update model card README.md
Browse files
README.md
CHANGED
@@ -13,8 +13,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.
|
17 |
-
- Wer: 0.
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -47,35 +47,35 @@ The following hyperparameters were used during training:
|
|
47 |
|
48 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
49 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
50 |
-
| 5.
|
51 |
-
| 2.
|
52 |
-
|
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
13 |
|
14 |
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
|
15 |
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.3368
|
17 |
+
- Wer: 0.2601
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
47 |
|
48 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
49 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
50 |
+
| 5.2379 | 1.0 | 500 | 3.1228 | 1.0 |
|
51 |
+
| 2.5847 | 2.01 | 1000 | 1.1550 | 0.9147 |
|
52 |
+
| 1.0034 | 3.01 | 1500 | 0.5856 | 0.5180 |
|
53 |
+
| 0.5868 | 4.02 | 2000 | 0.4238 | 0.4229 |
|
54 |
+
| 0.3892 | 5.02 | 2500 | 0.3356 | 0.3665 |
|
55 |
+
| 0.2926 | 6.02 | 3000 | 0.3196 | 0.3360 |
|
56 |
+
| 0.2294 | 7.03 | 3500 | 0.3046 | 0.3170 |
|
57 |
+
| 0.1976 | 8.03 | 4000 | 0.3032 | 0.3111 |
|
58 |
+
| 0.1644 | 9.04 | 4500 | 0.2946 | 0.2954 |
|
59 |
+
| 0.1574 | 10.04 | 5000 | 0.3211 | 0.2998 |
|
60 |
+
| 0.1391 | 11.04 | 5500 | 0.2986 | 0.2922 |
|
61 |
+
| 0.1124 | 12.05 | 6000 | 0.2948 | 0.2837 |
|
62 |
+
| 0.1003 | 13.05 | 6500 | 0.2928 | 0.2788 |
|
63 |
+
| 0.1031 | 14.06 | 7000 | 0.3230 | 0.2805 |
|
64 |
+
| 0.0901 | 15.06 | 7500 | 0.3081 | 0.2749 |
|
65 |
+
| 0.0842 | 16.06 | 8000 | 0.3075 | 0.2726 |
|
66 |
+
| 0.0809 | 17.07 | 8500 | 0.3215 | 0.2717 |
|
67 |
+
| 0.0747 | 18.07 | 9000 | 0.3272 | 0.2721 |
|
68 |
+
| 0.0735 | 19.08 | 9500 | 0.3242 | 0.2684 |
|
69 |
+
| 0.0631 | 20.08 | 10000 | 0.3216 | 0.2640 |
|
70 |
+
| 0.0632 | 21.08 | 10500 | 0.3149 | 0.2646 |
|
71 |
+
| 0.0625 | 22.09 | 11000 | 0.3196 | 0.2630 |
|
72 |
+
| 0.0611 | 23.09 | 11500 | 0.3244 | 0.2638 |
|
73 |
+
| 0.0532 | 24.1 | 12000 | 0.3271 | 0.2641 |
|
74 |
+
| 0.0503 | 25.1 | 12500 | 0.3368 | 0.2636 |
|
75 |
+
| 0.0534 | 26.1 | 13000 | 0.3393 | 0.2627 |
|
76 |
+
| 0.049 | 27.11 | 13500 | 0.3389 | 0.2626 |
|
77 |
+
| 0.0441 | 28.11 | 14000 | 0.3375 | 0.2605 |
|
78 |
+
| 0.0522 | 29.12 | 14500 | 0.3368 | 0.2601 |
|
79 |
|
80 |
|
81 |
### Framework versions
|