init commit
Browse files- README.md +99 -0
- added_tokens.json +3 -0
- config.json +3294 -0
- configuration_prismatic.py +140 -0
- dataset_statistics.json +127 -0
- generation_config.json +7 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +989 -0
- modeling_prismatic.py +561 -0
- preprocessor_config.json +114 -0
- processing_prismatic.py +257 -0
- processor_config.json +6 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +53 -0
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- robotics
|
5 |
+
- vla
|
6 |
+
- image-text-to-text
|
7 |
+
- multimodal
|
8 |
+
- pretraining
|
9 |
+
license: mit
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
pipeline_tag: image-text-to-text
|
13 |
+
---
|
14 |
+
|
15 |
+
# OpenVLA 7B
|
16 |
+
|
17 |
+
OpenVLA 7B (`openvla-7b`) is an open vision-language-action model trained on 970K robot manipulation episodes from the [Open X-Embodiment](https://robotics-transformer-x.github.io/) dataset.
|
18 |
+
The model takes language instructions and camera images as input and generates robot actions. It supports controlling multiple robots out-of-the-box, and can be quickly adapted for new robot domains via (parameter-efficient) fine-tuning.
|
19 |
+
|
20 |
+
All OpenVLA checkpoints, as well as our [training codebase](https://github.com/openvla/openvla) are released under an MIT License.
|
21 |
+
|
22 |
+
For full details, please read [our paper](https://arxiv.org/abs/2406.09246) and see [our project page](https://openvla.github.io/).
|
23 |
+
|
24 |
+
## Model Summary
|
25 |
+
|
26 |
+
- **Developed by:** The OpenVLA team consisting of researchers from Stanford, UC Berkeley, Google Deepmind, and the Toyota Research Institute.
|
27 |
+
- **Model type:** Vision-language-action (language, image => robot actions)
|
28 |
+
- **Language(s) (NLP):** en
|
29 |
+
- **License:** MIT
|
30 |
+
- **Finetuned from:** [`prism-dinosiglip-224px`](https://github.com/TRI-ML/prismatic-vlms), a VLM trained from:
|
31 |
+
+ **Vision Backbone**: DINOv2 ViT-L/14 and SigLIP ViT-So400M/14
|
32 |
+
+ **Language Model**: Llama-2
|
33 |
+
- **Pretraining Dataset:** [Open X-Embodiment](https://robotics-transformer-x.github.io/) -- specific component datasets can be found [here](https://github.com/openvla/openvla).
|
34 |
+
- **Repository:** [https://github.com/openvla/openvla](https://github.com/openvla/openvla)
|
35 |
+
- **Paper:** [OpenVLA: An Open-Source Vision-Language-Action Model](https://arxiv.org/abs/2406.09246)
|
36 |
+
- **Project Page & Videos:** [https://openvla.github.io/](https://openvla.github.io/)
|
37 |
+
|
38 |
+
## Uses
|
39 |
+
|
40 |
+
OpenVLA models take a language instruction and a camera image of a robot workspace as input, and predict (normalized) robot actions consisting of 7-DoF end-effector deltas
|
41 |
+
of the form (x, y, z, roll, pitch, yaw, gripper). To execute on an actual robot platform, actions need to be *un-normalized* subject to statistics computed on a per-robot,
|
42 |
+
per-dataset basis. See [our repository](https://github.com/openvla/openvla) for more information.
|
43 |
+
|
44 |
+
OpenVLA models can be used zero-shot to control robots for specific combinations of embodiments and domains seen in the Open-X pretraining mixture (e.g., for
|
45 |
+
[BridgeV2 environments with a Widow-X robot](https://rail-berkeley.github.io/bridgedata/)). They can also be efficiently *fine-tuned* for new tasks and robot setups
|
46 |
+
given minimal demonstration data; [see here](https://github.com/openvla/openvla/blob/main/scripts/finetune.py).
