
2191
+ "epoch": 2.87,
2192
+ "grad_norm": 0.2977357286247905,
2193
+ "learning_rate": 8.068017561944499e-05,
2194
+ "loss": 0.0492,
2195
+ "step": 302
2196
+ },
2197
+ {
2198
+ "epoch": 2.88,
2199
+ "grad_norm": 0.29591506818063545,
2200
+ "learning_rate": 8.00749670542462e-05,
2201
+ "loss": 0.052,
2202
+ "step": 303
2203
+ },
2204
+ {
2205
+ "epoch": 2.89,
2206
+ "grad_norm": 0.2789469075911483,
2207
+ "learning_rate": 7.94705175241313e-05,
2208
+ "loss": 0.0455,
2209
+ "step": 304
2210
+ },
2211
+ {
2212
+ "epoch": 2.9,
2213
+ "grad_norm": 0.2997082343784124,
2214
+ "learning_rate": 7.886685005533072e-05,
2215
+ "loss": 0.0498,
2216
+ "step": 305
2217
+ },
2218
+ {
2219
+ "epoch": 2.91,
2220
+ "grad_norm": 0.30157528073661777,
2221
+ "learning_rate": 7.82639876442826e-05,
2222
+ "loss": 0.0567,
2223
+ "step": 306
2224
+ },
2225
+ {
2226
+ "epoch": 2.92,
2227
+ "grad_norm": 0.32803298910194756,
2228
+ "learning_rate": 7.76619532567568e-05,
2229
+ "loss": 0.0622,
2230
+ "step": 307
2231
+ },
2232
+ {
2233
+ "epoch": 2.93,
2234
+ "grad_norm": 0.28556449374878695,
2235
+ "learning_rate": 7.706076982697999e-05,
2236
+ "loss": 0.0489,
2237
+ "step": 308
2238
+ },
2239
+ {
2240
+ "epoch": 2.94,
2241
+ "grad_norm": 0.32287162854623286,
2242
+ "learning_rate": 7.646046025676198e-05,
2243
+ "loss": 0.066,
2244
+ "step": 309
2245
+ },
2246
+ {
2247
+ "epoch": 2.95,
2248
+ "grad_norm": 0.3384064716667544,
2249
+ "learning_rate": 7.586104741462325e-05,
2250
+ "loss": 0.0629,
2251
+ "step": 310
2252
+ },
2253
+ {
2254
+ "epoch": 2.95,
2255
+ "grad_norm": 0.3005901634146794,
2256
+ "learning_rate": 7.526255413492395e-05,
2257
+ "loss": 0.051,
2258
+ "step": 311
2259
+ },
2260
+ {
2261
+ "epoch": 2.96,
2262
+ "grad_norm": 0.2907146546357962,
2263
+ "learning_rate": 7.466500321699383e-05,
2264
+ "loss": 0.0546,
2265
+ "step": 312
2266
+ },
2267
+ {
2268
+ "epoch": 2.97,
2269
+ "grad_norm": 0.30779520364750435,
2270
+ "learning_rate": 7.40684174242638e-05,
2271
+ "loss": 0.058,
2272
+ "step": 313
2273
+ },
2274
+ {
2275
+ "epoch": 2.98,
2276
+ "grad_norm": 0.29074373091101263,
2277
+ "learning_rate": 7.347281948339879e-05,
2278
+ "loss": 0.0463,
2279
+ "step": 314
2280
+ },
2281
+ {
2282
+ "epoch": 2.99,
2283
+ "grad_norm": 0.32970798475445445,
2284
+ "learning_rate": 7.287823208343192e-05,
2285
+ "loss": 0.0589,
2286
+ "step": 315
2287
+ },
2288
+ {
2289
+ "epoch": 3.0,
2290
+ "grad_norm": 0.2798345327195924,
2291
+ "learning_rate": 7.228467787490028e-05,
2292
+ "loss": 0.0438,
2293
+ "step": 316
2294
+ },
2295
+ {
2296
+ "epoch": 3.01,
2297
+ "grad_norm": 0.18326848967204043,
2298
+ "learning_rate": 7.169217946898197e-05,
2299
+ "loss": 0.0225,
2300
+ "step": 317
2301
+ },
2302
+ {
2303
+ "epoch": 3.02,
2304
+ "grad_norm": 0.18022372679373735,
2305
+ "learning_rate": 7.110075943663472e-05,
2306
+ "loss": 0.0161,
2307
+ "step": 318
2308
+ },
2309
+ {
2310
+ "epoch": 3.03,
2311
+ "grad_norm": 0.1633153575928502,
2312
+ "learning_rate": 7.051044030773618e-05,
2313
+ "loss": 0.0153,
2314
+ "step": 319
2315
+ },
2316
+ {
2317
+ "epoch": 3.04,
2318
+ "grad_norm": 0.17802284328446474,
2319
+ "learning_rate": 6.992124457022553e-05,
2320
+ "loss": 0.0176,
2321
+ "step": 320
2322
+ },
2323
+ {
2324
+ "epoch": 3.05,
2325
+ "grad_norm": 0.17359891604740127,
2326
+ "learning_rate": 6.933319466924693e-05,
2327
+ "loss": 0.0162,
2328
+ "step": 321
2329
+ },
2330
+ {
2331
+ "epoch": 3.06,
2332
+ "grad_norm": 0.2202987501804585,
2333
+ "learning_rate": 6.874631300629435e-05,
2334
+ "loss": 0.0162,
2335
+ "step": 322
2336
+ },
2337
+ {
2338
+ "epoch": 3.07,
2339
+ "grad_norm": 0.22277821921264357,
2340
+ "learning_rate": 6.81606219383583e-05,
2341
+ "loss": 0.0187,
2342
+ "step": 323
2343
+ },
2344
+ {
2345
+ "epoch": 3.08,
2346
+ "grad_norm": 0.18724963681022663,
2347
+ "learning_rate": 6.757614377707409e-05,
2348
+ "loss": 0.0153,
2349
+ "step": 324
2350
+ },
2351
+ {
2352
+ "epoch": 3.09,
2353
+ "grad_norm": 0.21995220887794256,
2354
+ "learning_rate": 6.699290078787193e-05,
2355
+ "loss": 0.0188,
2356
+ "step": 325
2357
+ },
2358
+ {
2359
+ "epoch": 3.1,
2360
+ "grad_norm": 0.1967935793635855,
2361
+ "learning_rate": 6.641091518912867e-05,
2362
+ "loss": 0.0156,
2363
+ "step": 326
2364
+ },
2365
+ {
2366
+ "epoch": 3.11,
2367
+ "grad_norm": 0.20661934683104752,
2368
+ "learning_rate": 6.583020915132152e-05,
2369
+ "loss": 0.0158,
2370
+ "step": 327
2371
+ },
2372
+ {
2373
+ "epoch": 3.12,
2374
+ "grad_norm": 0.2422474266231083,
2375
+ "learning_rate": 6.525080479618331e-05,
2376
+ "loss": 0.0177,
2377
+ "step": 328
2378
+ },
2379
+ {
2380
+ "epoch": 3.13,
2381
+ "grad_norm": 0.18354685059507367,
2382
+ "learning_rate": 6.467272419585984e-05,
2383
+ "loss": 0.013,
2384
+ "step": 329
2385
+ },
2386
+ {
2387
+ "epoch": 3.14,
2388
+ "grad_norm": 0.22423754187379397,
2389
+ "learning_rate": 6.40959893720692e-05,
2390
+ "loss": 0.0188,
2391
+ "step": 330
2392
+ },
2393
+ {
2394
+ "epoch": 3.14,
2395
+ "grad_norm": 0.18994008796265852,
2396
