Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 129.59 +/- 116.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd759e9cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd759e9d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd759e9dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd759e9e60>", "_build": "<function ActorCriticPolicy._build at 0x7efd759e9ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7efd759e9f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd759ef050>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd759ef0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd759ef170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd759ef200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd759ef290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd75a29e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656210318.4938984, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAs8BdPSm4FrobEkc8JLO4uE3QV7q/Oa63AACAPwAAgD/NTg+96ZQNvC4qXzzyCx09l9IIPbpt7DsAAIA/AACAPwChO73DCTi6KzReOyG6YDjg6b46ap4HugAAgD8AAIA/wMrLPVKgyrmVuSC8DEsWtgV5nTrmNoY1AACAPwAAgD8AW4w8BO6aPvMwgr2sqC2+NF06O60lCr0AAAAAAAAAAJp4MT4pcU68Pf3mPDbsLLu+Yru9tiwNvAAAgD8AAIA/zTKPvbhe3DjchbA7DzsbOKAS/zszCwm1AACAPwAAgD/AJGg+qcRHvAAx4LeZudM1UK2wvSfIBDcAAIA/AACAP1bfhr6PxgE/QKVBvR8tib6BEe07Nd5fPQAAAAAAAAAADeWEvY/uPLoRZUE66+F0NU+k2LmrHV25AACAPwAAgD8z1fe8UoCluUDkCzwKRXU2wNflu2UseDUAAIA/AACAPw2vD77XHzQ6Sj0qu21bTjetRk68OHdJOgAAgD8AAIA/TSm9PeGygLoyZI45gGoYM/G0E7vKkaG4AACAPwAAgD8GJSO+Yd2jO4bvDTvC5oW4wCYuvXBDKLoAAIA/AACAP1p03T3DmTi6AuRSuY09LbZ26YG6TYtwOAAAgD8AAIA/GuKFvY9aWLo+UB08me/KNf1WcLtz3cM0AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEolCy7rPXkCUhpRSlIwBbJRN6AOMAXSUR0B/GQuQIUrTdX2UKGgGaAloD0MIe2ZJgBoyYkCUhpRSlGgVTegDaBZHQH8rRMBZIQR1fZQoaAZoCWgPQwidnndjQYtfQJSGlFKUaBVN6ANoFkdAfyuS9du50HV9lChoBmgJaA9DCGR5Vz1gfjxAlIaUUpRoFUvXaBZHQH8ugwGnn+11fZQoaAZoCWgPQwiv6UFBKUY0wJSGlFKUaBVL/WgWR0B/mA7bL2YfdX2UKGgGaAloD0MI9YWQ837eY0CUhpRSlGgVTSYCaBZHQH+Z9B4Uvf11fZQoaAZoCWgPQwgsRl1r7yxWQJSGlFKUaBVN6ANoFkdAf6MGATZg5XV9lChoBmgJaA9DCPW6RWCsLwDAlIaUUpRoFUveaBZHQH+je0CzTnd1fZQoaAZoCWgPQwgzpfW3BNpkQJSGlFKUaBVN6ANoFkdAf6Q7MxGlRHV9lChoBmgJaA9DCNhJfVnaWTZAlIaUUpRoFUv8aBZHQH+sa814xDd1fZQoaAZoCWgPQwgwhJz3/2VhQJSGlFKUaBVN6ANoFkdAf7OR/3Fkx3V9lChoBmgJaA9DCCEeiZcns2BAlIaUUpRoFU3oA2gWR0B/vCG5+YtydX2UKGgGaAloD0MIMSQnE7emM0CUhpRSlGgVTQkBaBZHQH/Otjslb/x1fZQoaAZoCWgPQwgD7Q4phjFhQJSGlFKUaBVN6ANoFkdAf9eBrvb48HV9lChoBmgJaA9DCPVMLzGWeRZAlIaUUpRoFUv8aBZHQH/XvalDWsl1fZQoaAZoCWgPQwizCwbXXABgQJSGlFKUaBVN6ANoFkdAf9z9vCMxXXV9lChoBmgJaA9DCEzeADPfD2BAlIaUUpRoFU3oA2gWR0B/8uluWKMvdX2UKGgGaAloD0MIZjOHpBa1YUCUhpRSlGgVTegDaBZHQH/49RrJr+J1fZQoaAZoCWgPQwjx9iAE5DseQJSGlFKUaBVL5GgWR0CAAMMiKR+0dX2UKGgGaAloD0MIAhB39SqSDUCUhpRSlGgVS+5oFkdAgAaOCPIXCXV9lChoBmgJaA9DCKGhf4ILP2JAlIaUUpRoFU3oA2gWR0CACIrZJ04jdX2UKGgGaAloD0MIiZro81HTWECUhpRSlGgVTegDaBZHQIAUhJI1+Ap1fZQoaAZoCWgPQwh4J58e27lfQJSGlFKUaBVN6ANoFkdAgBmjTSb6QHV9lChoBmgJaA9DCFxxcVRuvV5AlIaUUpRoFU3oA2gWR0CAKmfSx7iRdX2UKGgGaAloD0MIsktUbw1CUUCUhpRSlGgVS9VoFkdAgDAAnlXA/XV9lChoBmgJaA9DCOm68IPznU1AlIaUUpRoFU3oA2gWR0CAZ5ctXgccdX2UKGgGaAloD0MIij4fZcS5XUCUhpRSlGgVTegDaBZHQIBtXGVAzHl1fZQoaAZoCWgPQwhXzAhvDz9cQJSGlFKUaBVN6ANoFkdAgG2rAYYR/XV9lChoBmgJaA9DCAwHQrKAgGZAlIaUUpRoFU3oA2gWR0CAc+eoUBXCdX2UKGgGaAloD0MIaEKTxJJ1VkCUhpRSlGgVTegDaBZHQIB4gp+c6Nl1fZQoaAZoCWgPQwjJycStgrhCQJSGlFKUaBVNCQFoFkdAgHkCV0Lc9HV9lChoBmgJaA9DCAYrTrUWp2JAlIaUUpRoFU3oA2gWR0CAffnezlcRdX2UKGgGaAloD0MI3CxeLIy1YECUhpRSlGgVTegDaBZHQICObCrLhaV1fZQoaAZoCWgPQwjT+IVXkjphQJSGlFKUaBVN6ANoFkdAgJFc1n/T9nV9lChoBmgJaA9DCIZY/RGGqF1AlIaUUpRoFU3oA2gWR0CAne6DGtITdX2UKGgGaAloD0MI+yKhLeeXU0CUhpRSlGgVTegDaBZHQIChGUdJaq11fZQoaAZoCWgPQwhJ2LeTiEheQJSGlFKUaBVN6ANoFkdAgKWGa6STyXV9lChoBmgJaA9DCJymzw642F9AlIaUUpRoFU3oA2gWR0CAqwU21lXjdX2UKGgGaAloD0MIgjY5fNJ3X0CUhpRSlGgVTegDaBZHQICsu23KB/Z1fZQoaAZoCWgPQwhQjCyZ41JlQJSGlFKUaBVN6ANoFkdAgLwE8A7xNXV9lChoBmgJaA9DCBy1wvS9JjPAlIaUUpRoFU0iAWgWR0CAwZVENOM3dX2UKGgGaAloD0MIx0yiXvDWW0CUhpRSlGgVTegDaBZHQIDLWWhRIjJ1fZQoaAZoCWgPQwjaPA6DeZBkQJSGlFKUaBVN6ANoFkdAgQaWN3np0XV9lChoBmgJaA9DCCeDo+TVsGBAlIaUUpRoFU3oA2gWR0CBDA4PwuuidX2UKGgGaAloD0MIHAsKgzKWZECUhpRSlGgVTegDaBZHQIEMV5Qgs9V1fZQoaAZoCWgPQwiHMenvpbdfQJSGlFKUaBVN6ANoFkdAgRHACGN70HV9lChoBmgJaA9DCB43/G46DGNAlIaUUpRoFU3oA2gWR0CBFckP+XJHdX2UKGgGaAloD0MIS3UBLzMZYUCUhpRSlGgVTegDaBZHQIEWQqRU3n91fZQoaAZoCWgPQwggskgTbylgQJSGlFKUaBVN6ANoFkdAgRq6reZXuHV9lChoBmgJaA9DCL7BFyZT211AlIaUUpRoFU3oA2gWR0CBKnwx33YddX2UKGgGaAloD0MIQl96+3OBN8CUhpRSlGgVTSwBaBZHQIEq28wpON51fZQoaAZoCWgPQwim0HmNXdBgQJSGlFKUaBVN6ANoFkdAgS09CNS62HV9lChoBmgJaA9DCAjIl1DBjT7AlIaUUpRoFUvzaBZHQIEuKRMewLV1fZQoaAZoCWgPQwhmFMstrR44QJSGlFKUaBVL6mgWR0CBMQveP7vYdX2UKGgGaAloD0MI3dH/ci38YUCUhpRSlGgVTegDaBZHQIE3xmmLtNV1fZQoaAZoCWgPQwjNOuP74sViQJSGlFKUaBVN6ANoFkdAgT7CE6DGtXV9lChoBmgJaA9DCMMtH0lJN1tAlIaUUpRoFU3oA2gWR0CBRCsCDEm6dX2UKGgGaAloD0MImxvTExZBY0CUhpRSlGgVTegDaBZHQIFGBoCdSVJ1fZQoaAZoCWgPQwjFVPoJZ0VkQJSGlFKUaBVN6ANoFkdAgVZtthuwYHV9lChoBmgJaA9DCGb1DrdDzVxAlIaUUpRoFU3oA2gWR0CBXJjrAxi5dX2UKGgGaAloD0MIkst/SL8hX0CUhpRSlGgVTegDaBZHQIFnD0nPVut1fZQoaAZoCWgPQwj+LJYi+dtZQJSGlFKUaBVN6ANoFkdAgalAYgq3E3V9lChoBmgJaA9DCAqeQq5UfmNAlIaUUpRoFU3oA2gWR0CBqZGFSKm9dX2UKGgGaAloD0MI7BaBsb7bY0CUhpRSlGgVTegDaBZHQIG0w1rIo3J1fZQoaAZoCWgPQwh6ck2BTDdjQJSGlFKUaBVN6ANoFkdAgbsTOgQHzHV9lChoBmgJaA9DCATj4NIxIWBAlIaUUpRoFU3oA2gWR0CBze8OCoS+dX2UKGgGaAloD0MID2PS30tfXUCUhpRSlGgVTegDaBZHQIHOYTZg5R11fZQoaAZoCWgPQwjmsWZkEBRjQJSGlFKUaBVN6ANoFkdAgdEbO/tY0XV9lChoBmgJaA9DCDjaccPvXE9AlIaUUpRoFU3oA2gWR0CB0huFYdQwdX2UKGgGaAloD0MIk6ZB0TwyXUCUhpRSlGgVTegDaBZHQIHVc63iJfp1fZQoaAZoCWgPQwgmNbQB2CJcQJSGlFKUaBVN6ANoFkdAgdx4c/+sHXV9lChoBmgJaA9DCPvNxHQhrGFAlIaUUpRoFU3oA2gWR0CB48PKdQO4dX2UKGgGaAloD0MIBU62gTvzW0CUhpRSlGgVTegDaBZHQIHpqvs7dSF1fZQoaAZoCWgPQwiphZLJqWNZQJSGlFKUaBVN6ANoFkdAgevQ+dK/VXV9lChoBmgJaA9DCGTJHMu7OidAlIaUUpRoFU0IAWgWR0CB7+PNmlImdX2UKGgGaAloD0MIRBZp4h1IR0CUhpRSlGgVTQsBaBZHQIHxHMKTjed1fZQoaAZoCWgPQwhzZVBtcFxcQJSGlFKUaBVN6ANoFkdAgfvCXIEKV3V9lChoBmgJaA9DCIXQQZdwfVxAlIaUUpRoFU3oA2gWR0CCAUV9nbqRdX2UKGgGaAloD0MI2xX6YBkFXUCUhpRSlGgVTegDaBZHQIIK/kWAPNF1fZQoaAZoCWgPQwj034PXLi0LwJSGlFKUaBVNFAFoFkdAghAi4axX4nV9lChoBmgJaA9DCL2o3a+CC2JAlIaUUpRoFU3oA2gWR0CCSmiZfD1odX2UKGgGaAloD0MIamrZWl8pX0CUhpRSlGgVTegDaBZHQIJKtRtP5591fZQoaAZoCWgPQwg/48KBkOZEQJSGlFKUaBVL8WgWR0CCUgj4YaYNdX2UKGgGaAloD0MIRibg10iDYECUhpRSlGgVTegDaBZHQIJUMjxCpm51fZQoaAZoCWgPQwhIG0esxaBaQJSGlFKUaBVN6ANoFkdAglk9ZRsMzHV9lChoBmgJaA9DCEWEfxG0MGJAlIaUUpRoFU3oA2gWR0CCaN9b5dnkdX2UKGgGaAloD0MIlLw6x