workRL commited on
Commit
193ddac
1 Parent(s): 4860afa

Upload DQN LunarLander-v2 trained agent

Browse files
DQN-LundarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f48e2c30a3b159c986f2ae4d3b9773a1c0594bca70bc67a4be349335b7ebf56
3
+ size 1136544
DQN-LundarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
DQN-LundarLander-v2/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f2d36bb44d0>",
8
+ "_build": "<function DQNPolicy._build at 0x7f2d36bb4560>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f2d36bb45f0>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f2d36bb4680>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f2d36bb4710>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f2d36bb47a0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f2d36bb4830>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f2d36c1e840>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {
19
+ "net_arch": [
20
+ 256,
21
+ 256
22
+ ]
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAATUbBGkX0of8bgtvCqsl9erlxb1cwvVoa/X+7kV76Q0nY5qglLtRo/Jl9ePE0K8aU3G+VFp56Rtx8vR/iJF9mE0V58dBM3Xay7a9QU7uPXnfFuAKPwg7V6MedYCogc4ElLSKSYXTuOaKoxBr3UXMjM7WLHb0Nb+WrdETA+lY3uoy1Wk05rcKhqhfUYXCuejZUJACwU9UVsOBgrUzpGKK9vqbywa/+I5ErQCnNoId7zf2IB912+M/OLhM5lNHGs7L5N4KxnlHJaYDfwlH1qpiPVGahIiemNmNHt9mSzArSPgoR0c8W62LlENFNuLagvDx31moz375mQKa9Y8sKB+gYhdLPg+K1QLI2ir1TvKNOSR3CS90NXtNheyaR8QaidllFj8SigRxtF8sRSp3l2afNr8XGgJ7cVdyUFUDvbUukRfOBjkvhJfMJeUbSqP2AfQE8aYUT3v7/sUBPqp16Z3XOxdYFIh9jGogIXSqq1igcfGCr4QOK+o8Ru/SbACfUZD/D2Yn2HUhO/5CWabv/KzXZUj4N3aIUvpvLyxv9OI8k0zZShhYQ7v2PBvWJqyrVag8MWy4HkaOLrKP5bCko8tl3VLEwFFKVv/U4JA8KqQv0gqJLj0wv6OHG/bzm35BRiEUhBlv/RJJyRha0FFJR6GknjaYeQX7H06AxpVsFiADN+JAGvD9XhwPPdk/vTH02LnepWxqQi8fCaVwE6wPlfHxAhBvhh8/fKqc1zXFyuxXrz62L3HaPe/9Dj5PcwJc1OIMnK0O8YDOz+mZBB0NmUk0dIPMYXOwnOHU8isjFEjIYrZ6G96jHRaHdAP2shRjLpDrHndd7Will69lKzpkCxvTdThHYNrmNyc59ycfE7LzulQdhE4WIEiatjNonymAQPJRpROc9piKAexACmJ2jZfUhR2xEO7mbt1HpbbPmWyuJd60HY7w6pXHlOO4uq6hlTE7UgjZth11bJIyV7NF6QSFjhcNqjLGpAjCQjBlON84zOziGvk77hoYhTBte5vD07vnbXnohHtlEl6njTBx96toX9kVWHBpteZZ7Z+Sk9Z+W9xBRN2aX2susuZs6Yzyku+zUXgOZTcGnGhF+iNHzK7ktxireEhmvbYbqyEbuhevTEIxEFrszBzEhCMo8iufv1FQ14C1ePs3vb7TfTfcmUyTP7AzpZ7jwUz9f9Ivex8trnAMka6xiIGXbHTmf77Mjrewk0MM5pK5qLhWlGCmkjhMLnz/n0tCfFAL1SNz8irAMDjN4sDinul5wpClF3KSgAQYKu6ieU9szSmr5uP2tOU0wnn+WNB089hCes/MPGvZZsMFspRatn0s4gSgjnQqYPmfqzFochcjADINSfkQYRHuxDhPWHKxPa3o7op9fYOnzVI/8w+P3bpELbuUprRi/Wx1nBwyh+8os7ebg6Iycfjd6q0ta4FP6W4TAfV+HesBppeNp0+wMU4ypvTAOo0WyWZEfDTnwTbG0p+o6lhofUAThSwTqvyTNBnL1QSUZaY46F1wYx50ksmWZKAMNc5+SrFf7Zl1KtklueE3o5hFRyTzNdIN/XjIfsvrqYkjO9iKd7xqIBTjoHsHLVSPLDnNmqg9iJEsnqA0RWYjrNqaEMkbLklW26kQHwcOAr4KMo8sZ8BPptHaZayCKOF/69wx72m31AnHDLbu3mGVe1/whVoBgzqNVdkzi5rqEfnyCvgaehWSxRLg6HAKwsCtbCCCNbwAO4QMQPTOycAVaTM/ShoawnMpBJ+nabqoWSDtGLoD/mxxSuJ6Vc4Kz5shN0uE8vlid3Tp+B897EAcfdrNCczqz1ubGWjVV1baJ+FXDqgcRjsOOdrrKQXLUGwpy/PQeMyGjlj+2UCB8Yp+HuN4/erEDQVm23xmTjQ8rVqVzrYzsg+WXD85G/nr2cdimLi+thM5VZOwrg7CawkVd8FqW+Po43q1U3Vx2CQmSgMzFSDfjzlKSnEbvt11Kf5KlkUpH1eblCrokxzF0Y21iuDwUZ6p93bMNn3E96ifJZZ8cDKCOeufxhKxHr5vomgXth3W6N0IIK2K1/fnyx2/HhBEQ4EPLStunD/OX6PBjavN/X1OZnzzEFuW/7FnWy/9E5Ih9H2qx+UAzoUZxP5d2jy0ZVoRiZHVyX+2TBlNpui860Yxd/4Nq1c3IXssaKd/+3QpexIqG2lZglq1rx3dky4O03qkZqYzy+uo4RvOLv4NK+lZGQ5xVUvDkmeo2d2+mjIVuDjPMtCBHbSVPvc9nsO3V88w8YLeJ0U+m+n//agBxFINLmNGMhNu0yPoq4Qi3xj+ZLCNnzWy6Cpq4Lx1ZT4WPLyXGfh9tCJeLDjzR39PTFgNRZoE2TWfSXms1/CXwGQU8OAmNWinttDuV/S4sWY1Zh5vrMfHfrXZELOetUREWI99A0OybBBmtaNfv2iC2s+MZXl7U9AK5xr9gSiN9oOkk1sJkeJw9Th4N/PkSmrBb4zNBGCMYiFQmt0DTO7V/V6X3Mwm/3BshpCsGjBQQ0JksRnTL3/ILWV06Y1nudoQJ2PvnSucUVZ5vk2TP+uuvGJo4WNivRW+KGd+saiaK0xFUY4SxyNvKyp8zXeHsk/1PYfDsxyVwLQKQQs8MTC5zPEpNSkJT8RDcXHjZjJ6AHoM/BWgYIFN90TktszNVHoBVlVvkAriRxJjPe/YJsuEsSZ54Gx34w1q2ljA8tzxMAlstmpjfOP2MSb4FRrvv9oTjKCEu/+XMmGrIFaFjt39Aw3U5kH0TPn4SWz7WuCU2anHl6LfPl+q519cJoC0z5jMe+vx45LYtHdTNdjS6eGT00fK9wV7zxW1bkde2t1KhU7hJVfH+w2pWFVRXJ01ExGgclyZzlJwLEjjNRF2rmCyVxzHv/5b5ZrPI16vt21Iy4lgkmKHPThpECjbHFtxxSO5FiUXcdDD+/owNwOmwc1npw4gUWwRjh5sV2j38vu/JqzCI5Qp1ePzfDnSN2i49zkyLhEuQlTfWTAdlHi6PrKbcmhUyo9QU3a7F0aNmHqDTbt3LUgKzSc08UoIGjodATpMPxYf7DyZAT78EnRTRyyklofnPKR7zPCsNzm91+Gvz3FgSp4ZQCqfgfZUUuDpp8MzOFdBVtPK6/Y8Hz3bHCzvtwHB+WzQIO44i3szyKxC1fqoyTP23Z9FLdEEDmuUE/kvnz1Gg13asZpJbG3+O4AAaxVwtTPBAUac8l4JRKR+Y2dV5TVcyQlVL+e5nTejYZNl1q1LdD/O7pkU6stYzdn8nNVfBHmV5TUdzP3DJVL7YumOlneVe7YHc3ApwmV4dtvVcYDEpuxs5KFHXBwaWpHS2UiAAU1t1lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLkHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 100032,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1658307029.842424,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozwzxpLIE/1gYHPgDGzLxo+/M8V77GugAAAAAAAAAAU3nGPtdkYj+NaN+7jedqvK4vGTyc+rK8AAAAAAAAAABNA0Q/29RXP7YaJj3iLy29rvYRPaUh4LwAAAAAAAAAAOVojb6yh4k/7PCMvQJ2EL32AnG86745PAAAAAAAAAAAGuNPP/xkJz9lycc81zIDu2LUODxDDFg9AAAAAAAAAADTcBi+/CM+P27Ufb2TCPa8k6XSu49gn7wAAAAAAAAAAJxoNr8A1wU/i0QZvm7ApbzNpji8MJiMPAAAAAAAAAAAC3+JvhdyCz5wvXY8f3IevJIJmDxijWi8AAAAAAAAAABA8ow+fSSSP9zqgT39GTS8lJuDPE6wybsAAAAAAAAAAGCSMT+tLWc/4i6AvbpjV7y/C/O8jJevOwAAAAAAAAAAM7CHPFOcVD83kqw91AxgvC8jDT3G9NY6AAAAAAAAAADyS76+smZDP3IZAD2ldbc8SczmPG3WijsAAAAAAAAAAP1Zrj4eLX0/feDVvL3UrLwduYe7CS6wOwAAAAAAAAAA09IIvq4OYz86QTs9XlGfvD7DiTw2zWO8AAAAAAAAAAAzRAU9PEM2P8eQOzxtZqQ8RiYwOwuXl7sAAAAAAAAAAHZzOz9xOGU/hY13vRmCFL3Y1wy9dJ7IvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1nuDzXPoE/eisLPv/JM71smvQ8kkfhOQAAAAAAAAAAtoPGPgB6Yj9G7AK8EnbgvIgVKzxFU8G8AAAAAAAAAACj6UM/PxNYP7UaJj3F1n+8HpEXPZ4h4LwAAAAAAAAAAHMPjb60oYk/glhwvWEYFbx7THq8QEvwvAAAAAAAAAAAXdFPP+tnJz9iycc86w7KPOCeDTxQDFg9AAAAAAAAAADNyxe+Q1A+P4EAPr2nlCC9csWyuxdWhLsAAAAAAAAAABcHNr/Z9AU/OogavuUAN70Etka8WU+KPAAAAAAAAAAA1pGJvi+rCz5uvXY85DqLPOTZnTxbjWi8AAAAAAAAAACAn4w+mSySP9zqgT0TZ4A8+yCGPGWwybsAAAAAAAAAADa7MT8TQWc/uQKKvdzMZb2dPfW8U1V0OwAAAAAAAAAAM8eAPHuwVD/+paU92VEEvTPNDD02HH+7AAAAAAAAAAA4db6+q0VDP8QkLD3dRjy8ARDlPG4YSDwAAAAAAAAAANp7rj45TH0/ItIRvYpRBL1HiJC7EgtruwAAAAAAAAAA00gJvl4rYz85QTs9DYvsOzF1jzw1zWO8AAAAAAAAAACazgQ9piU2P+5jwzsXvp68+04/O6GJJ7wAAAAAAAAAAOObOz/cbWU/g413vcAfHbzi0we9fZ7IvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
69
+ },
70