+ "learning_rate": 6.352062229526266e-05,
2397
+ "loss": 0.0132,
2398
+ "step": 331
2399
+ },
2400
+ {
2401
+ "epoch": 3.15,
2402
+ "grad_norm": 0.24715301748493912,
2403
+ "learning_rate": 6.294664488378776e-05,
2404
+ "loss": 0.015,
2405
+ "step": 332
2406
+ },
2407
+ {
2408
+ "epoch": 3.16,
2409
+ "grad_norm": 0.17280498203848704,
2410
+ "learning_rate": 6.237407900305335e-05,
2411
+ "loss": 0.0138,
2412
+ "step": 333
2413
+ },
2414
+ {
2415
+ "epoch": 3.17,
2416
+ "grad_norm": 0.21773200395950232,
2417
+ "learning_rate": 6.180294646469679e-05,
2418
+ "loss": 0.0155,
2419
+ "step": 334
2420
+ },
2421
+ {
2422
+ "epoch": 3.18,
2423
+ "grad_norm": 0.2144971485793242,
2424
+ "learning_rate": 6.123326902575282e-05,
2425
+ "loss": 0.0158,
2426
+ "step": 335
2427
+ },
2428
+ {
2429
+ "epoch": 3.19,
2430
+ "grad_norm": 0.18331926033535073,
2431
+ "learning_rate": 6.06650683878248e-05,
2432
+ "loss": 0.013,
2433
+ "step": 336
2434
+ },
2435
+ {
2436
+ "epoch": 3.2,
2437
+ "grad_norm": 0.1788180130126268,
2438
+ "learning_rate": 6.009836619625809e-05,
2439
+ "loss": 0.0133,
2440
+ "step": 337
2441
+ },
2442
+ {
2443
+ "epoch": 3.21,
2444
+ "grad_norm": 0.20337677688861636,
2445
+ "learning_rate": 5.953318403931532e-05,
2446
+ "loss": 0.0129,
2447
+ "step": 338
2448
+ },
2449
+ {
2450
+ "epoch": 3.22,
2451
+ "grad_norm": 0.20853998405220736,
2452
+ "learning_rate": 5.896954344735426e-05,
2453
+ "loss": 0.0176,
2454
+ "step": 339
2455
+ },
2456
+ {
2457
+ "epoch": 3.23,
2458
+ "grad_norm": 0.1919639102705018,
2459
+ "learning_rate": 5.840746589200732e-05,
2460
+ "loss": 0.0144,
2461
+ "step": 340
2462
+ },
2463
+ {
2464
+ "epoch": 3.24,
2465
+ "grad_norm": 0.2134469059873606,
2466
+ "learning_rate": 5.784697278536379e-05,
2467
+ "loss": 0.0138,
2468
+ "step": 341
2469
+ },
2470
+ {
2471
+ "epoch": 3.25,
2472
+ "grad_norm": 0.18435084201272836,
2473
+ "learning_rate": 5.728808547915405e-05,
2474
+ "loss": 0.0135,
2475
+ "step": 342
2476
+ },
2477
+ {
2478
+ "epoch": 3.26,
2479
+ "grad_norm": 0.19554570393158438,
2480
+ "learning_rate": 5.673082526393634e-05,
2481
+ "loss": 0.015,
2482
+ "step": 343
2483
+ },
2484
+ {
2485
+ "epoch": 3.27,
2486
+ "grad_norm": 0.18522448379098544,
2487
+ "learning_rate": 5.617521336828556e-05,
2488
+ "loss": 0.0129,
2489
+ "step": 344
2490
+ },
2491
+ {
2492
+ "epoch": 3.28,
2493
+ "grad_norm": 0.190207008998555,
2494
+ "learning_rate": 5.5621270957984573e-05,
2495
+ "loss": 0.0161,
2496
+ "step": 345
2497
+ },
2498
+ {
2499
+ "epoch": 3.29,
2500
+ "grad_norm": 0.19594053008897275,
2501
+ "learning_rate": 5.506901913521808e-05,
2502
+ "loss": 0.0162,
2503
+ "step": 346
2504
+ },
2505
+ {
2506
+ "epoch": 3.3,
2507
+ "grad_norm": 0.20111569255746164,
2508
+ "learning_rate": 5.451847893776845e-05,
2509
+ "loss": 0.0147,
2510
+ "step": 347
2511
+ },
2512
+ {
2513
+ "epoch": 3.31,
2514
+ "grad_norm": 0.20867562278084897,
2515
+ "learning_rate": 5.396967133821461e-05,
2516
+ "loss": 0.0154,
2517
+ "step": 348
2518
+ },
2519
+ {
2520
+ "epoch": 3.32,
2521
+ "grad_norm": 0.16028325232055693,
2522
+ "learning_rate": 5.342261724313292e-05,
2523
+ "loss": 0.0117,
2524
+ "step": 349
2525
+ },
2526
+ {
2527
+ "epoch": 3.33,
2528
+ "grad_norm": 0.14992620939570764,
2529
+ "learning_rate": 5.28773374923007e-05,
2530
+ "loss": 0.0106,
2531
+ "step": 350
2532
+ },
2533
+ {
2534
+ "epoch": 3.33,
2535
+ "grad_norm": 0.20669460754401175,
2536
+ "learning_rate": 5.2333852857902575e-05,
2537
+ "loss": 0.0161,
2538
+ "step": 351
2539
+ },
2540
+ {
2541
+ "epoch": 3.34,
2542
+ "grad_norm": 0.21934716169620833,
2543
+ "learning_rate": 5.1792184043738855e-05,
2544
+ "loss": 0.0128,
2545
+ "step": 352
2546
+ },
2547
+ {
2548
+ "epoch": 3.35,
2549
+ "grad_norm": 0.18204794157825063,
2550
+ "learning_rate": 5.1252351684437136e-05,
2551
+ "loss": 0.0129,
2552
+ "step": 353
2553
+ },
2554
+ {
2555
+ "epoch": 3.36,
2556
+ "grad_norm": 0.21363608639584963,
2557
+ "learning_rate": 5.071437634466609e-05,
2558
+ "loss": 0.0105,
2559
+ "step": 354
2560
+ },
2561
+ {
2562
+ "epoch": 3.37,
2563
+ "grad_norm": 0.15881770971724649,
2564
+ "learning_rate": 5.0178278518351983e-05,
2565
+ "loss": 0.0096,
2566
+ "step": 355
2567
+ },
2568
+ {
2569
+ "epoch": 3.38,
2570
+ "grad_norm": 0.1980006966366768,
2571
+ "learning_rate": 4.964407862789817e-05,
2572
+ "loss": 0.0119,
2573
+ "step": 356
2574
+ },
2575
+ {
2576
+ "epoch": 3.39,
2577
+ "grad_norm": 0.21004802159627842,
2578
+ "learning_rate": 4.911179702340688e-05,
2579
+ "loss": 0.0119,
2580
+ "step": 357
2581
+ },
2582
+ {
2583
+ "epoch": 3.4,
2584
+ "grad_norm": 0.20419756258161648,
2585
+ "learning_rate": 4.85814539819042e-05,
2586
+ "loss": 0.0145,
2587
+ "step": 358
2588
+ },
2589
+ {
2590
+ "epoch": 3.41,
2591
+ "grad_norm": 0.1565818058300373,
2592
+ "learning_rate": 4.8053069706567554e-05,
2593
+ "loss": 0.0105,
2594
+ "step": 359
2595
+ },
2596
+ {
2597
+ "epoch": 3.42,
2598
+ "grad_norm": 0.19501698471957343,
2599
+ "learning_rate": 4.752666432595596e-05,
2600
+ "loss": 0.0126,
2601