4CGYkCUhpRSlGgVTegDaBZHQIJpUj1PFeh1fZQoaAZoCWgPQwjIJvkRv1VgQJSGlFKUaBVN6ANoFkdAgm/heHBUJnV9lChoBmgJaA9DCNsy4CwlDzZAlIaUUpRoFU0IAWgWR0CCcuJ5VwPzdX2UKGgGaAloD0MIK08g7BTQYUCUhpRSlGgVTegDaBZHQIJ3pXKbKA91fZQoaAZoCWgPQwiwcmiR7ZRlQJSGlFKUaBVN6ANoFkdAgn7j50r9VHV9lChoBmgJaA9DCDKtTWN7EF5AlIaUUpRoFU3oA2gWR0CChJFVktmMdX2UKGgGaAloD0MIdR+A1CYlZkCUhpRSlGgVTegDaBZHQIKGc5fdAPd1fZQoaAZoCWgPQwjPnzaq0ykkQJSGlFKUaBVNBgFoFkdAgoe+SSvC/HV9lChoBmgJaA9DCK4SLA7nVGVAlIaUUpRoFU3oA2gWR0CCi2oFV1fWdX2UKGgGaAloD0MILGfvjLYSMUCUhpRSlGgVS8loFkdAgo3vw3HaOHV9lChoBmgJaA9DCKcIcHoX8GJAlIaUUpRoFU3oA2gWR0CClKjXWe6JdX2UKGgGaAloD0MI71TAPU/zZECUhpRSlGgVTegDaBZHQIKaKVpsXSB1fZQoaAZoCWgPQwi1pQ7yegRgQJSGlFKUaBVN6ANoFkdAgqM+hGpdbHV9lChoBmgJaA9DCGbAWUqWlUNAlIaUUpRoFU0vAWgWR0CCqKzHCGeudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfda236f1fd5bab159f5c7dfffa999ded05d68364fa20676dedfaecfb4179ed7
|
3 |
+
size 144140
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efd759e9cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd759e9d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd759e9dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd759e9e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efd759e9ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efd759e9f80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd759ef050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efd759ef0e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd759ef170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd759ef200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd759ef290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7efd75a29e40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1656210318.4938984,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAs8BdPSm4FrobEkc8JLO4uE3QV7q/Oa63AACAPwAAgD/NTg+96ZQNvC4qXzzyCx09l9IIPbpt7DsAAIA/AACAPwChO73DCTi6KzReOyG6YDjg6b46ap4HugAAgD8AAIA/wMrLPVKgyrmVuSC8DEsWtgV5nTrmNoY1AACAPwAAgD8AW4w8BO6aPvMwgr2sqC2+NF06O60lCr0AAAAAAAAAAJp4MT4pcU68Pf3mPDbsLLu+Yru9tiwNvAAAgD8AAIA/zTKPvbhe3DjchbA7DzsbOKAS/zszCwm1AACAPwAAgD/AJGg+qcRHvAAx4LeZudM1UK2wvSfIBDcAAIA/AACAP1bfhr6PxgE/QKVBvR8tib6BEe07Nd5fPQAAAAAAAAAADeWEvY/uPLoRZUE66+F0NU+k2LmrHV25AACAPwAAgD8z1fe8UoCluUDkCzwKRXU2wNflu2UseDUAAIA/AACAPw2vD77XHzQ6Sj0qu21bTjetRk68OHdJOgAAgD8AAIA/TSm9PeGygLoyZI45gGoYM/G0E7vKkaG4AACAPwAAgD8GJSO+Yd2jO4bvDTvC5oW4wCYuvXBDKLoAAIA/AACAP1p03T3DmTi6AuRSuY09LbZ26YG6TYtwOAAAgD8AAIA/GuKFvY9aWLo+UB08me/KNf1WcLtz3cM0AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEolCy7rPXkCUhpRSlIwBbJRN6AOMAXSUR0B/GQuQIUrTdX2UKGgGaAloD0MIe2ZJgBoyYkCUhpRSlGgVTegDaBZHQH8rRMBZIQR1fZQoaAZoCWgPQwidnndjQYtfQJSGlFKUaBVN6ANoFkdAfyuS9du50HV9lChoBmgJaA9DCGR5Vz1gfjxAlIaUUpRoFUvXaBZHQH8ugwGnn+11fZQoaAZoCWgPQwiv6UFBKUY0wJSGlFKUaBVL/WgWR0B/mA7bL2YfdX2UKGgGaAloD0MI9YWQ837eY0CUhpRSlGgVTSYCaBZHQH+Z9B4Uvf11fZQoaAZoCWgPQwgsRl1r7yxWQJSGlFKUaBVN6ANoFkdAf6MGATZg5XV9lChoBmgJaA9DCPW6RWCsLwDAlIaUUpRoFUveaBZHQH+je0CzTnd1fZQoaAZoCWgPQwgzpfW3BNpkQJSGlFKUaBVN6ANoFkdAf6Q7MxGlRHV9lChoBmgJaA9DCNhJfVnaWTZAlIaUUpRoFUv8aBZHQH+sa814xDd1fZQoaAZoCWgPQwgwhJz3/2VhQJSGlFKUaBVN6ANoFkdAf7OR/3Fkx3V9lChoBmgJaA9DCCEeiZcns2BAlIaUUpRoFU3oA2gWR0B/vCG5+YtydX2UKGgGaAloD0MIMSQnE7emM0CUhpRSlGgVTQkBaBZHQH/Otjslb/x1fZQoaAZoCWgPQwgD7Q4phjFhQJSGlFKUaBVN6ANoFkdAf9eBrvb48HV9lChoBmgJaA9DCPVMLzGWeRZAlIaUUpRoFUv8aBZHQH/XvalDWsl1fZQoaAZoCWgPQwizCwbXXABgQJSGlFKUaBVN6ANoFkdAf9z9vCMxXXV9lChoBmgJaA9DCEzeADPfD2BAlIaUUpRoFU3oA2gWR0B/8uluWKMvdX2UKGgGaAloD0MIZjOHpBa1YUCUhpRSlGgVTegDaBZHQH/49RrJr+J1fZQoaAZoCWgPQwjx9iAE5DseQJSGlFKUaBVL5GgWR0CAAMMiKR+0dX2UKGgGaAloD0MIAhB39SqSDUCUhpRSlGgVS+5oFkdAgAaOCPIXCXV9lChoBmgJaA9DCKGhf4ILP2JAlIaUUpRoFU3oA2gWR0CACIrZJ04jdX2UKGgGaAloD0MIiZro81HTWECUhpRSlGgVTegDaBZHQIAUhJI1+Ap1fZQoaAZoCWgPQwh4J58e27lfQJSGlFKUaBVN6ANoFkdAgBmjTSb6QHV9lChoBmgJaA9DCFxxcVRuvV5AlIaUUpRoFU3oA2gWR0CAKmfSx7iRdX2UKGgGaAloD0MIsktUbw1CUUCUhpRSlGgVS9VoFkdAgDAAnlXA/XV9lChoBmgJaA9DCOm68IPznU1AlIaUUpRoFU3oA2gWR0CAZ5ctXgccdX2UKGgGaAloD0MIij4fZcS5XUCUhpRSlGgVTegDaBZHQIBtXGVAzHl1fZQoaAZoCWgPQwhXzAhvDz9cQJSGlFKUaBVN6ANoFkdAgG2rAYYR/XV9lChoBmgJaA9DCAwHQrKAgGZAlIaUUpRoFU3oA2gWR0CAc+eoUBXCdX2UKGgGaAloD0MIaEKTxJJ1VkCUhpRSlGgVTegDaBZHQIB4gp+c6Nl1fZQoaAZoCWgPQwjJycStgrhCQJSGlFKUaBVNCQFoFkdAgHkCV0Lc9HV9lChoBmgJaA9DCAYrTrUWp2JAlIaUUpRoFU3oA2gWR0CAffnezlcRdX2UKGgGaAloD0MI3CxeLIy1YECUhpRSlGgVTegDaBZHQICObCrLhaV1fZQoaAZoCWgPQwjT+IVXkjphQJSGlFKUaBVN6ANoFkdAgJFc1n/T9nV9lChoBmgJaA9DCIZY/RGGqF1AlIaUUpRoFU3oA2gWR0CAne6DGtITdX2UKGgGaAloD0MI+yKhLeeXU0CUhpRSlGgVTegDaBZHQIChGUdJaq11fZQoaAZoCWgPQwhJ2LeTiEheQJSGlFKUaBVN6ANoFkdAgKWGa6STyXV9lChoBmgJaA9DCJymzw642F9AlIaUUpRoFU3oA2gWR0CAqwU21lXjdX2UKGgGaAloD0MIgjY5fNJ3X0CUhpRSlGgVTegDaBZHQICsu23KB/Z1fZQoaAZoCWgPQwhQjCyZ41JlQJSGlFKUaBVN6ANoFkdAgLwE8A7xNXV9lChoBmgJaA9DCBy1wvS9JjPAlIaUUpRoFU0iAWgWR0CAwZVENOM3dX2UKGgGaAloD0MIx0yiXvDWW0CUhpRSlGgVTegDaBZHQIDLWWhRIjJ1fZQoaAZoCWgPQwjaPA6DeZBkQJSGlFKUaBVN6ANoFkdAgQaWN3np0XV9lChoBmgJaA9DCCeDo+TVsGBAlIaUUpRoFU3oA2gWR0CBDA4PwuuidX2UKGgGaAloD0MIHAsKgzKWZECUhpRSlGgVTegDaBZHQIEMV5Qgs9V1fZQoaAZoCWgPQwiHMenvpbdfQJSGlFKUaBVN6ANoFkdAgRHACGN70HV9lChoBmgJaA9DCB43/G46DGNAlIaUUpRoFU3oA2gWR0CBFckP+XJHdX2UKGgGaAloD0MIS3UBLzMZYUCUhpRSlGgVTegDaBZHQIEWQqRU3n91fZQoaAZoCWgPQwggskgTbylgQJSGlFKUaBVN6ANoFkdAgRq6reZXuHV9lChoBmgJaA9DCL7BFyZT211AlIaUUpRoFU3oA2gWR0CBKnwx33YddX2UKGgGaAloD0MIQl96+3OBN8CUhpRSlGgVTSwBaBZHQIEq28wpON51fZQoaAZoCWgPQwim0HmNXdBgQJSGlFKUaBVN6ANoFkdAgS09CNS62HV9lChoBmgJaA9DCAjIl1DBjT7AlIaUUpRoFUvzaBZHQIEuKRMewLV1fZQoaAZoCWgPQwhmFMstrR44QJSGlFKUaBVL6mgWR0CBMQveP7vYdX2UKGgGaAloD0MI3dH/ci38YUCUhpRSlGgVTegDaBZHQIE3xmmLtNV1fZQoaAZoCWgPQwjNOuP74sViQJSGlFKUaBVN6ANoFkdAgT7CE6DGtXV9lChoBmgJaA9DCMMtH0lJN1tAlIaUUpRoFU3oA2gWR0CBRCsCDEm6dX2UKGgGaAloD0MImxvTExZBY0CUhpRSlGgVTegDaBZHQIFGBoCdSVJ1fZQoaAZoCWgPQwjFVPoJZ0VkQJSGlFKUaBVN6ANoFkdAgVZtthuwYHV9lChoBmgJaA9DCGb1DrdDzVxAlIaUUpRoFU3oA2gWR0CBXJjrAxi5dX2UKGgGaAloD0MIkst/SL8hX0CUhpRSlGgVTegDaBZHQIFnD0nPVut1fZQoaAZoCWgPQwj+LJYi+dtZQJSGlFKUaBVN6ANoFkdAgalAYgq3E3V9lChoBmgJaA9DCAqeQq5UfmNAlIaUUpRoFU3oA2gWR0CBqZGFSKm9dX2UKGgGaAloD0MI7BaBsb7bY0CUhpRSlGgVTegDaBZHQIG0w1rIo3J1fZQoaAZoCWgPQwh6ck2BTDdjQJSGlFKUaBVN6ANoFkdAgbsTOgQHzHV9lChoBmgJaA9DCATj4NIxIWBAlIaUUpRoFU3oA2gWR0CBze8OCoS+dX2UKGgGaAloD0MID2PS30tfXUCUhpRSlGgVTegDaBZHQIHOYTZg5R11fZQoaAZoCWgPQwjmsWZkEBRjQJSGlFKUaBVN6ANoFkdAgdEbO/tY0XV9lChoBmgJaA9DCDjaccPvXE9AlIaUUpRoFU3oA2gWR0CB0huFYdQwdX2UKGgGaAloD0MIk6ZB0TwyXUCUhpRSlGgVTegDaBZHQIHVc63iJfp1fZQoaAZoCWgPQwgmNbQB2CJcQJSGlFKUaBVN6ANoFkdAgdx4c/+sHXV9lChoBmgJaA9DCPvNxHQhrGFAlIaUUpRoFU3oA2gWR0CB48PKdQO4dX2UKGgGaAloD0MIBU62gTvzW0CUhpRSlGgVTegDaBZHQIHpqvs7dSF1fZQoaAZoCWgPQwiphZLJqWNZQJSGlFKUaBVN6ANoFkdAgevQ+dK/VXV9lChoBmgJaA9DCGTJHMu7OidAlIaUUpRoFU0IAWgWR0CB7+PNmlImdX2UKGgGaAloD0MIRBZp4h1IR0CUhpRSlGgVTQsBaBZHQIHxHMKTjed1fZQoaAZoCWgPQwhzZVBtcFxcQJSGlFKUaBVN6ANoFkdAgfvCXIEKV3V9lChoBmgJaA9DCIXQQZdwfVxAlIaUUpRoFU3oA2gWR0CCAUV9nbqRdX2UKGgGaAloD0MI2xX6YBkFXUCUhpRSlGgVTegDaBZHQIIK/kWAPNF1fZQoaAZoCWgPQwj034PXLi0LwJSGlFKUaBVNFAFoFkdAghAi4axX4nV9lChoBmgJaA9DCL2o3a+CC2JAlIaUUpRoFU3oA2gWR0CCSmiZfD1odX2UKGgGaAloD0MIamrZWl8pX0CUhpRSlGgVTegDaBZHQIJKtRtP5591fZQoaAZoCWgPQwg/48KBkOZEQJSGlFKUaBVL8WgWR0CCUgj4YaYNdX2UKGgGaAloD0MIRibg10iDYECUhpRSlGgVTegDaBZHQIJUMjxCpm51fZQoaAZoCWgPQwhIG0esxaBaQJSGlFKUaBVN6ANoFkdAglk9ZRsMzHV9lChoBmgJaA9DCEWEfxG0MGJAlIaUUpRoFU3oA2gWR0CCaN9b5dnkdX2UKGgGaAloD0MIlLw6x4CGYkCUhpRSlGgVTegDaBZHQIJpUj1PFeh1fZQoaAZoCWgPQwjIJvkRv1VgQJSGlFKUaBVN6ANoFkdAgm/heHBUJnV9lChoBmgJaA9DCNsy4CwlDzZAlIaUUpRoFU0IAWgWR0CCcuJ5VwPzdX2UKGgGaAloD0MIK08g7BTQYUCUhpRSlGgVTegDaBZHQIJ3pXKbKA91fZQoaAZoCWgPQwiwcmiR7ZRlQJSGlFKUaBVN6ANoFkdAgn7j50r9VHV9lChoBmgJaA9DCDKtTWN7EF5AlIaUUpRoFU3oA2gWR0CChJFVktmMdX2UKGgGaAloD0MIdR+A1CYlZkCUhpRSlGgVTegDaBZHQIKGc5fdAPd1fZQoaAZoCWgPQwjPnzaq0ykkQJSGlFKUaBVNBgFoFkdAgoe+SSvC/HV9lChoBmgJaA9DCK4SLA7nVGVAlIaUUpRoFU3oA2gWR0CCi2oFV1fWdX2UKGgGaAloD0MILGfvjLYSMUCUhpRSlGgVS8loFkdAgo3vw3HaOHV9lChoBmgJaA9DCKcIcHoX8GJAlIaUUpRoFU3oA2gWR0CClKjXWe6JdX2UKGgGaAloD0MI71TAPU/zZECUhpRSlGgVTegDaBZHQIKaKVpsXSB1fZQoaAZoCWgPQwi1pQ7yegRgQJSGlFKUaBVN6ANoFkdAgqM+hGpdbHV9lChoBmgJaA9DCGbAWUqWlUNAlIaUUpRoFU0vAWgWR0CCqKzHCGeudWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f2e2ca61e427defb6ce5802a90090d257af82b3cfd2d0cbd9be5db274010b9e
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be0a56600c1777a8d965512517eb0e7f0d60a0de6c2e7a961068aacf03e8f374
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11d4a73d0f2ab792fb6c05a4efcb4057336d6762bc2e1f418c42245fdd21d770
|
3 |
+
size 253441
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 129.59126194182917, "std_reward": 116.73167248399409, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-26T02:44:57.131520"}
|