|
47 |
+
|
48 |
+
**Out-of-Scope:** OpenVLA models do not zero-shot generalize to new (unseen) robot embodiments, or setups that are not represented in the pretraining mix; in these cases,
|
49 |
+
we suggest collecting a dataset of demonstrations on the desired setup, and fine-tuning OpenVLA models instead.
|
50 |
+
|
51 |
+
## Getting Started
|
52 |
+
|
53 |
+
OpenVLA 7B can be used to control multiple robots for domains represented in the pretraining mixture out-of-the-box. For example,
|
54 |
+
here is an example for loading `openvla-7b` for zero-shot instruction following in the [BridgeV2 environments] with a Widow-X robot:
|
55 |
+
|
56 |
+
```python
|
57 |
+
# Install minimal dependencies (`torch`, `transformers`, `timm`, `tokenizers`, ...)
|
58 |
+
# > pip install -r https://raw.githubusercontent.com/openvla/openvla/main/requirements-min.txt
|
59 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
60 |
+
from PIL import Image
|
61 |
+
|
62 |
+
import torch
|
63 |
+
|
64 |
+
# Load Processor & VLA
|
65 |
+
processor = AutoProcessor.from_pretrained("openvla/openvla-7b", trust_remote_code=True)
|
66 |
+
vla = AutoModelForVision2Seq.from_pretrained(
|
67 |
+
"openvla/openvla-7b",
|
68 |
+
attn_implementation="flash_attention_2", # [Optional] Requires `flash_attn`
|
69 |
+
torch_dtype=torch.bfloat16,
|
70 |
+
low_cpu_mem_usage=True,
|
71 |
+
trust_remote_code=True
|
72 |
+
).to("cuda:0")
|
73 |
+
|
74 |
+
# Grab image input & format prompt
|
75 |
+
image: Image.Image = get_from_camera(...)
|
76 |
+
prompt = "In: What action should the robot take to {<INSTRUCTION>}?\nOut:"
|
77 |
+
|
78 |
+
# Predict Action (7-DoF; un-normalize for BridgeV2)
|
79 |
+
inputs = processor(prompt, image).to("cuda:0", dtype=torch.bfloat16)
|
80 |
+
action = vla.predict_action(**inputs, unnorm_key="bridge_orig", do_sample=False)
|
81 |
+
|
82 |
+
# Execute...
|
83 |
+
robot.act(action, ...)
|
84 |
+
```
|
85 |
+
|
86 |
+
For more examples, including scripts for fine-tuning OpenVLA models on your own robot demonstration datasets, see [our training repository](https://github.com/openvla/openvla).
|
87 |
+
|
88 |
+
## Citation
|
89 |
+
|
90 |
+
**BibTeX:**
|
91 |
+
|
92 |
+
```bibtex
|
93 |
+
@article{kim24openvla,
|
94 |
+
title={OpenVLA: An Open-Source Vision-Language-Action Model},
|
95 |
+
author={{Moo Jin} Kim and Karl Pertsch and Siddharth Karamcheti and Ted Xiao and Ashwin Balakrishna and Suraj Nair and Rafael Rafailov and Ethan Foster and Grace Lam and Pannag Sanketi and Quan Vuong and Thomas Kollar and Benjamin Burchfiel and Russ Tedrake and Dorsa Sadigh and Sergey Levine and Percy Liang and Chelsea Finn},