+ "step": 360
2602
+ },
2603
+ {
2604
+ "epoch": 3.43,
2605
+ "grad_norm": 0.20941486180216556,
2606
+ "learning_rate": 4.700225789324343e-05,
2607
+ "loss": 0.0105,
2608
+ "step": 361
2609
+ },
2610
+ {
2611
+ "epoch": 3.44,
2612
+ "grad_norm": 0.18304197382791004,
2613
+ "learning_rate": 4.647987038545496e-05,
2614
+ "loss": 0.011,
2615
+ "step": 362
2616
+ },
2617
+ {
2618
+ "epoch": 3.45,
2619
+ "grad_norm": 0.16720171411001336,
2620
+ "learning_rate": 4.595952170270542e-05,
2621
+ "loss": 0.0112,
2622
+ "step": 363
2623
+ },
2624
+ {
2625
+ "epoch": 3.46,
2626
+ "grad_norm": 0.22478251297433013,
2627
+ "learning_rate": 4.544123166744172e-05,
2628
+ "loss": 0.0118,
2629
+ "step": 364
2630
+ },
2631
+ {
2632
+ "epoch": 3.47,
2633
+ "grad_norm": 0.1598572948562243,
2634
+ "learning_rate": 4.492502002368738e-05,
2635
+ "loss": 0.0107,
2636
+ "step": 365
2637
+ },
2638
+ {
2639
+ "epoch": 3.48,
2640
+ "grad_norm": 0.22373563049772874,
2641
+ "learning_rate": 4.4410906436290566e-05,
2642
+ "loss": 0.0104,
2643
+ "step": 366
2644
+ },
2645
+ {
2646
+ "epoch": 3.49,
2647
+ "grad_norm": 0.16802667132434534,
2648
+ "learning_rate": 4.38989104901751e-05,
2649
+ "loss": 0.0114,
2650
+ "step": 367
2651
+ },
2652
+ {
2653
+ "epoch": 3.5,
2654
+ "grad_norm": 0.24550738449688075,
2655
+ "learning_rate": 4.3389051689594e-05,
2656
+ "loss": 0.0121,
2657
+ "step": 368
2658
+ },
2659
+ {
2660
+ "epoch": 3.51,
2661
+ "grad_norm": 0.1660066244443363,
2662
+ "learning_rate": 4.288134945738684e-05,
2663
+ "loss": 0.0099,
2664
+ "step": 369
2665
+ },
2666
+ {
2667
+ "epoch": 3.52,
2668
+ "grad_norm": 0.1783889244909253,
2669
+ "learning_rate": 4.237582313423962e-05,
2670
+ "loss": 0.0094,
2671
+ "step": 370
2672
+ },
2673
+ {
2674
+ "epoch": 3.52,
2675
+ "grad_norm": 0.17141038466777303,
2676
+ "learning_rate": 4.187249197794813e-05,
2677
+ "loss": 0.0095,
2678
+ "step": 371
2679
+ },
2680
+ {
2681
+ "epoch": 3.53,
2682
+ "grad_norm": 0.1893721805088239,
2683
+ "learning_rate": 4.137137516268426e-05,
2684
+ "loss": 0.013,
2685
+ "step": 372
2686
+ },
2687
+ {
2688
+ "epoch": 3.54,
2689
+ "grad_norm": 0.16935951673752134,
2690
+ "learning_rate": 4.0872491778265535e-05,
2691
+ "loss": 0.0091,
2692
+ "step": 373
2693
+ },
2694
+ {
2695
+ "epoch": 3.55,
2696
+ "grad_norm": 0.13309068523326859,
2697
+ "learning_rate": 4.037586082942805e-05,
2698
+ "loss": 0.0091,
2699
+ "step": 374
2700
+ },
2701
+ {
2702
+ "epoch": 3.56,
2703
+ "grad_norm": 0.18791651271841342,
2704
+ "learning_rate": 3.988150123510224e-05,
2705
+ "loss": 0.0121,
2706
+ "step": 375
2707
+ },
2708
+ {
2709
+ "epoch": 3.57,
2710
+ "grad_norm": 0.1559825545952661,
2711
+ "learning_rate": 3.938943182769246e-05,
2712
+ "loss": 0.0102,
2713
+ "step": 376
2714
+ },
2715
+ {
2716
+ "epoch": 3.58,
2717
+ "grad_norm": 0.2261919531211638,
2718
+ "learning_rate": 3.88996713523594e-05,
2719
+ "loss": 0.0127,
2720
+ "step": 377
2721
+ },
2722
+ {
2723
+ "epoch": 3.59,
2724
+ "grad_norm": 0.20792420146527377,
2725
+ "learning_rate": 3.841223846630599e-05,
2726
+ "loss": 0.013,
2727
+ "step": 378
2728
+ },
2729
+ {
2730
+ "epoch": 3.6,
2731
+ "grad_norm": 0.16486082885129608,
2732
+ "learning_rate": 3.792715173806669e-05,
2733
+ "loss": 0.0105,
2734
+ "step": 379
2735
+ },
2736
+ {
2737
+ "epoch": 3.61,
2738
+ "grad_norm": 0.1549020176177142,
2739
+ "learning_rate": 3.74444296468002e-05,
2740
+ "loss": 0.0098,
2741
+ "step": 380
2742
+ },
2743
+ {
2744
+ "epoch": 3.62,
2745
+ "grad_norm": 0.17250200199106172,
2746
+ "learning_rate": 3.696409058158544e-05,
2747
+ "loss": 0.0109,
2748
+ "step": 381
2749
+ },
2750
+ {
2751
+ "epoch": 3.63,
2752
+ "grad_norm": 0.1415293330470341,
2753
+ "learning_rate": 3.6486152840721046e-05,
2754
+ "loss": 0.0084,
2755
+ "step": 382
2756
+ },
2757
+ {
2758
+ "epoch": 3.64,
2759
+ "grad_norm": 0.14461810975420877,
2760
+ "learning_rate": 3.6010634631028226e-05,
2761
+ "loss": 0.0084,
2762
+ "step": 383
2763
+ },
2764
+ {
2765
+ "epoch": 3.65,
2766
+ "grad_norm": 0.1557012557289619,
2767
+ "learning_rate": 3.553755406715724e-05,
2768
+ "loss": 0.0089,
2769
+ "step": 384
2770
+ },
2771
+ {
2772
+ "epoch": 3.66,
2773
+ "grad_norm": 0.15752891661687976,
2774
+ "learning_rate": 3.506692917089751e-05,
2775
+ "loss": 0.0109,
2776
+ "step": 385
2777
+ },
2778
+ {
2779
+ "epoch": 3.67,
2780
+ "grad_norm": 0.1694876915505117,
2781
+ "learning_rate": 3.459877787049072e-05,
2782
+ "loss": 0.009,
2783
+ "step": 386
2784
+ },
2785
+ {
2786
+ "epoch": 3.68,
2787
+ "grad_norm": 0.1582663784415179,
2788
+ "learning_rate": 3.413311799994808e-05,
2789
+ "loss": 0.0095,
2790
+ "step": 387
2791
+ },
2792
+ {
2793
+ "epoch": 3.69,
2794
+ "grad_norm": 0.13693031068741818,
2795
+ "learning_rate": 3.366996729837102e-05,
2796
+ "loss": 0.0092,
2797
+ "step": 388
2798
+ },
2799
+ {
2800
+ "epoch": 3.7,
2801
+ "grad_norm": 0.14543112940410688,
2802
+ "learning_rate": 3.320934340927513e-05,
2803
+ "loss": 0.0108,
2804
+ "step": 389
2805
+ },
2806
+ {
2807
+ "epoch": 3.71,
2808
+ "grad_norm": 0.19389482832864774,
