Upload sft_lora.py
Browse filessupervised finetuninig by lora
- sft_lora.py +167 -0
sft_lora.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
3 |
+
from datasets import load_dataset
|
4 |
+
import transformers
|
5 |
+
from transformers import Trainer, TrainingArguments
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
from transformers import BitsAndBytesConfig
|
8 |
+
from peft import (
|
9 |
+
LoraConfig,
|
10 |
+
get_peft_model,
|
11 |
+
prepare_model_for_kbit_training,
|
12 |
+
set_peft_model_state_dict,
|
13 |
+
)
|
14 |
+
import torch
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
CUTOFF_LEN = 1024 # 1024 accounts for about 96% of the data
|
19 |
+
VAL_SET_SIZE = 2000
|
20 |
+
DATA_PATH = "./dataset/Belle_open_source_0.5M.json" ## Choose dataset
|
21 |
+
OUTPUT_DIR = "baichuansft"
|
22 |
+
resume_from_checkpoint = "baichuansft"
|
23 |
+
|
24 |
+
|
25 |
+
device_map = {"": 0}
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("./baichuan-7B",trust_remote_code=True)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("./baichuan-7B",
|
28 |
+
trust_remote_code=True,
|
29 |
+
quantization_config=BitsAndBytesConfig(
|
30 |
+
load_in_4bit=True,
|
31 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
32 |
+
bnb_4bit_use_double_quant=True,
|
33 |
+
bnb_4bit_quant_type='nf4'
|
34 |
+
),
|
35 |
+
device_map=device_map)
|
36 |
+
|
37 |
+
model = prepare_model_for_kbit_training(model)
|
38 |
+
|
39 |
+
### 所有的线性layer都装配上lora
|
40 |
+
import bitsandbytes as bnb
|
41 |
+
def find_all_linear_names(model):
|
42 |
+
#cls = bnb.nn.Linear8bitLt
|
43 |
+
cls = bnb.nn.Linear4bit
|
44 |
+
lora_module_names = set()
|
45 |
+
for name, module in model.named_modules():
|
46 |
+
if isinstance(module, cls):
|
47 |
+
names = name.split('.')
|
48 |
+
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
49 |
+
|
50 |
+
|
51 |
+
if 'lm_head' in lora_module_names: # needed for 16-bit
|
52 |
+
lora_module_names.remove('lm_head')
|
53 |
+
return list(lora_module_names)
|
54 |
+
modules = find_all_linear_names(model)
|
55 |
+
|
56 |
+
|
57 |
+
config = LoraConfig(
|
58 |
+
r=8,
|
59 |
+
lora_alpha=16,
|
60 |
+
lora_dropout=0.05,
|
61 |
+
bias="none",
|
62 |
+
target_modules=modules,
|
63 |
+
task_type="CAUSAL_LM",
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
model = get_peft_model(model, config)
|
68 |
+
tokenizer.pad_token_id = 0
|
69 |
+
|
70 |
+
if resume_from_checkpoint:
|
71 |
+
# Check the available weights and load them
|
72 |
+
checkpoint_name = os.path.join(
|
73 |
+
resume_from_checkpoint, "pytorch_model.bin"
|
74 |
+
) # Full checkpoint
|
75 |
+
if not os.path.exists(checkpoint_name):
|
76 |
+
checkpoint_name = os.path.join(
|
77 |
+
resume_from_checkpoint, "adapter_model.bin"
|
78 |
+
) # only LoRA model - LoRA config above has to fit
|
79 |
+
resume_from_checkpoint = (
|
80 |
+
False # So the trainer won't try loading its state
|
81 |
+
)