+ "_episode_num": 145,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": -0.000320000000000098,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo81xbhPFVMCUhpRSlIwBbJRLdYwBdJRHQDjMLYwqRU51fZQoaAZoCWgPQwhhM8AF2W46wJSGlFKUaBVLbWgWR0A5BVopQUHqdX2UKGgGaAloD0MIS+ZY3lURVcCUhpRSlGgVS6BoFkdAOXCThYNiIHV9lChoBmgJaA9DCBU2A1yQUlDAlIaUUpRoFUuYaBZHQDmulfqoqCp1fZQoaAZoCWgPQwiPOc/Yl5ZVwJSGlFKUaBVLUWgWR0A53gG8mKIjdX2UKGgGaAloD0MIcGHdeHesZcCUhpRSlGgVS4toFkdAOelTisGPgnV9lChoBmgJaA9DCO52vTRF6lHAlIaUUpRoFUuqaBZHQDq/vv0AcT91fZQoaAZoCWgPQwgV5Gcj15RUwJSGlFKUaBVLQ2gWR0A8ja6jFhoedX2UKGgGaAloD0MIVb38TpO1PsCUhpRSlGgVS6xoFkdAPMj/lyR0VHV9lChoBmgJaA9DCDiFlQoqHFbAlIaUUpRoFUvjaBZHQD3tx1gYxcp1fZQoaAZoCWgPQwgHexNDco5PwJSGlFKUaBVLa2gWR0A+miGFi8WcdX2UKGgGaAloD0MI2lVI+UmBNUCUhpRSlGgVS5xoFkdAP7gNCqp97XV9lChoBmgJaA9DCBObj2vDLGrAlIaUUpRoFUuIaBZHQECMJzkp7Tl1fZQoaAZoCWgPQwiqnsw/+i5LwJSGlFKUaBVLhGgWR0BAjy7Xg9/0dX2UKGgGaAloD0MIeuOkMO9RcMCUhpRSlGgVTSoBaBZHQEIt+PRzBAR1fZQoaAZoCWgPQwhdN6W8ViIyQJSGlFKUaBVLy2gWR0BFUNPxhDw6dX2UKGgGaAloD0MInu488ZwuY0CUhpRSlGgVTcUBaBZHQEfVYJ3PiUB1fZQoaAZoCWgPQwjGGcOcICJuQJSGlFKUaBVNqAFoFkdASY3s/pt78nV9lChoBmgJaA9DCB5ssdtngT7AlIaUUpRoFU3oA2gWR0BXaAb2lEZ0dX2UKGgGaAloD0MIcY3PZP/KXcCUhpRSlGgVTegDaBZHQFefjG1hLGt1fZQoaAZoCWgPQwgfniXICGtpwJSGlFKUaBVN/QFoFkdAV6LU3GXHBHV9lChoBmgJaA9DCE7soX2saC/AlIaUUpRoFU3oA2gWR0BZBo0l7dBTdX2UKGgGaAloD0MI5zbhXpkzYcCUhpRSlGgVTegDaBZHQFmLQnx8UmF1fZQoaAZoCWgPQwjBdFq3QV0aQJSGlFKUaBVN6ANoFkdAWZNI3BHkLnV9lChoBmgJaA9DCMh8QKAzd0TAlIaUUpRoFU3oA2gWR0BZ/Bi5NGmUdX2UKGgGaAloD0MIDfs9sU4nXcCUhpRSlGgVTegDaBZHQFq9fqX4TK11fZQoaAZoCWgPQwg9J71vfClIwJSGlFKUaBVN6ANoFkdAWtX9YOlO5HV9lChoBmgJaA9DCMOf4c0aFVDAlIaUUpRoFU3oA2gWR0BbNwYpDu0DdX2UKGgGaAloD0MIiGUzhyRpYsCUhpRSlGgVTegDaBZHQFvTji4rjHZ1fZQoaAZoCWgPQwhyGMxfIXthwJSGlFKUaBVN6ANoFkdAXJSEK3NLUXV9lChoBmgJaA9DCLsqUIvBf1PAlIaUUpRoFU3oA2gWR0Bclo60Y0l7dX2UKGgGaAloD0MIrd7hdmgmYMCUhpRSlGgVTegDaBZHQF2iiqyWzGB1fZQoaAZoCWgPQwivJeSDHstiwJSGlFKUaBVN6ANoFkdAX2DwQUYbbXV9lChoBmgJaA9DCMDN4sXCNV/AlIaUUpRoFU3oA2gWR0BgXFcIJJGwdX2UKGgGaAloD0MIach4lMqpYMCUhpRSlGgVTegDaBZHQGY0X8XN1Qt1fZQoaAZoCWgPQwgWF0flJttawJSGlFKUaBVN6ANoFkdAZk/k6tDD0nV9lChoBmgJaA9DCMcS1sbYhVfAlIaUUpRoFU3oA2gWR0BmUZyn1nM/dX2UKGgGaAloD0MIfCx96IIEW8CUhpRSlGgVTegDaBZHQGb/xRMvh611fZQoaAZoCWgPQwhvoMA7+YxewJSGlFKUaBVN6ANoFkdAZz9t3wCr93V9lChoBmgJaA9DCCO9qN2vTVXAlIaUUpRoFU3oA2gWR0BnQ2qvNeMRdX2UKGgGaAloD0MIaAbxgR2sYsCUhpRSlGgVTegDaBZHQGdrEYfnwG51fZQoaAZoCWgPQwjqPCr+73JVwJSGlFKUaBVN6ANoFkdAZ70PS2H+InV9lChoBmgJaA9DCCO8PQgBh1jAlIaUUpRoFU3oA2gWR0BnyX5+H8CQdX2UKGgGaAloD0MIq5ffaTLwVcCUhpRSlGgVTegDaBZHQGf5ecYqG1x1fZQoaAZoCWgPQwht5Lop5SBhwJSGlFKUaBVN6ANoFkdAaEZ7MxGlRHV9lChoBmgJaA9DCJDaxMn9yF/AlIaUUpRoFU3oA2gWR0Boexg1FYuCdX2UKGgGaAloD0MItaM4Rx0wXcCUhpRSlGgVTegDaBZHQGh77uUliSd1fZQoaAZoCWgPQwi7JqQ1hpVkwJSGlFKUaBVN6ANoFkdAaPCZF5OafHV9lChoBmgJaA9DCICBIECGN2DAlIaUUpRoFU3oA2gWR0BpxpxaPjn3dX2UKGgGaAloD0MIby9pjNa9X8CUhpRSlGgVTegDaBZHQGpqoRRMvh91fZQoaAZoCWgPQwjJjo1AvKVfwJSGlFKUaBVN6ANoFkdAcCwvIOpbU3V9lChoBmgJaA9DCG1vtyQHpEnAlIaUUpRoFU3oA2gWR0BwOpDCxeLOdX2UKGgGaAloD0MI1c3F3/bNUMCUhpRSlGgVTegDaBZHQHA7ddE9dNZ1fZQoaAZoCWgPQwjcoPZbOy5cwJSGlFKUaBVN6ANoFkdAcJQksSTQmnV9lChoBmgJaA9DCIY6rHDLC2HAlIaUUpRoFU3oA2gWR0BwtQMMI/qxdX2UKGgGaAloD0MIMdEgBU+IX8CUhpRSlGgVTegDaBZHQHC28+/xlQN1fZQoaAZoCWgPQwhu2ozTED9ZwJSGlFKUaBVN6ANoFkdAcMqidrftQnV9lChoBmgJaA9DCAt+G2K8HjDAlIaUUpRoFU3oA2gWR0Bw8zJ6po9LdX2UKGgGaAloD0MIFXMQdLRUV8CUhpRSlGgVTegDaBZHQHD40J0GNaR1fZQoaAZoCWgPQwi9VdehmmVYwJSGlFKUaBVN6ANoFkdAcQ/GYrrgO3V9lChoBmgJaA9DCGh3SDFAeFHAlIaUUpRoFU3oA2gWR0BxNUQEpy6udX2UKGgGaAloD0MIA30iT5I+W8CUhpRSlGgVTegDaBZHQHFQRA8jiXJ1fZQoaAZoCWgPQwhDHyxjQ0JYwJSGlFKUaBVN6ANoFkdAcVC56MR6GHV9lChoBmgJaA9DCMEeEynNDVbAlIaUUpRoFU3oA2gWR0Bxi5QemvW6dX2UKGgGaAloD0MII2WLpN10W8CUhpRSlGgVTegDaBZHQHHz22kSElF1fZQoaAZoCWgPQwhDrtSzIK5yQJSGlFKUaBVNKwFoFkdAchHnSfDk2nV9lChoBmgJaA9DCODyWDMytEnAlIaUUpRoFU3oA2gWR0ByRkgMc6vJdX2UKGgGaAloD0MI0v9yLVokVcCUhpRSlGgVTegDaBZHQHUOkvPC2tx1fZQoaAZoCWgPQwi3XtODgrtTwJSGlFKUaBVN6ANoFkdAdRvsTFl05nV9lChoBmgJaA9DCAh3Z+22YFXAlIaUUpRoFU3oA2gWR0B1HL/vOQhfdX2UKGgGaAloD0MIKJmc2hmuXsCUhpRSlGgVTegDaBZHQHVylOoHcDd1fZQoaAZoCWgPQwhSfecXJXpSwJSGlFKUaBVN6ANoFkdAdZN0gr6LwXV9lChoBmgJaA9DCEKTxJJyolTAlIaUUpRoFU3oA2gWR0B1lVFSbYsedX2UKGgGaAloD0MIww5j0t/TUsCUhpRSlGgVTegDaBZHQHXUt0JWvKV1fZQoaAZoCWgPQwhK06BoHjBJwJSGlFKUaBVN6ANoFkdAddtW8yvcJ3V9lChoBmgJaA9DCMdMol7wIUzAlIaUUpRoFU3oA2gWR0B19GZ4Oc2BdX2UKGgGaAloD0MIYwtBDkpjVsCUhpRSlGgVTegDaBZHQHYcingpBop1fZQoaAZoCWgPQwhoke18PydYwJSGlFKUaBVN6ANoFkdAdjjgydnTRnV9lChoBmgJaA9DCBdFD3wMklDAlIaUUpRoFU3oA2gWR0B2OVBZ6lchdX2UKGgGaAloD0MIDk5Ev7a9VsCUhpRSlGgVTegDaBZHQHZ49O/L1VZ1fZQoaAZoCWgPQwhaoUj3c71dwJSGlFKUaBVN6ANoFkdAduj7HQyAQXV9lChoBmgJaA9DCHyA7suZsVTAlIaUUpRoFU3oA2gWR0B3B6gxrSE2dX2UKGgGaAloD0MI/vM0YJAYUMCUhpRSlGgVTegDaBZHQHc6wMc6vJR1fZQoaAZoCWgPQwj7JHfYRDFTwJSGlFKUaBVN6ANoFkdAed8pSJj2BnV9lChoBmgJaA9DCDRnfcoxBVTAlIaUUpRoFU3oA2gWR0B56qaOPvKEdX2UKGgGaAloD0MIBWwHI/ZtWMCUhpRSlGgVTegDaBZHQHnrYeDFqBV1fZQoaAZoCWgPQwgGaFvNOmdZwJSGlFKUaBVN6ANoFkdAejVl0HQhOnV9lChoBmgJaA9DCLrXSX1ZsEvAlIaUUpRoFU3oA2gWR0B6UcAvL5h0dX2UKGgGaAloD0MILliqC3gPU8CUhpRSlGgVTegDaBZHQHpTUhA4XGh1fZQoaAZoCWgPQwh5dvnWhzNPwJSGlFKUaBVN6ANoFkdAeolggX/HYHV9lChoBmgJaA9DCDZWYp6V6VHAlIaUUpRoFU3oA2gWR0B6jpMTN+spdX2UKGgGaAloD0MItB1Td2VRW8CUhpRSlGgVS5FoFkdAeps6XBxgiXV9lChoBmgJaA9DCJ4Hd2ft8knAlIaUUpRoFU3oA2gWR0B6o/QPZqVRdX2UKGgGaAloD0MIMQbWcfwwUcCUhpRSlGgVTegDaBZHQHrGvEwWWQh1fZQoaAZoCWgPQwgf9GxWfT9TwJSGlFKUaBVN6ANoFkdAet+wA2hqTXV9lChoBmgJaA9DCGoSvCGNFlHAlIaUUpRoFU3oA2gWR0B64DfzjFQ3dX2UKGgGaAloD0MIQFBu2/etUcCUhpRSlGgVTegDaBZHQHsZGFWXC0p1fZQoaAZoCWgPQwg8+l+uRbldwJSGlFKUaBVN6ANoFkdAe4HSK3uuzXV9lChoBmgJaA9DCNXsgVZgI1jAlIaUUpRoFU3oA2gWR0B7n7vphWo4dX2UKGgGaAloD0MIhnZOs0AlT8CUhpRSlGgVTegDaBZHQHvSRjjJdSl1ZS4="
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 100032,
83
+ "buffer_size": 50000,
84
+ "batch_size": 128,
85
+ "learning_starts": 0,
86
+ "tau": 1.0,
87
+ "gamma": 0.9,
88
+ "gradient_steps": -1,
89
+ "optimize_memory_usage": false,
90
+ "replay_buffer_class": {
91
+ ":type:": "<class 'abc.ABCMeta'>",
92
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
93
+ "__module__": "stable_baselines3.common.buffers",
94
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
95
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f2d36c05c20>",
96
+ "add": "<function ReplayBuffer.add at 0x7f2d36c05cb0>",
97
+ "sample": "<function ReplayBuffer.sample at 0x7f2d36c05d40>",
98
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f2d36c05dd0>",
99
+ "__abstractmethods__": "frozenset()",
100
+ "_abc_impl": "<_abc_data object at 0x7f2d36c686f0>"
101
+ },
102
+ "replay_buffer_kwargs": {},
103
+ "train_freq": {
104
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
105
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
106
+ },
107
+ "actor": null,
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.1,
111
+ "exploration_fraction": 0.12,