2809
+ "learning_rate": 3.275126387991847e-05,
2810
+ "loss": 0.0098,
2811
+ "step": 390
2812
+ },
2813
+ {
2814
+ "epoch": 3.71,
2815
+ "grad_norm": 0.15797165592004603,
2816
+ "learning_rate": 3.229574616063268e-05,
2817
+ "loss": 0.0076,
2818
+ "step": 391
2819
+ },
2820
+ {
2821
+ "epoch": 3.72,
2822
+ "grad_norm": 0.21281942854700847,
2823
+ "learning_rate": 3.184280760415843e-05,
2824
+ "loss": 0.0142,
2825
+ "step": 392
2826
+ },
2827
+ {
2828
+ "epoch": 3.73,
2829
+ "grad_norm": 0.12498130411986656,
2830
+ "learning_rate": 3.1392465464984455e-05,
2831
+ "loss": 0.0081,
2832
+ "step": 393
2833
+ },
2834
+ {
2835
+ "epoch": 3.74,
2836
+ "grad_norm": 0.1152125429659436,
2837
+ "learning_rate": 3.094473689869002e-05,
2838
+ "loss": 0.0058,
2839
+ "step": 394
2840
+ },
2841
+ {
2842
+ "epoch": 3.75,
2843
+ "grad_norm": 0.1567733530080216,
2844
+ "learning_rate": 3.0499638961291623e-05,
2845
+ "loss": 0.011,
2846
+ "step": 395
2847
+ },
2848
+ {
2849
+ "epoch": 3.76,
2850
+ "grad_norm": 0.14500898906990572,
2851
+ "learning_rate": 3.0057188608593147e-05,
2852
+ "loss": 0.0085,
2853
+ "step": 396
2854
+ },
2855
+ {
2856
+ "epoch": 3.77,
2857
+ "grad_norm": 0.16163974543952728,
2858
+ "learning_rate": 2.9617402695539808e-05,
2859
+ "loss": 0.013,
2860
+ "step": 397
2861
+ },
2862
+ {
2863
+ "epoch": 3.78,
2864
+ "grad_norm": 0.13868168811451842,
2865
+ "learning_rate": 2.9180297975576364e-05,
2866
+ "loss": 0.0084,
2867
+ "step": 398
2868
+ },
2869
+ {
2870
+ "epoch": 3.79,
2871
+ "grad_norm": 0.17847032901949134,
2872
+ "learning_rate": 2.8745891100008683e-05,
2873
+ "loss": 0.0121,
2874
+ "step": 399
2875
+ },
2876
+ {
2877
+ "epoch": 3.8,
2878
+ "grad_norm": 0.17527442252411723,
2879
+ "learning_rate": 2.83141986173694e-05,
2880
+ "loss": 0.0084,
2881
+ "step": 400
2882
+ },
2883
+ {
2884
+ "epoch": 3.8,
2885
+ "eval_blimp_filtered_avg": 0.7053731343283582,
2886
+ "eval_blimp_filtered_std": 0.005043001462199571,
2887
+ "step": 400
2888
+ },
2889
+ {
2890
+ "epoch": 3.8,
2891
+ "eval_blimp_supplement_avg": 0.8125,
2892
+ "eval_blimp_supplement_std": 0.01736311122127593,
2893
+ "step": 400
2894
+ },
2895
+ {
2896
+ "epoch": 3.8,
2897
+ "eval_vqa_filtered_avg": 0.52,
2898
+ "eval_vqa_filtered_std": 0.05021167315686779,
2899
+ "step": 400
2900
+ },
2901
+ {
2902
+ "epoch": 3.8,
2903
+ "eval_winoground_filtered_avg": 0.64,
2904
+ "eval_winoground_filtered_std": 0.048241815132442176,
2905
+ "step": 400
2906
+ },
2907
+ {
2908
+ "epoch": 3.81,
2909
+ "grad_norm": 0.14598157841040266,
2910
+ "learning_rate": 2.788523697278773e-05,
2911
+ "loss": 0.0093,
2912
+ "step": 401
2913
+ },
2914
+ {
2915
+ "epoch": 3.82,
2916
+ "grad_norm": 0.20150542514971506,
2917
+ "learning_rate": 2.7459022507362686e-05,
2918
+ "loss": 0.0122,
2919
+ "step": 402
2920
+ },
2921
+ {
2922
+ "epoch": 3.83,
2923
+ "grad_norm": 0.18255123614923588,
2924
+ "learning_rate": 2.7035571457540865e-05,
2925
+ "loss": 0.0103,
2926
+ "step": 403
2927
+ },
2928
+ {
2929
+ "epoch": 3.84,
2930
+ "grad_norm": 0.16704045474943452,
2931
+ "learning_rate": 2.6614899954497795e-05,
2932
+ "loss": 0.0114,
2933
+ "step": 404
2934
+ },
2935
+ {
2936
+ "epoch": 3.85,
2937
+ "grad_norm": 0.14683721625679494,
2938
+ "learning_rate": 2.619702402352332e-05,
2939
+ "loss": 0.01,
2940
+ "step": 405
2941
+ },
2942
+ {
2943
+ "epoch": 3.86,
2944
+ "grad_norm": 0.18144743721435366,
2945
+ "learning_rate": 2.5781959583411374e-05,
2946
+ "loss": 0.0129,
2947
+ "step": 406
2948
+ },
2949
+ {
2950
+ "epoch": 3.87,
2951
+ "grad_norm": 0.19646570441433073,
2952
+ "learning_rate": 2.5369722445853304e-05,
2953
+ "loss": 0.0143,
2954
+ "step": 407
2955
+ },
2956
+ {
2957
+ "epoch": 3.88,
2958
+ "grad_norm": 0.1668088181727681,
2959
+ "learning_rate": 2.4960328314835745e-05,
2960
+ "loss": 0.0089,
2961
+ "step": 408
2962
+ },
2963
+ {
2964
+ "epoch": 3.89,
2965
+ "grad_norm": 0.16111476451284476,
2966
+ "learning_rate": 2.4553792786042262e-05,
2967
+ "loss": 0.0091,
2968
+ "step": 409
2969
+ },
2970
+ {
2971
+ "epoch": 3.9,
2972
+ "grad_norm": 0.17729690845562673,
2973
+ "learning_rate": 2.4150131346259197e-05,
2974
+ "loss": 0.0103,
2975
+ "step": 410
2976
+ },
2977
+ {
2978
+ "epoch": 3.9,
2979
+ "grad_norm": 0.15155895346947004,
2980
+ "learning_rate": 2.3749359372785883e-05,
2981
+ "loss": 0.0096,
2982
+ "step": 411
2983
+ },
2984
+ {
2985
+ "epoch": 3.91,
2986
+ "grad_norm": 0.15041370885333255,
2987
+ "learning_rate": 2.3351492132848664e-05,
2988
+ "loss": 0.0085,
2989
+ "step": 412
2990
+ },
2991
+ {
2992
+ "epoch": 3.92,
2993
+ "grad_norm": 0.12197907148956355,
2994
+ "learning_rate": 2.2956544783019418e-05,
2995
+ "loss": 0.0067,
2996
+ "step": 413
2997
+ },
2998
+ {
2999
+ "epoch": 3.93,
3000
+ "grad_norm": 0.1788434056496877,
3001
+ "learning_rate": 2.2564532368638146e-05,
3002
+ "loss": 0.01,
3003
+ "step": 414
3004
+ },
3005
+ {
3006
+ "epoch": 3.94,
3007
+ "grad_norm": 0.19269466130772045,
3008
+ "learning_rate": 2.2175469823239768e-05,
3009
+ "loss": 0.0117,
3010
