wl-tookitaki commited on
Commit
e286a35
1 Parent(s): 6d6f597

Model save

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: intfloat/multilingual-e5-small
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: e5_finetuned
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # e5_finetuned
20
+
21
+ This model is a fine-tuned version of [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0611
24
+ - Precision: 0.9494
25
+ - Recall: 0.8860
26
+ - F1: 0.9166
27
+ - Accuracy: 0.9799
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 32
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 5.0
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | No log | 0.0009 | 2 | 0.7141 | 0.125 | 1.0 | 0.2222 | 0.125 |
62
+ | 0.1046 | 0.9998 | 2334 | 0.0905 | 0.9564 | 0.8239 | 0.8852 | 0.9733 |
63
+ | 0.0786 | 2.0 | 4669 | 0.0734 | 0.9550 | 0.8540 | 0.9016 | 0.9767 |
64
+ | 0.0761 | 2.9998 | 7003 | 0.0690 | 0.9358 | 0.8834 | 0.9088 | 0.9778 |
65
+ | 0.0673 | 4.0 | 9338 | 0.0621 | 0.9594 | 0.8750 | 0.9152 | 0.9797 |
66
+ | 0.0709 | 4.9989 | 11670 | 0.0611 | 0.9494 | 0.8860 | 0.9166 | 0.9799 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.44.0
72
+ - Pytorch 2.1.0+cu118
73
+ - Datasets 2.20.0
74
+ - Tokenizers 0.19.1