112
+ "target_update_interval": 15,
113
+ "_n_calls": 6252,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.1,
116
+ "exploration_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP764UeuFHriFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
119
+ }
120
+ }
DQN-LundarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60ed29874895a13da424ee9a4c0e942ca14136d6a7ffd5181e4d5b22eccae56
3
+ size 557935
DQN-LundarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3c0449c0eb1f94c6a5e2ff51768df53b56a192998b3647eee49cc1c0e8f96cc
3
+ size 557057
DQN-LundarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
DQN-LundarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -95.66 +/- 35.41
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **DQN** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **DQN** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f2d36bb44d0>", "_build": "<function DQNPolicy._build at 0x7f2d36bb4560>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f2d36bb45f0>", "forward": "<function DQNPolicy.forward at 0x7f2d36bb4680>", "_predict": "<function DQNPolicy._predict at 0x7f2d36bb4710>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f2d36bb47a0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f2d36bb4830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d36c1e840>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAATUbBGkX0of8bgtvCqsl9erlxb1cwvVoa/X+7kV76Q0nY5qglLtRo/Jl9ePE0K8aU3G+VFp56Rtx8vR/iJF9mE0V58dBM3Xay7a9QU7uPXnfFuAKPwg7V6MedYCogc4ElLSKSYXTuOaKoxBr3UXMjM7WLHb0Nb+WrdETA+lY3uoy1Wk05rcKhqhfUYXCuejZUJACwU9UVsOBgrUzpGKK9vqbywa/+I5ErQCnNoId7zf2IB912+M/OLhM5lNHGs7L5N4KxnlHJaYDfwlH1qpiPVGahIiemNmNHt9mSzArSPgoR0c8W62LlENFNuLagvDx31moz375mQKa9Y8sKB+gYhdLPg+K1QLI2ir1TvKNOSR3CS90NXtNheyaR8QaidllFj8SigRxtF8sRSp3l2afNr8XGgJ7cVdyUFUDvbUukRfOBjkvhJfMJeUbSqP2AfQE8aYUT3v7/sUBPqp16Z3XOxdYFIh9jGogIXSqq1igcfGCr4QOK+o8Ru/SbACfUZD/D2Yn2HUhO/5CWabv/KzXZUj4N3aIUvpvLyxv9OI8k0zZShhYQ7v2PBvWJqyrVag8MWy4HkaOLrKP5bCko8tl3VLEwFFKVv/U4JA8KqQv0gqJLj0wv6OHG/bzm35BRiEUhBlv/RJJyRha0FFJR6GknjaYeQX7H06AxpVsFiADN+JAGvD9XhwPPdk/vTH02LnepWxqQi8fCaVwE6wPlfHxAhBvhh8/fKqc1zXFyuxXrz62L3HaPe/9Dj5PcwJc1OIMnK0O8YDOz+mZBB0NmUk0dIPMYXOwnOHU8isjFEjIYrZ6G96jHRaHdAP2shRjLpDrHndd7Will69lKzpkCxvTdThHYNrmNyc59ycfE7LzulQdhE4WIEiatjNonymAQPJRpROc9piKAexACmJ2jZfUhR2xEO7mbt1HpbbPmWyuJd60HY7w6pXHlOO4uq6hlTE7UgjZth11bJIyV7NF6QSFjhcNqjLGpAjCQjBlON84zOziGvk77hoYhTBte5vD07vnbXnohHtlEl6njTBx96toX9kVWHBpteZZ7Z+Sk9Z+W9xBRN2aX2susuZs6Yzyku+zUXgOZTcGnGhF+iNHzK7ktxireEhmvbYbqyEbuhevTEIxEFrszBzEhCMo8iufv1FQ14C1ePs3vb7TfTfcmUyTP7AzpZ7jwUz9f9Ivex8trnAMka6xiIGXbHTmf77Mjrewk0MM5pK5qLhWlGCmkjhMLnz/n0tCfFAL1SNz8irAMDjN4sDinul5wpClF3KSgAQYKu6ieU9szSmr5uP2tOU0wnn+WNB089hCes/MPGvZZsMFspRatn0s4gSgjnQqYPmfqzFochcjADINSfkQYRHuxDhPWHKxPa3o7op9fYOnzVI/8w+P3bpELbuUprRi/Wx1nBwyh+8os7ebg6Iycfjd6q0ta4FP6W4TAfV+HesBppeNp0+wMU4ypvTAOo0WyWZEfDTnwTbG0p+o6lhofUAThSwTqvyTNBnL1QSUZaY46F1wYx50ksmWZKAMNc5+SrFf7Zl1KtklueE3o5hFRyTzNdIN/XjIfsvrqYkjO9iKd7xqIBTjoHsHLVSPLDnNmqg9iJEsnqA0RWYjrNqaEMkbLklW26kQHwcOAr4KMo8sZ8BPptHaZayCKOF/69wx72m31AnHDLbu3mGVe1/whVoBgzqNVdkzi5rqEfnyCvgaehWSxRLg6HAKwsCtbCCCNbwAO4QMQPTOycAVaTM/ShoawnMpBJ+nabqoWSDtGLoD/mxxSuJ6Vc4Kz5shN0uE8vlid3Tp+B897EAcfdrNCczqz1ubGWjVV1baJ+FXDqgcRjsOOdrrKQXLUGwpy/PQeMyGjlj+2UCB8Yp+HuN4/erEDQVm23xmTjQ8rVqVzrYzsg+WXD85G/nr2cdimLi+thM5VZOwrg7CawkVd8FqW+Po43q1U3Vx2CQmSgMzFSDfjzlKSnEbvt11Kf5KlkUpH1eblCrokxzF0Y21iuDwUZ6p93bMNn3E96ifJZZ8cDKCOeufxhKxHr5vomgXth3W6N0IIK2K1/fnyx2/HhBEQ4EPLStunD/OX6PBjavN/X1OZnzzEFuW/7FnWy/9E5Ih9H2qx+UAzoUZxP5d2jy0ZVoRiZHVyX+2TBlNpui860Yxd/4Nq1c3IXssaKd/+3QpexIqG2lZglq1rx3dky4O03qkZqYzy+uo4RvOLv4NK+lZGQ5xVUvDkmeo2d2+mjIVuDjPMtCBHbSVPvc9nsO3V88w8YLeJ0U+m+n//agBxFINLmNGMhNu0yPoq4Qi3xj+ZLCNnzWy6Cpq4Lx1ZT4WPLyXGfh9tCJeLDjzR39PTFgNRZoE2TWfSXms1/CXwGQU8OAmNWinttDuV/S4sWY1Zh5vrMfHfrXZELOetUREWI99A0OybBBmtaNfv2iC2s+MZXl7U9AK5xr9gSiN9oOkk1sJkeJw9Th4N/PkSmrBb4zNBGCMYiFQmt0DTO7V/V6X3Mwm/3BshpCsGjBQQ0JksRnTL3/ILWV06Y1nudoQJ2PvnSucUVZ5vk2TP+uuvGJo4WNivRW+KGd+saiaK0xFUY4SxyNvKyp8zXeHsk/1PYfDsxyVwLQKQQs8MTC5zPEpNSkJT8RDcXHjZjJ6AHoM/BWgYIFN90TktszNVHoBVlVvkAriRxJjPe/YJsuEsSZ54Gx34w1q2ljA8tzxMAlstmpjfOP2MSb4FRrvv9oTjKCEu/+XMmGrIFaFjt39Aw3U5kH0TPn4SWz7WuCU2anHl6LfPl+q519cJoC0z5jMe+vx45LYtHdTNdjS6eGT00fK9wV7zxW1bkde2t1KhU7hJVfH+w2pWFVRXJ01ExGgclyZzlJwLEjjNRF2rmCyVxzHv/5b5ZrPI16vt21Iy4lgkmKHPThpECjbHFtxxSO5FiUXcdDD+/owNwOmwc1npw4gUWwRjh5sV2j38vu/JqzCI5Qp1ePzfDnSN2i49zkyLhEuQlTfWTAdlHi6PrKbcmhUyo9QU3a7F0aNmHqDTbt3LUgKzSc08UoIGjodATpMPxYf7DyZAT78EnRTRyyklofnPKR7zPCsNzm91+Gvz3FgSp4ZQCqfgfZUUuDpp8MzOFdBVtPK6/Y8Hz3bHCzvtwHB+WzQIO44i3szyKxC1fqoyTP23Z9FLdEEDmuUE/kvnz1Gg13asZpJbG3+O4AAaxVwtTPBAUac8l4JRKR+Y2dV5TVcyQlVL+e5nTejYZNl1q1LdD/O7pkU6stYzdn8nNVfBHmV5TUdzP3DJVL7YumOlneVe7YHc3ApwmV4dtvVcYDEpuxs5KFHXBwaWpHS2UiAAU1t1lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLkHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 100032, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658307029.842424, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozwzxpLIE/1gYHPgDGzLxo+/M8V77GugAAAAAAAAAAU3nGPtdkYj+NaN+7jedqvK4vGTyc+rK8AAAAAAAAAABNA0Q/29RXP7YaJj3iLy29rvYRPaUh4LwAAAAAAAAAAOVojb6yh4k/7PCMvQJ2EL32AnG86745PAAAAAAAAAAAGuNPP/xkJz9lycc81zIDu2LUODxDDFg9AAAAAAAAAADTcBi+/CM+P27Ufb2TCPa8k6XSu49gn7wAAAAAAAAAAJxoNr8A1wU/i0QZvm7ApbzNpji8MJiMPAAAAAAAAAAAC3+JvhdyCz5wvXY8f3IevJIJmDxijWi8AAAAAAAAAABA8ow+fSSSP9zqgT39GTS8lJuDPE6wybsAAAAAAAAAAGCSMT+tLWc/4i6AvbpjV7y/C/O8jJevOwAAAAAAAAAAM7CHPFOcVD83kqw91AxgvC8jDT3G9NY6AAAAAAAAAADyS76+smZDP3IZAD2ldbc8SczmPG3WijsAAAAAAAAAAP1Zrj4eLX0/feDVvL3UrLwduYe7CS6wOwAAAAAAAAAA09IIvq4OYz86QTs9XlGfvD7DiTw2zWO8AAAAAAAAAAAzRAU9PEM2P8eQOzxtZqQ8RiYwOwuXl7sAAAAAAAAAAHZzOz9xOGU/hY13vRmCFL3Y1wy9dJ7IvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1nuDzXPoE/eisLPv/JM71smvQ8kkfhOQAAAAAAAAAAtoPGPgB6Yj9G7AK8EnbgvIgVKzxFU8G8AAAAAAAAAACj6UM/PxNYP7UaJj3F1n+8HpEXPZ4h4LwAAAAAAAAAAHMPjb60oYk/glhwvWEYFbx7THq8QEvwvAAAAAAAAAAAXdFPP+tnJz9iycc86w7KPOCeDTxQDFg9AAAAAAAAAADNyxe+Q1A+P4EAPr2nlCC9csWyuxdWhLsAAAAAAAAAABcHNr/Z9AU/OogavuUAN70Etka8WU+KPAAAAAAAAAAA1pGJvi+rCz5uvXY85DqLPOTZnTxbjWi8AAAAAAAAAACAn4w+mSySP9zqgT0TZ4A8+yCGPGWwybsAAAAAAAAAADa7MT8TQWc/uQKKvdzMZb2dPfW8U1V0OwAAAAAAAAAAM8eAPHuwVD/+paU92VEEvTPNDD02HH+7AAAAAAAAAAA4db6+q0VDP8QkLD3dRjy8ARDlPG4YSDwAAAAAAAAAANp7rj45TH0/ItIRvYpRBL1HiJC7EgtruwAAAAAAAAAA00gJvl4rYz85QTs9DYvsOzF1jzw1zWO8AAAAAAAAAACazgQ9piU2P+5jwzsXvp68+04/O6GJJ7wAAAAAAAAAAOObOz/cbWU/g413vcAfHbzi0we9fZ7IvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 145, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo81xbhPFVMCUhpRSlIwBbJRLdYwBdJRHQDjMLYwqRU51fZQoaAZoCWgPQwhhM8AF2W46wJSGlFKUaBVLbWgWR0A5BVopQUHqdX2UKGgGaAloD0MIS+ZY3lURVcCUhpRSlGgVS6BoFkdAOXCThYNiIHV9lChoBmgJaA9DCBU2A1yQUlDAlIaUUpRoFUuYaBZHQDmulfqoqCp1fZQoaAZoCWgPQwiPOc/Yl5ZVwJSGlFKUaBVLUWgWR0A53gG8mKIjdX2UKGgGaAloD0MIcGHdeHesZcCUhpRSlGgVS4toFkdAOelTisGPgnV9lChoBmgJaA9DCO52vTRF6lHAlIaUUpRoFUuqaBZHQDq/vv0AcT91fZQoaAZoCWgPQwgV5Gcj15RUwJSGlFKUaBVLQ2gWR0A8ja6jFhoedX2UKGgGaAloD0MIVb38TpO1PsCUhpRSlGgVS6xoFkdAPMj/lyR0VHV9lChoBmgJaA9DCDiFlQoqHFbAlIaUUpRoFUvjaBZHQD3tx1gYxcp1fZQoaAZoCWgPQwgHexNDco5PwJSGlFKUaBVLa2gWR0A+miGFi8WcdX2UKGgGaAloD0MI2lVI+UmBNUCUhpRSlGgVS5xoFkdAP7gNCqp97XV9lChoBmgJaA9DCBObj2vDLGrAlIaUUpRoFUuIaBZHQECMJzkp7Tl1fZQoaAZoCWgPQwiqnsw/+i5LwJSGlFKUaBVLhGgWR0BAjy7Xg9/0dX2UKGgGaAloD0MIeuOkMO9RcMCUhpRSlGgVTSoBaBZHQEIt+PRzBAR1fZQoaAZoCWgPQwhdN6W8ViIyQJSGlFKUaBVLy2gWR0BFUNPxhDw6dX2UKGgGaAloD0MInu488ZwuY0CUhpRSlGgVTcUBaBZHQEfVYJ3PiUB1fZQoaAZoCWgPQwjGGcOcICJuQJSGlFKUaBVNqAFoFkdASY3s/pt78nV9lChoBmgJaA9DCB5ssdtngT7AlIaUUpRoFU3oA2gWR0BXaAb2lEZ0dX2UKGgGaAloD0MIcY3PZP/KXcCUhpRSlGgVTegDaBZHQFefjG1hLGt1fZQoaAZoCWgPQwgfniXICGtpwJSGlFKUaBVN/QFoFkdAV6LU3GXHBHV9lChoBmgJaA9DCE7soX2saC/AlIaUUpRoFU3oA2gWR0BZBo0l7dBTdX2UKGgGaAloD0MI5zbhXpkzYcCUhpRSlGgVTegDaBZHQFmLQnx8UmF1fZQoaAZoCWgPQwjBdFq3QV0aQJSGlFKUaBVN6ANoFkdAWZNI3BHkLnV9lChoBmgJaA9DCMh8QKAzd0TAlIaUUpRoFU3oA2gWR0BZ/Bi5NGmUdX2UKGgGaAloD0MIDfs9sU4nXcCUhpRSlGgVTegDaBZHQFq9fqX4TK11fZQoaAZoCWgPQwg9J71vfClIwJSGlFKUaBVN6ANoFkdAWtX9YOlO5HV9lChoBmgJaA9DCMOf4c0aFVDAlIaUUpRoFU3oA2gWR0BbNwYpDu0DdX2UKGgGaAloD0MIiGUzhyRpYsCUhpRSlGgVTegDaBZHQFvTji4rjHZ1fZQoaAZoCWgPQwhyGMxfIXthwJSGlFKUaBVN6ANoFkdAXJSEK3NLUXV9lChoBmgJaA9DCLsqUIvBf1PAlIaUUpRoFU3oA2gWR0Bclo60Y0l7dX2UKGgGaAloD0MIrd7hdmgmYMCUhpRSlGgVTegDaBZHQF2iiqyWzGB1fZQoaAZoCWgPQwivJeSDHstiwJSGlFKUaBVN6ANoFkdAX2DwQUYbbXV9lChoBmgJaA9DCMDN4sXCNV/AlIaUUpRoFU3oA2gWR0BgXFcIJJGwdX2UKGgGaAloD0MIach4lMqpYMCUhpRSlGgVTegDaBZHQGY0X8XN1Qt1fZQoaAZoCWgPQwgWF0flJttawJSGlFKUaBVN6ANoFkdAZk/k6tDD0nV9lChoBmgJaA9DCMcS1sbYhVfAlIaUUpRoFU3oA2gWR0BmUZyn1nM/dX2UKGgGaAloD0MIfCx96IIEW8CUhpRSlGgVTegDaBZHQGb/xRMvh611fZQoaAZoCWgPQwhvoMA7+YxewJSGlFKUaBVN6ANoFkdAZz9t3wCr93V9lChoBmgJaA9DCCO9qN2vTVXAlIaUUpRoFU3oA2gWR0BnQ2qvNeMRdX2UKGgGaAloD0MIaAbxgR2sYsCUhpRSlGgVTegDaBZHQGdrEYfnwG51fZQoaAZoCWgPQwjqPCr+73JVwJSGlFKUaBVN6ANoFkdAZ70PS2H+InV9lChoBmgJaA9DCCO8PQgBh1jAlIaUUpRoFU3oA2gWR0BnyX5+H8CQdX2UKGgGaAloD0MIq5ffaTLwVcCUhpRSlGgVTegDaBZHQGf5ecYqG1x1fZQoaAZoCWgPQwht5Lop5SBhwJSGlFKUaBVN6ANoFkdAaEZ7MxGlRHV9lChoBmgJaA9DCJDaxMn9yF/AlIaUUpRoFU3oA2gWR0Boexg1FYuCdX2UKGgGaAloD0MItaM4Rx0wXcCUhpRSlGgVTegDaBZHQGh77uUliSd1fZQoaAZoCWgPQwi7JqQ1hpVkwJSGlFKUaBVN6ANoFkdAaPCZF5OafHV9lChoBmgJaA9DCICBIECGN2DAlIaUUpRoFU3oA2gWR0BpxpxaPjn3dX2UKGgGaAloD0MIby9pjNa9X8CUhpRSlGgVTegDaBZHQGpqoRRMvh91fZQoaAZoCWgPQwjJjo1AvKVfwJSGlFKUaBVN6ANoFkdAcCwvIOpbU3V9lChoBmgJaA9DCG1vtyQHpEnAlIaUUpRoFU3oA2gWR0BwOpDCxeLOdX2UKGgGaAloD0MI1c3F3/bNUMCUhpRSlGgVTegDaBZHQHA7ddE9dNZ1fZQoaAZoCWgPQwjcoPZbOy5cwJSGlFKUaBVN6ANoFkdAcJQksSTQmnV9lChoBmgJaA9DCIY6rHDLC2HAlIaUUpRoFU3oA2gWR0BwtQMMI/qxdX2UKGgGaAloD0MIMdEgBU+IX8CUhpRSlGgVTegDaBZHQHC28+/xlQN1fZQoaAZoCWgPQwhu2ozTED9ZwJSGlFKUaBVN6ANoFkdAcMqidrftQnV9lChoBmgJaA9DCAt+G2K8HjDAlIaUUpRoFU3oA2gWR0Bw8zJ6