+ "step": 415
3011
+ },
3012
+ {
3013
+ "epoch": 3.95,
3014
+ "grad_norm": 0.15780826445252463,
3015
+ "learning_rate": 2.1789371967985338e-05,
3016
+ "loss": 0.0101,
3017
+ "step": 416
3018
+ },
3019
+ {
3020
+ "epoch": 3.96,
3021
+ "grad_norm": 0.19229144408434373,
3022
+ "learning_rate": 2.140625351109733e-05,
3023
+ "loss": 0.0084,
3024
+ "step": 417
3025
+ },
3026
+ {
3027
+ "epoch": 3.97,
3028
+ "grad_norm": 0.15474486143047034,
3029
+ "learning_rate": 2.1026129047299436e-05,
3030
+ "loss": 0.0067,
3031
+ "step": 418
3032
+ },
3033
+ {
3034
+ "epoch": 3.98,
3035
+ "grad_norm": 0.15864166155594778,
3036
+ "learning_rate": 2.0649013057260546e-05,
3037
+ "loss": 0.0098,
3038
+ "step": 419
3039
+ },
3040
+ {
3041
+ "epoch": 3.99,
3042
+ "grad_norm": 0.22515244613844015,
3043
+ "learning_rate": 2.0274919907043033e-05,
3044
+ "loss": 0.0094,
3045
+ "step": 420
3046
+ },
3047
+ {
3048
+ "epoch": 4.0,
3049
+ "grad_norm": 0.18684872878382638,
3050
+ "learning_rate": 1.9903863847555648e-05,
3051
+ "loss": 0.0127,
3052
+ "step": 421
3053
+ },
3054
+ {
3055
+ "epoch": 4.01,
3056
+ "grad_norm": 0.06270483785922072,
3057
+ "learning_rate": 1.9535859014010526e-05,
3058
+ "loss": 0.0028,
3059
+ "step": 422
3060
+ },
3061
+ {
3062
+ "epoch": 4.02,
3063
+ "grad_norm": 0.09948637260912774,
3064
+ "learning_rate": 1.917091942538469e-05,
3065
+ "loss": 0.0037,
3066
+ "step": 423
3067
+ },
3068
+ {
3069
+ "epoch": 4.03,
3070
+ "grad_norm": 0.07530065845248647,
3071
+ "learning_rate": 1.880905898388612e-05,
3072
+ "loss": 0.0039,
3073
+ "step": 424
3074
+ },
3075
+ {
3076
+ "epoch": 4.04,
3077
+ "grad_norm": 0.054461890750773165,
3078
+ "learning_rate": 1.8450291474423998e-05,
3079
+ "loss": 0.0025,
3080
+ "step": 425
3081
+ },
3082
+ {
3083
+ "epoch": 4.05,
3084
+ "grad_norm": 0.08002877578075594,
3085
+ "learning_rate": 1.8094630564083736e-05,
3086
+ "loss": 0.0035,
3087
+ "step": 426
3088
+ },
3089
+ {
3090
+ "epoch": 4.06,
3091
+ "grad_norm": 0.05746226463965698,
3092
+ "learning_rate": 1.7742089801606276e-05,
3093
+ "loss": 0.0025,
3094
+ "step": 427
3095
+ },
3096
+ {
3097
+ "epoch": 4.07,
3098
+ "grad_norm": 0.0633358139605444,
3099
+ "learning_rate": 1.7392682616871837e-05,
3100
+ "loss": 0.0027,
3101
+ "step": 428
3102
+ },
3103
+ {
3104
+ "epoch": 4.08,
3105
+ "grad_norm": 0.06509683268742919,
3106
+ "learning_rate": 1.7046422320388556e-05,
3107
+ "loss": 0.0027,
3108
+ "step": 429
3109
+ },
3110
+ {
3111
+ "epoch": 4.09,
3112
+ "grad_norm": 0.054571154616853274,
3113
+ "learning_rate": 1.6703322102785168e-05,
3114
+ "loss": 0.0026,
3115
+ "step": 430
3116
+ },
3117
+ {
3118
+ "epoch": 4.1,
3119
+ "grad_norm": 0.06888564779650448,
3120
+ "learning_rate": 1.6363395034308703e-05,
3121
+ "loss": 0.0027,
3122
+ "step": 431
3123
+ },
3124
+ {
3125
+ "epoch": 4.1,
3126
+ "grad_norm": 0.05307117129834359,
3127
+ "learning_rate": 1.6026654064326553e-05,
3128
+ "loss": 0.0025,
3129
+ "step": 432
3130
+ },
3131
+ {
3132
+ "epoch": 4.11,
3133
+ "grad_norm": 0.06598879328529111,
3134
+ "learning_rate": 1.5693112020833013e-05,
3135
+ "loss": 0.003,
3136
+ "step": 433
3137
+ },
3138
+ {
3139
+ "epoch": 4.12,
3140
+ "grad_norm": 0.054752236275106794,
3141
+ "learning_rate": 1.5362781609960852e-05,
3142
+ "loss": 0.0025,
3143
+ "step": 434
3144
+ },
3145
+ {
3146
+ "epoch": 4.13,
3147
+ "grad_norm": 0.07106963888787232,
3148
+ "learning_rate": 1.5035675415497063e-05,
3149
+ "loss": 0.0031,
3150
+ "step": 435
3151
+ },
3152
+ {
3153
+ "epoch": 4.14,
3154
+ "grad_norm": 0.052548572683446884,
3155
+ "learning_rate": 1.471180589840363e-05,
3156
+ "loss": 0.0025,
3157
+ "step": 436
3158
+ },
3159
+ {
3160
+ "epoch": 4.15,
3161
+ "grad_norm": 0.08828036910254508,
3162
+ "learning_rate": 1.4391185396342789e-05,
3163
+ "loss": 0.0038,
3164
+ "step": 437
3165
+ },
3166
+ {
3167
+ "epoch": 4.16,
3168
+ "grad_norm": 0.09463459893212552,
3169
+ "learning_rate": 1.4073826123206946e-05,
3170
+ "loss": 0.0038,
3171
+ "step": 438
3172
+ },
3173
+ {
3174
+ "epoch": 4.17,
3175
+ "grad_norm": 0.08002928457971342,
3176
+ "learning_rate": 1.375974016865359e-05,
3177
+ "loss": 0.0031,
3178
+ "step": 439
3179
+ },
3180
+ {
3181
+ "epoch": 4.18,
3182
+ "grad_norm": 0.07631532690730236,
3183
+ "learning_rate": 1.3448939497644509e-05,
3184
+ "loss": 0.0031,
3185
+ "step": 440
3186
+ },
3187
+ {
3188
+ "epoch": 4.19,
3189
+ "grad_norm": 0.04831761603516682,
3190
+ "learning_rate": 1.3141435949990188e-05,
3191
+ "loss": 0.0027,
3192
+ "step": 441
3193
+ },
3194
+ {
3195
+ "epoch": 4.2,
3196
+ "grad_norm": 0.07344003153336562,
3197
+ "learning_rate": 1.2837241239898667e-05,
3198
+ "loss": 0.0032,
3199
+ "step": 442
3200
+ },
3201
+ {
3202
+ "epoch": 4.21,
3203
+ "grad_norm": 0.08305075630986966,
3204
+ "learning_rate": 1.253636695552931e-05,
3205
+ "loss": 0.003,
3206
+ "step": 443
3207
+ },
3208
+ {
3209
+ "epoch": 4.22,
3210
+ "grad_norm": 0.1034575433958594,
3211
+ "learning_rate": 1.2238824558551365e-05,
3212
+ "loss": 0.0039,
3213
+ "step": 444
3214
+ },
3215
+ {
