LIPREAD / train.py
wissemkarous's picture
init
b072050 verified
raw
history blame
7.92 kB
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import os
from dataset import MyDataset
import numpy as np
import time
from model import LipCoordNet
import torch.optim as optim
from tensorboardX import SummaryWriter
import options as opt
from tqdm import tqdm
def dataset2dataloader(dataset, num_workers=opt.num_workers, shuffle=True):
return DataLoader(
dataset,
batch_size=opt.batch_size,
shuffle=shuffle,
num_workers=num_workers,
drop_last=False,
pin_memory=opt.pin_memory,
)
def show_lr(optimizer):
lr = []
for param_group in optimizer.param_groups:
lr += [param_group["lr"]]
return np.array(lr).mean()
def ctc_decode(y):
y = y.argmax(-1)
return [MyDataset.ctc_arr2txt(y[_], start=1) for _ in range(y.size(0))]
def test(model, net):
with torch.no_grad():
dataset = MyDataset(
opt.video_path,
opt.anno_path,
opt.coords_path,
opt.val_list,
opt.vid_padding,
opt.txt_padding,
"test",
)
print("num_test_data:{}".format(len(dataset.data)))
model.eval()
loader = dataset2dataloader(dataset, shuffle=False)
loss_list = []
wer = []
cer = []
crit = nn.CTCLoss()
tic = time.time()
print("RUNNING VALIDATION")
pbar = tqdm(loader)
for i_iter, input in enumerate(pbar):
vid = input.get("vid").cuda(non_blocking=opt.pin_memory)
txt = input.get("txt").cuda(non_blocking=opt.pin_memory)
vid_len = input.get("vid_len").cuda(non_blocking=opt.pin_memory)
txt_len = input.get("txt_len").cuda(non_blocking=opt.pin_memory)
coord = input.get("coord").cuda(non_blocking=opt.pin_memory)
y = net(vid, coord)
loss = (
crit(
y.transpose(0, 1).log_softmax(-1),
txt,
vid_len.view(-1),
txt_len.view(-1),
)
.detach()
.cpu()
.numpy()
)
loss_list.append(loss)
pred_txt = ctc_decode(y)
truth_txt = [MyDataset.arr2txt(txt[_], start=1) for _ in range(txt.size(0))]
wer.extend(MyDataset.wer(pred_txt, truth_txt))
cer.extend(MyDataset.cer(pred_txt, truth_txt))
if i_iter % opt.display == 0:
v = 1.0 * (time.time() - tic) / (i_iter + 1)
eta = v * (len(loader) - i_iter) / 3600.0
print("".join(101 * "-"))
print("{:<50}|{:>50}".format("predict", "truth"))
print("".join(101 * "-"))
for predict, truth in list(zip(pred_txt, truth_txt))[:10]:
print("{:<50}|{:>50}".format(predict, truth))
print("".join(101 * "-"))
print(
"test_iter={},eta={},wer={},cer={}".format(
i_iter, eta, np.array(wer).mean(), np.array(cer).mean()
)
)
print("".join(101 * "-"))
return (np.array(loss_list).mean(), np.array(wer).mean(), np.array(cer).mean())
def train(model, net):
dataset = MyDataset(
opt.video_path,
opt.anno_path,
opt.coords_path,
opt.train_list,
opt.vid_padding,
opt.txt_padding,
"train",
)
loader = dataset2dataloader(dataset)
optimizer = optim.Adam(
model.parameters(), lr=opt.base_lr, weight_decay=0.0, amsgrad=True
)
print("num_train_data:{}".format(len(dataset.data)))
crit = nn.CTCLoss()
tic = time.time()
train_wer = []
for epoch in range(opt.max_epoch):
print(f"RUNNING EPOCH {epoch}")
pbar = tqdm(loader)
for i_iter, input in enumerate(pbar):
model.train()
vid = input.get("vid").cuda(non_blocking=opt.pin_memory)
txt = input.get("txt").cuda(non_blocking=opt.pin_memory)
vid_len = input.get("vid_len").cuda(non_blocking=opt.pin_memory)
txt_len = input.get("txt_len").cuda(non_blocking=opt.pin_memory)
coord = input.get("coord").cuda(non_blocking=opt.pin_memory)
optimizer.zero_grad()
y = net(vid, coord)
loss = crit(
y.transpose(0, 1).log_softmax(-1),
txt,
vid_len.view(-1),
txt_len.view(-1),
)
loss.backward()
if opt.is_optimize:
optimizer.step()
tot_iter = i_iter + epoch * len(loader)
pred_txt = ctc_decode(y)
truth_txt = [MyDataset.arr2txt(txt[_], start=1) for _ in range(txt.size(0))]
train_wer.extend(MyDataset.wer(pred_txt, truth_txt))
if tot_iter % opt.display == 0:
v = 1.0 * (time.time() - tic) / (tot_iter + 1)
eta = (len(loader) - i_iter) * v / 3600.0
writer.add_scalar("train loss", loss, tot_iter)
writer.add_scalar("train wer", np.array(train_wer).mean(), tot_iter)
print("".join(101 * "-"))
print("{:<50}|{:>50}".format("predict", "truth"))
print("".join(101 * "-"))
for predict, truth in list(zip(pred_txt, truth_txt))[:3]:
print("{:<50}|{:>50}".format(predict, truth))
print("".join(101 * "-"))
print(
"epoch={},tot_iter={},eta={},loss={},train_wer={}".format(
epoch, tot_iter, eta, loss, np.array(train_wer).mean()
)
)
print("".join(101 * "-"))
if tot_iter % opt.test_step == 0:
(loss, wer, cer) = test(model, net)
print(
"i_iter={},lr={},loss={},wer={},cer={}".format(
tot_iter, show_lr(optimizer), loss, wer, cer
)
)
writer.add_scalar("val loss", loss, tot_iter)
writer.add_scalar("wer", wer, tot_iter)
writer.add_scalar("cer", cer, tot_iter)
savename = "{}_loss_{}_wer_{}_cer_{}.pt".format(
opt.save_prefix, loss, wer, cer
)
(path, name) = os.path.split(savename)
if not os.path.exists(path):
os.makedirs(path)
torch.save(model.state_dict(), savename)
if not opt.is_optimize:
exit()
if __name__ == "__main__":
print("Loading options...")
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
writer = SummaryWriter()
model = LipCoordNet()
model = model.cuda()
net = nn.DataParallel(model).cuda()
if hasattr(opt, "weights"):
pretrained_dict = torch.load(opt.weights)
model_dict = model.state_dict()
pretrained_dict = {
k: v
for k, v in pretrained_dict.items()
if k in model_dict.keys() and v.size() == model_dict[k].size()
}
# freeze the pretrained layers
for k, param in pretrained_dict.items():
param.requires_grad = False
missed_params = [
k for k, v in model_dict.items() if not k in pretrained_dict.keys()
]
print(
"loaded params/tot params:{}/{}".format(
len(pretrained_dict), len(model_dict)
)
)
print("miss matched params:{}".format(missed_params))
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
torch.manual_seed(opt.random_seed)
torch.cuda.manual_seed_all(opt.random_seed)
torch.backends.cudnn.benchmark = True
train(model, net)