|
82 |
+
# The two files above have a different name depending on how they were saved, but are actually the same.
|
83 |
+
if os.path.exists(checkpoint_name):
|
84 |
+
print(f"Restarting from {checkpoint_name}")
|
85 |
+
adapters_weights = torch.load(checkpoint_name)
|
86 |
+
set_peft_model_state_dict(model, adapters_weights)
|
87 |
+
else:
|
88 |
+
print(f"Checkpoint {checkpoint_name} not found")
|
89 |
+
|
90 |
+
|
91 |
+
data = load_dataset("json", data_files=DATA_PATH)
|
92 |
+
|
93 |
+
def tokenize(prompt, add_eos_token=True):
|
94 |
+
result = tokenizer(
|
95 |
+
prompt,
|
96 |
+
truncation=True,
|
97 |
+
max_length=CUTOFF_LEN,
|
98 |
+
padding=False,
|
99 |
+
return_tensors=None,
|
100 |
+
)
|
101 |
+
if (
|
102 |
+
result["input_ids"][-1] != tokenizer.eos_token_id
|
103 |
+
and len(result["input_ids"]) < CUTOFF_LEN
|
104 |
+
and add_eos_token
|
105 |
+
):
|
106 |
+
result["input_ids"].append(tokenizer.eos_token_id)
|
107 |
+
result["attention_mask"].append(1)
|
108 |
+
|
109 |
+
if add_eos_token and len(result["input_ids"]) >= CUTOFF_LEN:
|
110 |
+
result["input_ids"][CUTOFF_LEN - 1] = tokenizer.eos_token_id
|
111 |
+
result["attention_mask"][CUTOFF_LEN - 1] = 1
|
112 |
+
|
113 |
+
result["labels"] = result["input_ids"].copy()
|
114 |
+
|
115 |
+
return result
|
116 |
+
|
117 |
+
|
118 |
+
def generate_and_tokenize_prompt(data_point):
|
119 |
+
instruction = data_point['instruction']
|
120 |
+
input_text = data_point["input"]
|
121 |
+
input_text = "Human: " + instruction + input_text + "\n\nAssistant: "
|
122 |
+
input_text = tokenizer.bos_token + input_text if tokenizer.bos_token != None else input_text
|
123 |
+
target_text = data_point["output"] + tokenizer.eos_token
|
124 |
+
full_prompt = input_text + target_text
|
125 |
+
tokenized_full_prompt = tokenize(full_prompt)
|
126 |
+
return tokenized_full_prompt
|
127 |
+
|
128 |
+
|
129 |
+
if VAL_SET_SIZE > 0:
|
130 |
+
train_val = data["train"].train_test_split(
|
131 |
+
test_size=VAL_SET_SIZE, shuffle=True, seed=42
|
132 |
+
)
|
133 |
+
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
|
134 |
+
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
|
135 |
+
else:
|
136 |
+
train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
|
137 |
+
val_data = None
|
138 |
+
|
139 |
+
trainer = Trainer(
|
140 |
+
model=model,
|
141 |
+
train_dataset=train_data,
|
142 |
+
eval_dataset=val_data,
|
143 |
+
args=TrainingArguments(
|
144 |
+
num_train_epochs=1,
|
145 |
+
per_device_train_batch_size=1,
|
146 |
+
per_device_eval_batch_size=1,
|
147 |
+
learning_rate=3e-4,
|
148 |
+
gradient_accumulation_steps=4,
|
149 |
+
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
|
150 |
+
save_strategy="steps",
|
151 |
+
eval_steps=2000 if VAL_SET_SIZE > 0 else None,
|
152 |
+
save_steps=2000,
|
153 |
+
output_dir=OUTPUT_DIR,
|
154 |
+
report_to = "tensorboard",
|
155 |
+
save_total_limit=3,
|
156 |
+
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
|
157 |
+
optim="adamw_torch"
|
158 |
+
),
|
159 |
+
data_collator=transformers.DataCollatorForSeq2Seq(tokenizer,
|
160 |
+
pad_to_multiple_of=8,
|
161 |
+
return_tensors="pt",
|
162 |
+
padding=True),
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
trainer.train(resume_from_checkpoint=False)
|
167 |
+
model.save_pretrained(OUTPUT_DIR)
|