3216
+ "epoch": 4.23,
3217
+ "grad_norm": 0.06655324788558148,
3218
+ "learning_rate": 1.1944625383707374e-05,
3219
+ "loss": 0.003,
3220
+ "step": 445
3221
+ },
3222
+ {
3223
+ "epoch": 4.24,
3224
+ "grad_norm": 0.0790599253839735,
3225
+ "learning_rate": 1.1653780638381328e-05,
3226
+ "loss": 0.0029,
3227
+ "step": 446
3228
+ },
3229
+ {
3230
+ "epoch": 4.25,
3231
+ "grad_norm": 0.04198685628145689,
3232
+ "learning_rate": 1.1366301402171775e-05,
3233
+ "loss": 0.0017,
3234
+ "step": 447
3235
+ },
3236
+ {
3237
+ "epoch": 4.26,
3238
+ "grad_norm": 0.06439353264983554,
3239
+ "learning_rate": 1.1082198626469686e-05,
3240
+ "loss": 0.0024,
3241
+ "step": 448
3242
+ },
3243
+ {
3244
+ "epoch": 4.27,
3245
+ "grad_norm": 0.07762450043477247,
3246
+ "learning_rate": 1.0801483134041268e-05,
3247
+ "loss": 0.0027,
3248
+ "step": 449
3249
+ },
3250
+ {
3251
+ "epoch": 4.28,
3252
+ "grad_norm": 0.07856883953783565,
3253
+ "learning_rate": 1.0524165618615845e-05,
3254
+ "loss": 0.0033,
3255
+ "step": 450
3256
+ },
3257
+ {
3258
+ "epoch": 4.29,
3259
+ "grad_norm": 0.07929308057852809,
3260
+ "learning_rate": 1.0250256644478195e-05,
3261
+ "loss": 0.003,
3262
+ "step": 451
3263
+ },
3264
+ {
3265
+ "epoch": 4.29,
3266
+ "grad_norm": 0.0587512154822952,
3267
+ "learning_rate": 9.979766646066368e-06,
3268
+ "loss": 0.0027,
3269
+ "step": 452
3270
+ },
3271
+ {
3272
+ "epoch": 4.3,
3273
+ "grad_norm": 0.06109551507247056,
3274
+ "learning_rate": 9.71270592757404e-06,
3275
+ "loss": 0.0032,
3276
+ "step": 453
3277
+ },
3278
+ {
3279
+ "epoch": 4.31,
3280
+ "grad_norm": 0.05909029031199419,
3281
+ "learning_rate": 9.449084662557982e-06,
3282
+ "loss": 0.0026,
3283
+ "step": 454
3284
+ },
3285
+ {
3286
+ "epoch": 4.32,
3287
+ "grad_norm": 0.0814055458144323,
3288
+ "learning_rate": 9.188912893550695e-06,
3289
+ "loss": 0.0026,
3290
+ "step": 455
3291
+ },
3292
+ {
3293
+ "epoch": 4.33,
3294
+ "grad_norm": 0.07735385332942207,
3295
+ "learning_rate": 8.932200531677537e-06,
3296
+ "loss": 0.0028,
3297
+ "step": 456
3298
+ },
3299
+ {
3300
+ "epoch": 4.34,
3301
+ "grad_norm": 0.08519595591969155,
3302
+ "learning_rate": 8.678957356279371e-06,
3303
+ "loss": 0.0024,
3304
+ "step": 457
3305
+ },
3306
+ {
3307
+ "epoch": 4.35,
3308
+ "grad_norm": 0.055031384326470804,
3309
+ "learning_rate": 8.429193014540015e-06,
3310
+ "loss": 0.0026,
3311
+ "step": 458
3312
+ },
3313
+ {
3314
+ "epoch": 4.36,
3315
+ "grad_norm": 0.05387324401647046,
3316
+ "learning_rate": 8.182917021118663e-06,
3317
+ "loss": 0.0026,
3318
+ "step": 459
3319
+ },
3320
+ {
3321
+ "epoch": 4.37,
3322
+ "grad_norm": 0.07168879976269556,
3323
+ "learning_rate": 7.940138757787507e-06,
3324
+ "loss": 0.0032,
3325
+ "step": 460
3326
+ },
3327
+ {
3328
+ "epoch": 4.38,
3329
+ "grad_norm": 0.07661756681904786,
3330
+ "learning_rate": 7.700867473074224e-06,
3331
+ "loss": 0.0035,
3332
+ "step": 461
3333
+ },
3334
+ {
3335
+ "epoch": 4.39,
3336
+ "grad_norm": 0.09486930411075328,
3337
+ "learning_rate": 7.46511228190977e-06,
3338
+ "loss": 0.0049,
3339
+ "step": 462
3340
+ },
3341
+ {
3342
+ "epoch": 4.4,
3343
+ "grad_norm": 0.0679530025111762,
3344
+ "learning_rate": 7.232882165281141e-06,
3345
+ "loss": 0.0026,
3346
+ "step": 463
3347
+ },
3348
+ {
3349
+ "epoch": 4.41,
3350
+ "grad_norm": 0.06514922044267304,
3351
+ "learning_rate": 7.004185969889187e-06,
3352
+ "loss": 0.0027,
3353
+ "step": 464
3354
+ },
3355
+ {
3356
+ "epoch": 4.42,
3357
+ "grad_norm": 0.06706026131022384,
3358
+ "learning_rate": 6.7790324078116364e-06,
3359
+ "loss": 0.0027,
3360
+ "step": 465
3361
+ },
3362
+ {
3363
+ "epoch": 4.43,
3364
+ "grad_norm": 0.07709046890424658,
3365
+ "learning_rate": 6.557430056171221e-06,
3366
+ "loss": 0.0033,
3367
+ "step": 466
3368
+ },
3369
+ {
3370
+ "epoch": 4.44,
3371
+ "grad_norm": 0.051443041020356704,
3372
+ "learning_rate": 6.339387356808912e-06,
3373
+ "loss": 0.0026,
3374
+ "step": 467
3375
+ },
3376
+ {
3377
+ "epoch": 4.45,
3378
+ "grad_norm": 0.060318722923432995,
3379
+ "learning_rate": 6.124912615962341e-06,
3380
+ "loss": 0.0028,
3381
+ "step": 468
3382
+ },
3383
+ {
3384
+ "epoch": 4.46,
3385
+ "grad_norm": 0.062212012735137795,
3386
+ "learning_rate": 5.9140140039494084e-06,
3387
+ "loss": 0.0025,
3388
+ "step": 469
3389
+ },
3390
+ {
3391
+ "epoch": 4.47,
3392
+ "grad_norm": 0.06556299474776538,
3393
+ "learning_rate": 5.706699554856964e-06,
3394
+ "loss": 0.0023,
3395
+ "step": 470
3396
+ },
3397
+ {
3398
+ "epoch": 4.48,
3399
+ "grad_norm": 0.08649267044276539,
3400
+ "learning_rate": 5.502977166234857e-06,
3401
+ "loss": 0.0035,
3402
+ "step": 471
3403
+ },
3404
+ {
3405
+ "epoch": 4.48,
3406
+ "grad_norm": 0.08526822145924882,
3407
+ "learning_rate": 5.302854598794937e-06,
3408
+ "loss": 0.003,
3409
+ "step": 472
3410
+ },
3411
+ {
3412
+ "epoch": 4.49,
3413
+ "grad_norm": 0.04133711118453636,
3414
+ "learning_rate": 5.106339476115596e-06,
3415
+ "loss": 0.0019,
3416
+ "step": 473
3417
+ },
3418
+ {
3419
+ "epoch": 4.5,
3420
+ "grad_norm": 0.05708577094578342,