po9LdX2UKGgGaAloD0MIFXMQdLRUV8CUhpRSlGgVTegDaBZHQHD40J0GNaR1fZQoaAZoCWgPQwi9VdehmmVYwJSGlFKUaBVN6ANoFkdAcQ/GYrrgO3V9lChoBmgJaA9DCGh3SDFAeFHAlIaUUpRoFU3oA2gWR0BxNUQEpy6udX2UKGgGaAloD0MIA30iT5I+W8CUhpRSlGgVTegDaBZHQHFQRA8jiXJ1fZQoaAZoCWgPQwhDHyxjQ0JYwJSGlFKUaBVN6ANoFkdAcVC56MR6GHV9lChoBmgJaA9DCMEeEynNDVbAlIaUUpRoFU3oA2gWR0Bxi5QemvW6dX2UKGgGaAloD0MII2WLpN10W8CUhpRSlGgVTegDaBZHQHHz22kSElF1fZQoaAZoCWgPQwhDrtSzIK5yQJSGlFKUaBVNKwFoFkdAchHnSfDk2nV9lChoBmgJaA9DCODyWDMytEnAlIaUUpRoFU3oA2gWR0ByRkgMc6vJdX2UKGgGaAloD0MI0v9yLVokVcCUhpRSlGgVTegDaBZHQHUOkvPC2tx1fZQoaAZoCWgPQwi3XtODgrtTwJSGlFKUaBVN6ANoFkdAdRvsTFl05nV9lChoBmgJaA9DCAh3Z+22YFXAlIaUUpRoFU3oA2gWR0B1HL/vOQhfdX2UKGgGaAloD0MIKJmc2hmuXsCUhpRSlGgVTegDaBZHQHVylOoHcDd1fZQoaAZoCWgPQwhSfecXJXpSwJSGlFKUaBVN6ANoFkdAdZN0gr6LwXV9lChoBmgJaA9DCEKTxJJyolTAlIaUUpRoFU3oA2gWR0B1lVFSbYsedX2UKGgGaAloD0MIww5j0t/TUsCUhpRSlGgVTegDaBZHQHXUt0JWvKV1fZQoaAZoCWgPQwhK06BoHjBJwJSGlFKUaBVN6ANoFkdAddtW8yvcJ3V9lChoBmgJaA9DCMdMol7wIUzAlIaUUpRoFU3oA2gWR0B19GZ4Oc2BdX2UKGgGaAloD0MIYwtBDkpjVsCUhpRSlGgVTegDaBZHQHYcingpBop1fZQoaAZoCWgPQwhoke18PydYwJSGlFKUaBVN6ANoFkdAdjjgydnTRnV9lChoBmgJaA9DCBdFD3wMklDAlIaUUpRoFU3oA2gWR0B2OVBZ6lchdX2UKGgGaAloD0MIDk5Ev7a9VsCUhpRSlGgVTegDaBZHQHZ49O/L1VZ1fZQoaAZoCWgPQwhaoUj3c71dwJSGlFKUaBVN6ANoFkdAduj7HQyAQXV9lChoBmgJaA9DCHyA7suZsVTAlIaUUpRoFU3oA2gWR0B3B6gxrSE2dX2UKGgGaAloD0MI/vM0YJAYUMCUhpRSlGgVTegDaBZHQHc6wMc6vJR1fZQoaAZoCWgPQwj7JHfYRDFTwJSGlFKUaBVN6ANoFkdAed8pSJj2BnV9lChoBmgJaA9DCDRnfcoxBVTAlIaUUpRoFU3oA2gWR0B56qaOPvKEdX2UKGgGaAloD0MIBWwHI/ZtWMCUhpRSlGgVTegDaBZHQHnrYeDFqBV1fZQoaAZoCWgPQwgGaFvNOmdZwJSGlFKUaBVN6ANoFkdAejVl0HQhOnV9lChoBmgJaA9DCLrXSX1ZsEvAlIaUUpRoFU3oA2gWR0B6UcAvL5h0dX2UKGgGaAloD0MILliqC3gPU8CUhpRSlGgVTegDaBZHQHpTUhA4XGh1fZQoaAZoCWgPQwh5dvnWhzNPwJSGlFKUaBVN6ANoFkdAeolggX/HYHV9lChoBmgJaA9DCDZWYp6V6VHAlIaUUpRoFU3oA2gWR0B6jpMTN+spdX2UKGgGaAloD0MItB1Td2VRW8CUhpRSlGgVS5FoFkdAeps6XBxgiXV9lChoBmgJaA9DCJ4Hd2ft8knAlIaUUpRoFU3oA2gWR0B6o/QPZqVRdX2UKGgGaAloD0MIMQbWcfwwUcCUhpRSlGgVTegDaBZHQHrGvEwWWQh1fZQoaAZoCWgPQwgf9GxWfT9TwJSGlFKUaBVN6ANoFkdAet+wA2hqTXV9lChoBmgJaA9DCGoSvCGNFlHAlIaUUpRoFU3oA2gWR0B64DfzjFQ3dX2UKGgGaAloD0MIQFBu2/etUcCUhpRSlGgVTegDaBZHQHsZGFWXC0p1fZQoaAZoCWgPQwg8+l+uRbldwJSGlFKUaBVN6ANoFkdAe4HSK3uuzXV9lChoBmgJaA9DCNXsgVZgI1jAlIaUUpRoFU3oA2gWR0B7n7vphWo4dX2UKGgGaAloD0MIhnZOs0AlT8CUhpRSlGgVTegDaBZHQHvSRjjJdSl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100032, "buffer_size": 50000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.9, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f2d36c05c20>", "add": "<function ReplayBuffer.add at 0x7f2d36c05cb0>", "sample": "<function ReplayBuffer.sample at 0x7f2d36c05d40>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f2d36c05dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d36c686f0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.12, "target_update_interval": 15, "_n_calls": 6252, "max_grad_norm": 10, "exploration_rate": 0.1, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP764UeuFHriFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (223 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -95.65773881706119, "std_reward": 35.405444014816666, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-20T09:04:44.161297"}