|
96 |
+
journal = {arXiv preprint arXiv:2406.09246},
|
97 |
+
year={2024}
|
98 |
+
}
|
99 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<PAD>": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,3294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openvla/openvla-7b",
|
3 |
+
"arch_specifier": "no-align+fused-gelu-mlp",
|
4 |
+
"architectures": [
|
5 |
+
"OpenVLAForActionPrediction"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "openvla/openvla-7b--configuration_prismatic.OpenVLAConfig",
|
9 |
+
"AutoModelForVision2Seq": "openvla/openvla-7b--modeling_prismatic.OpenVLAForActionPrediction"
|
10 |
+
},
|
11 |
+
"hf_llm_id": "meta-llama/Llama-2-7b-hf",
|
12 |
+
"image_resize_strategy": "resize-naive",
|
13 |
+
"image_sizes": [
|
14 |
+
224,
|
15 |
+
224
|
16 |
+
],
|
17 |
+
"llm_backbone_id": "llama2-7b-pure",
|
18 |
+
"llm_max_length": 2048,
|
19 |
+
"model_type": "openvla",
|
20 |
+
"n_action_bins": 256,
|
21 |
+
"norm_stats": {
|
22 |
+
"kinova": {
|
23 |
+
"action": {
|
24 |
+
"mean": [
|
25 |
+
-0.00020067453442607075,
|
26 |
+
-0.0006858264678157866,
|
27 |
+
-0.009424498304724693,
|
28 |
+
0.0,
|
29 |
+
0.0,
|
30 |
+
0.0,
|
31 |
+
-0.4078544080257416
|
32 |
+
],
|
33 |
+
"std": [
|
34 |
+
0.024468697607517242,
|
35 |
+
0.018178345635533333,
|
36 |
+
0.0452522449195385,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.9132017493247986
|
41 |
+
],
|
42 |
+
"max": [
|
43 |
+
0.09284012019634247,
|
44 |
+
0.07762093842029572,
|
45 |
+
0.10962827503681183,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
1.0
|
50 |
+
],
|
51 |
+
"min": [
|
52 |
+
-0.10259060561656952,
|
53 |
+
-0.0854005366563797,
|
54 |
+
-0.10095969587564468,
|
55 |
+
0.0,
|
56 |
+
0.0,
|
57 |
+
0.0,
|
58 |
+
-1.0
|
59 |
+
],
|
60 |
+
"q01": [
|
61 |
+
-0.06314262807369232,
|
62 |
+
-0.05193830907344818,
|
63 |
+
-0.07782501727342606,
|
64 |
+
0.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
-1.0
|
68 |
+
],
|
69 |
+
"q99": [
|
70 |
+
0.05859208554029463,
|
71 |
+
0.05156266748905182,
|
72 |
+
0.10301319599151611,
|
73 |
+
0.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
1.0
|
77 |
+
],
|
78 |
+
"mask": [
|
79 |
+
true,
|
80 |
+
true,
|
81 |
+
true,
|
82 |
+
true,
|
83 |
+
true,
|
84 |
+
true,
|
85 |
+
false
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"proprio": {
|
89 |
+
"mean": [
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0
|
97 |
+
],
|
98 |
+
"std": [
|
99 |
+
0.0,
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0
|
106 |
+
],
|
107 |
+
"max": [
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0,
|
113 |
+
0.0,
|
114 |
+
0.0
|
115 |