3421
+ "learning_rate": 4.913439284351207e-06,
3422
+ "loss": 0.0026,
3423
+ "step": 474
3424
+ },
3425
+ {
3426
+ "epoch": 4.51,
3427
+ "grad_norm": 0.07367912633186298,
3428
+ "learning_rate": 4.724161371946978e-06,
3429
+ "loss": 0.0029,
3430
+ "step": 475
3431
+ },
3432
+ {
3433
+ "epoch": 4.52,
3434
+ "grad_norm": 0.08135320771271103,
3435
+ "learning_rate": 4.538512949359075e-06,
3436
+ "loss": 0.0027,
3437
+ "step": 476
3438
+ },
3439
+ {
3440
+ "epoch": 4.53,
3441
+ "grad_norm": 0.0849858165893086,
3442
+ "learning_rate": 4.356501088779841e-06,
3443
+ "loss": 0.0027,
3444
+ "step": 477
3445
+ },
3446
+ {
3447
+ "epoch": 4.54,
3448
+ "grad_norm": 0.05260609110954984,
3449
+ "learning_rate": 4.178132723868477e-06,
3450
+ "loss": 0.0019,
3451
+ "step": 478
3452
+ },
3453
+ {
3454
+ "epoch": 4.55,
3455
+ "grad_norm": 0.0795477617292828,
3456
+ "learning_rate": 4.003414649486892e-06,
3457
+ "loss": 0.0032,
3458
+ "step": 479
3459
+ },
3460
+ {
3461
+ "epoch": 4.56,
3462
+ "grad_norm": 0.08161922179718771,
3463
+ "learning_rate": 3.832353521440768e-06,
3464
+ "loss": 0.0026,
3465
+ "step": 480
3466
+ },
3467
+ {
3468
+ "epoch": 4.57,
3469
+ "grad_norm": 0.06830643544893618,
3470
+ "learning_rate": 3.6649558562261375e-06,
3471
+ "loss": 0.0032,
3472
+ "step": 481
3473
+ },
3474
+ {
3475
+ "epoch": 4.58,
3476
+ "grad_norm": 0.08641205617098656,
3477
+ "learning_rate": 3.501228030781034e-06,
3478
+ "loss": 0.0028,
3479
+ "step": 482
3480
+ },
3481
+ {
3482
+ "epoch": 4.59,
3483
+ "grad_norm": 0.04921706287498077,
3484
+ "learning_rate": 3.341176282242653e-06,
3485
+ "loss": 0.0021,
3486
+ "step": 483
3487
+ },
3488
+ {
3489
+ "epoch": 4.6,
3490
+ "grad_norm": 0.05901589705081983,
3491
+ "learning_rate": 3.184806707709698e-06,
3492
+ "loss": 0.0027,
3493
+ "step": 484
3494
+ },
3495
+ {
3496
+ "epoch": 4.61,
3497
+ "grad_norm": 0.08562934355546689,
3498
+ "learning_rate": 3.0321252640100885e-06,
3499
+ "loss": 0.0035,
3500
+ "step": 485
3501
+ },
3502
+ {
3503
+ "epoch": 4.62,
3504
+ "grad_norm": 0.056139936545776606,
3505
+ "learning_rate": 2.88313776747412e-06,
3506
+ "loss": 0.0027,
3507
+ "step": 486
3508
+ },
3509
+ {
3510
+ "epoch": 4.63,
3511
+ "grad_norm": 0.06574452787357139,
3512
+ "learning_rate": 2.7378498937128404e-06,
3513
+ "loss": 0.0031,
3514
+ "step": 487
3515
+ },
3516
+ {
3517
+ "epoch": 4.64,
3518
+ "grad_norm": 0.06295208396607756,
3519
+ "learning_rate": 2.5962671774018234e-06,
3520
+ "loss": 0.0029,
3521
+ "step": 488
3522
+ },
3523
+ {
3524
+ "epoch": 4.65,
3525
+ "grad_norm": 0.06348707610420529,
3526
+ "learning_rate": 2.458395012070369e-06,
3527
+ "loss": 0.0027,
3528
+ "step": 489
3529
+ },
3530
+ {
3531
+ "epoch": 4.66,
3532
+ "grad_norm": 0.06438459591992919,
3533
+ "learning_rate": 2.3242386498960266e-06,
3534
+ "loss": 0.003,
3535
+ "step": 490
3536
+ },
3537
+ {
3538
+ "epoch": 4.67,
3539
+ "grad_norm": 0.0936033257355208,
3540
+ "learning_rate": 2.1938032015044964e-06,
3541
+ "loss": 0.0053,
3542
+ "step": 491
3543
+ },
3544
+ {
3545
+ "epoch": 4.67,
3546
+ "grad_norm": 0.0712704009642112,
3547
+ "learning_rate": 2.067093635774975e-06,
3548
+ "loss": 0.0033,
3549
+ "step": 492
3550
+ },
3551
+ {
3552
+ "epoch": 4.68,
3553
+ "grad_norm": 0.05278839840964536,
3554
+ "learning_rate": 1.9441147796508407e-06,
3555
+ "loss": 0.0025,
3556
+ "step": 493
3557
+ },
3558
+ {
3559
+ "epoch": 4.69,
3560
+ "grad_norm": 0.05158800004403027,
3561
+ "learning_rate": 1.8248713179557786e-06,
3562
+ "loss": 0.002,
3563
+ "step": 494
3564
+ },
3565
+ {
3566
+ "epoch": 4.7,
3567
+ "grad_norm": 0.06302315225352234,
3568
+ "learning_rate": 1.7093677932153218e-06,
3569
+ "loss": 0.002,
3570
+ "step": 495
3571
+ },
3572
+ {
3573
+ "epoch": 4.71,
3574
+ "grad_norm": 0.09014451602286425,
3575
+ "learning_rate": 1.5976086054838025e-06,
3576
+ "loss": 0.0031,
3577
+ "step": 496
3578
+ },
3579
+ {
3580
+ "epoch": 4.72,
3581
+ "grad_norm": 0.08249201483869177,
3582
+ "learning_rate": 1.4895980121767627e-06,
3583
+ "loss": 0.0029,
3584
+ "step": 497
3585
+ },
3586
+ {
3587
+ "epoch": 4.73,
3588
+ "grad_norm": 0.07887788932672342,
3589
+ "learning_rate": 1.3853401279086854e-06,
3590
+ "loss": 0.0028,
3591
+ "step": 498
3592
+ },
3593
+ {
3594
+ "epoch": 4.74,
3595
+ "grad_norm": 0.09271365227044996,
3596
+ "learning_rate": 1.2848389243363512e-06,
3597
+ "loss": 0.0026,
3598
+ "step": 499
3599
+ },
3600
+ {
3601
+ "epoch": 4.75,
3602
+ "grad_norm": 0.05191622392926365,
3603
+ "learning_rate": 1.1880982300074838e-06,
3604
+ "loss": 0.0027,
3605
+ "step": 500
3606
+ },
3607
+ {
3608
+ "epoch": 4.75,
3609
+ "eval_blimp_filtered_avg": 0.7105970149253731,
3610
+ "eval_blimp_filtered_std": 0.005015059082306442,
3611
+ "step": 500
3612
+ },
3613
+ {
3614
+ "epoch": 4.75,
3615
+ "eval_blimp_supplement_avg": 0.8146551724137931,
3616
+ "eval_blimp_supplement_std": 0.01739418193453382,
3617
+ "step": 500
3618
+ },
3619
+ {
3620
+ "epoch": 4.75,
3621
+ "eval_vqa_filtered_avg": 0.52,
3622
+ "eval_vqa_filtered_std": 0.05021167315686779,