+
],
|
116 |
+
"min": [
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0
|
124 |
+
],
|
125 |
+
"q01": [
|
126 |
+
0.0,
|
127 |
+
0.0,
|
128 |
+
0.0,
|
129 |
+
0.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0
|
133 |
+
],
|
134 |
+
"q99": [
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
0.0,
|
140 |
+
0.0,
|
141 |
+
0.0
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"num_transitions": 30989,
|
145 |
+
"num_trajectories": 500
|
146 |
+
},
|
147 |
+
"austin_buds_dataset_converted_externally_to_rlds": {
|
148 |
+
"action": {
|
149 |
+
"mask": [
|
150 |
+
true,
|
151 |
+
true,
|
152 |
+
true,
|
153 |
+
true,
|
154 |
+
true,
|
155 |
+
true,
|
156 |
+
false
|
157 |
+
],
|
158 |
+
"max": [
|
159 |
+
1.0,
|
160 |
+
1.0,
|
161 |
+
1.0,
|
162 |
+
0.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
1.0
|
166 |
+
],
|
167 |
+
"mean": [
|
168 |
+
-0.07678354531526566,
|
169 |
+
0.0036849044263362885,
|
170 |
+
0.05644911900162697,
|
171 |
+
0.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.3510494828224182
|
175 |
+
],
|
176 |
+
"min": [
|
177 |
+
-1.0,
|
178 |
+
-1.0,
|
179 |
+
-1.0,
|
180 |
+
0.0,
|
181 |
+
0.0,
|
182 |
+
0.0,
|
183 |
+
0.0
|
184 |
+
],
|
185 |
+
"q01": [
|
186 |
+
-1.0,
|
187 |
+
-0.9599999785423279,
|
188 |
+
-0.8714285492897034,
|
189 |
+
0.0,
|
190 |
+
0.0,
|
191 |
+
0.0,
|
192 |
+
0.0
|
193 |
+
],
|
194 |
+
"q99": [
|
195 |
+
1.0,
|
196 |
+
0.8600000143051147,
|
197 |
+
1.0,
|
198 |
+
0.0,
|
199 |
+
0.0,
|
200 |
+
0.0,
|
201 |
+
1.0
|
202 |
+
],
|
203 |
+
"std": [
|
204 |
+
0.6367740631103516,
|
205 |
+
0.37889179587364197,
|
206 |
+
0.47796326875686646,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
0.0,
|
210 |
+
0.47721168398857117
|
211 |
+
]
|
212 |
+
},
|
213 |
+
"num_trajectories": 50,
|
214 |
+
"num_transitions": 34112,
|
215 |
+
"proprio": {
|
216 |
+
"max": [
|
217 |
+
0.0,
|
218 |
+
0.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
0.0
|
224 |
+
],
|
225 |
+
"mean": [
|
226 |
+
0.0,
|
227 |
+
0.0,
|
228 |
+
0.0,
|
229 |
+
0.0,
|
230 |
+
0.0,
|
231 |
+
0.0,
|
232 |
+
0.0
|
233 |
+
],
|
234 |
+
"min": [
|
235 |
+
0.0,
|
236 |
+
0.0,
|
237 |
+
0.0,
|
238 |
+
0.0,
|
239 |
+
0.0,
|
240 |
+
0.0,
|
241 |
+
0.0
|
242 |
+
],
|
243 |
+
"q01": [
|
244 |
+
0.0,
|
245 |
+
0.0,
|
246 |
+
0.0,
|
247 |
+
0.0,
|
248 |
+
0.0,
|
249 |
+
0.0,
|
250 |
+
0.0
|
251 |
+
],
|
252 |
+
"q99": [
|
253 |
+
0.0,
|
254 |
+
0.0,
|
255 |
+
0.0,
|
256 |
+
0.0,
|
257 |
+
0.0,
|
258 |
+
0.0,
|
259 |
+
0.0
|
260 |
+
],
|
261 |
+
"std": [
|
262 |
+
0.0,
|
263 |
+
0.0,
|
264 |
+
0.0,
|
265 |
+
0.0,
|
266 |
+
0.0,
|
267 |
+
0.0,
|
268 |
+
0.0
|
269 |