3623
+ "step": 500
3624
+ },
3625
+ {
3626
+ "epoch": 4.75,
3627
+ "eval_winoground_filtered_avg": 0.64,
3628
+ "eval_winoground_filtered_std": 0.048241815132442176,
3629
+ "step": 500
3630
+ },
3631
+ {
3632
+ "epoch": 4.76,
3633
+ "grad_norm": 0.06004512680198857,
3634
+ "learning_rate": 1.0951217302148986e-06,
3635
+ "loss": 0.0021,
3636
+ "step": 501
3637
+ },
3638
+ {
3639
+ "epoch": 4.77,
3640
+ "grad_norm": 0.07576379765393293,
3641
+ "learning_rate": 1.0059129668561707e-06,
3642
+ "loss": 0.0027,
3643
+ "step": 502
3644
+ },
3645
+ {
3646
+ "epoch": 4.78,
3647
+ "grad_norm": 0.0655321501764931,
3648
+ "learning_rate": 9.204753382986097e-07,
3649
+ "loss": 0.0029,
3650
+ "step": 503
3651
+ },
3652
+ {
3653
+ "epoch": 4.79,
3654
+ "grad_norm": 0.06668565079155468,
3655
+ "learning_rate": 8.388120992499083e-07,
3656
+ "loss": 0.0024,
3657
+ "step": 504
3658
+ },
3659
+ {
3660
+ "epoch": 4.8,
3661
+ "grad_norm": 0.08295379764022878,
3662
+ "learning_rate": 7.609263606340622e-07,
3663
+ "loss": 0.003,
3664
+ "step": 505
3665
+ },
3666
+ {
3667
+ "epoch": 4.81,
3668
+ "grad_norm": 0.05830372848137469,
3669
+ "learning_rate": 6.868210894729332e-07,
3670
+ "loss": 0.0027,
3671
+ "step": 506
3672
+ },
3673
+ {
3674
+ "epoch": 4.82,
3675
+ "grad_norm": 0.04555270319966449,
3676
+ "learning_rate": 6.164991087731831e-07,
3677
+ "loss": 0.0021,
3678
+ "step": 507
3679
+ },
3680
+ {
3681
+ "epoch": 4.83,
3682
+ "grad_norm": 0.057930715171302063,
3683
+ "learning_rate": 5.499630974187375e-07,
3684
+ "loss": 0.0024,
3685
+ "step": 508
3686
+ },
3687
+ {
3688
+ "epoch": 4.84,
3689
+ "grad_norm": 0.09648171217668358,
3690
+ "learning_rate": 4.872155900687347e-07,
3691
+ "loss": 0.0032,
3692
+ "step": 509
3693
+ },
3694
+ {
3695
+ "epoch": 4.85,
3696
+ "grad_norm": 0.08324119499167887,
3697
+ "learning_rate": 4.2825897706100235e-07,
3698
+ "loss": 0.0018,
3699
+ "step": 510
3700
+ },
3701
+ {
3702
+ "epoch": 4.86,
3703
+ "grad_norm": 0.05280884195269513,
3704
+ "learning_rate": 3.7309550432090835e-07,
3705
+ "loss": 0.003,
3706
+ "step": 511
3707
+ },
3708
+ {
3709
+ "epoch": 4.86,
3710
+ "grad_norm": 0.06550697689715686,
3711
+ "learning_rate": 3.217272732759402e-07,
3712
+ "loss": 0.0029,
3713
+ "step": 512
3714
+ },
3715
+ {
3716
+ "epoch": 4.87,
3717
+ "grad_norm": 0.07122072726515956,
3718
+ "learning_rate": 2.741562407755138e-07,
3719
+ "loss": 0.0026,
3720
+ "step": 513
3721
+ },
3722
+ {
3723
+ "epoch": 4.88,
3724
+ "grad_norm": 0.08524060823989948,
3725
+ "learning_rate": 2.3038421901651064e-07,
3726
+ "loss": 0.0032,
3727
+ "step": 514
3728
+ },
3729
+ {
3730
+ "epoch": 4.89,
3731
+ "grad_norm": 0.06597786647502633,
3732
+ "learning_rate": 1.9041287547424403e-07,
3733
+ "loss": 0.0026,
3734
+ "step": 515
3735
+ },
3736
+ {
3737
+ "epoch": 4.9,
3738
+ "grad_norm": 0.0640231658570345,
3739
+ "learning_rate": 1.5424373283889904e-07,
3740
+ "loss": 0.0025,
3741
+ "step": 516
3742
+ },
3743
+ {
3744
+ "epoch": 4.91,
3745
+ "grad_norm": 0.06369562949011548,
3746
+ "learning_rate": 1.2187816895752324e-07,
3747
+ "loss": 0.003,
3748
+ "step": 517
3749
+ },
3750
+ {
3751
+ "epoch": 4.92,
3752
+ "grad_norm": 0.05040741786604575,
3753
+ "learning_rate": 9.3317416781602e-08,
3754
+ "loss": 0.0021,
3755
+ "step": 518
3756
+ },
3757
+ {
3758
+ "epoch": 4.93,
3759
+ "grad_norm": 0.059709231647531516,
3760
+ "learning_rate": 6.856256432000718e-08,
3761
+ "loss": 0.0024,
3762
+ "step": 519
3763
+ },
3764
+ {
3765
+ "epoch": 4.94,
3766
+ "grad_norm": 0.07196915675318658,
3767
+ "learning_rate": 4.7614554597608105e-08,
3768
+ "loss": 0.0033,
3769
+ "step": 520
3770
+ },
3771
+ {
3772
+ "epoch": 4.95,
3773
+ "grad_norm": 0.057403114857655216,
3774
+ "learning_rate": 3.047418561933357e-08,
3775
+ "loss": 0.002,
3776
+ "step": 521
3777
+ },
3778
+ {
3779
+ "epoch": 4.96,
3780
+ "grad_norm": 0.08027211044033893,
3781
+ "learning_rate": 1.7142110339740668e-08,
3782
+ "loss": 0.003,
3783
+ "step": 522
3784
+ },
3785
+ {
3786
+ "epoch": 4.97,
3787
+ "grad_norm": 0.09851204603686081,
3788
+ "learning_rate": 7.618836638190186e-09,
3789
+ "loss": 0.0028,
3790
+ "step": 523
3791
+ },
3792
+ {
3793
+ "epoch": 4.98,
3794
+ "grad_norm": 0.0505999817391235,
3795
+ "learning_rate": 1.904727299473219e-09,
3796
+ "loss": 0.0023,
3797
+ "step": 524
3798
+ },
3799
+ {
3800
+ "epoch": 4.99,
3801
+ "grad_norm": 0.059018226862226256,
3802
+ "learning_rate": 0.0,
3803
+ "loss": 0.0029,
3804
+ "step": 525
3805
+ },
3806
+ {
3807
+ "epoch": 4.99,
3808
+ "step": 525,
3809
+ "total_flos": 415734656204800.0,
3810
+ "train_loss": 0.33918485829939266,
3811
+ "train_runtime": 37482.4854,
3812
+ "train_samples_per_second": 8.975,
3813
+ "train_steps_per_second": 0.014
3814
+ }
3815
+ ],
3816
+ "logging_steps": 1.0,
3817
+ "max_steps": 525,
3818
+ "num_input_tokens_seen": 0,
3819
+ "num_train_epochs": 5,
3820
+ "save_steps": 500,
3821
+ "total_flos": 415734656204800.0,
3822
+ "train_batch_size": 40,
3823
+ "trial_name": null,
3824
+ "trial_params": null
3825
+ }