+
]
|
270 |
+
}
|
271 |
+
},
|
272 |
+
"austin_sailor_dataset_converted_externally_to_rlds": {
|
273 |
+
"action": {
|
274 |
+
"mask": [
|
275 |
+
true,
|
276 |
+
true,
|
277 |
+
true,
|
278 |
+
true,
|
279 |
+
true,
|
280 |
+
true,
|
281 |
+
false
|
282 |
+
],
|
283 |
+
"max": [
|
284 |
+
1.0,
|
285 |
+
1.0,
|
286 |
+
1.0,
|
287 |
+
0.0,
|
288 |
+
0.0,
|
289 |
+
0.375,
|
290 |
+
1.0
|
291 |
+
],
|
292 |
+
"mean": [
|
293 |
+
0.011825348250567913,
|
294 |
+
0.006461074110120535,
|
295 |
+
0.06023626774549484,
|
296 |
+
0.0,
|
297 |
+
0.0,
|
298 |
+
0.0016465914668515325,
|
299 |
+
0.5260950326919556
|
300 |
+
],
|
301 |
+
"min": [
|
302 |
+
-1.0,
|
303 |
+
-1.0,
|
304 |
+
-1.0,
|
305 |
+
0.0,
|
306 |
+
0.0,
|
307 |
+
-0.375,
|
308 |
+
0.0
|
309 |
+
],
|
310 |
+
"q01": [
|
311 |
+
-1.0,
|
312 |
+
-0.9828571677207947,
|
313 |
+
-0.6000000238418579,
|
314 |
+
0.0,
|
315 |
+
0.0,
|
316 |
+
-0.17249999940395355,
|
317 |
+
0.0
|
318 |
+
],
|
319 |
+
"q99": [
|
320 |
+
1.0,
|
321 |
+
0.9457142949104309,
|
322 |
+
1.0,
|
323 |
+
0.0,
|
324 |
+
0.0,
|
325 |
+
0.17892856895923615,
|
326 |
+
1.0
|
327 |
+
],
|
328 |
+
"std": [
|
329 |
+
0.46348899602890015,
|
330 |
+
0.41240179538726807,
|
331 |
+
0.411862850189209,
|
332 |
+
0.0,
|
333 |
+
0.0,
|
334 |
+
0.0578610822558403,
|
335 |
+
0.49894046783447266
|
336 |
+
]
|
337 |
+
},
|
338 |
+
"num_trajectories": 240,
|
339 |
+
"num_transitions": 353094,
|
340 |
+
"proprio": {
|
341 |
+
"max": [
|
342 |
+
0.0,
|
343 |
+
0.0,
|
344 |
+
0.0,
|
345 |
+
0.0,
|
346 |
+
0.0,
|
347 |
+
0.0,
|
348 |
+
0.0
|
349 |
+
],
|
350 |
+
"mean": [
|
351 |
+
0.0,
|
352 |
+
0.0,
|
353 |
+
0.0,
|
354 |
+
0.0,
|
355 |
+
0.0,
|
356 |
+
0.0,
|
357 |
+
0.0
|
358 |
+
],
|
359 |
+
"min": [
|
360 |
+
0.0,
|
361 |
+
0.0,
|
362 |
+
0.0,
|
363 |
+
0.0,
|
364 |
+
0.0,
|
365 |
+
0.0,
|
366 |
+
0.0
|
367 |
+
],
|
368 |
+
"q01": [
|
369 |
+
0.0,
|
370 |
+
0.0,
|
371 |
+
0.0,
|
372 |
+
0.0,
|
373 |
+
0.0,
|
374 |
+
0.0,
|
375 |
+
0.0
|
376 |
+
],
|
377 |
+
"q99": [
|
378 |
+
0.0,
|
379 |
+
0.0,
|
380 |
+
0.0,
|
381 |
+
0.0,
|
382 |
+
0.0,
|
383 |
+
0.0,
|
384 |
+
0.0
|
385 |
+
],
|
386 |
+
"std": [
|
387 |
+
0.0,
|
388 |
+
0.0,
|
389 |
+
0.0,
|
390 |
+
0.0,
|
391 |
+
0.0,
|
392 |
+
0.0,
|
393 |
+
0.0
|
394 |
+
]
|
395 |
+
}
|
396 |
+
},
|
397 |
+
"austin_sirius_dataset_converted_externally_to_rlds": {
|
398 |
+
"action": {
|
399 |
+
"mask": [
|
400 |
+
true,
|
401 |
+
true,
|
402 |
+
true,
|
403 |
+
true,
|
404 |
+
true,
|
405 |
+
true,
|
406 |
+
false
|
407 |
+
],
|
408 |
+
"max": [
|
409 |
+
1.0002285242080688,
|
410 |
+
0.960608720779419,
|
411 |
+
1.105179786682129,
|
412 |
+
0.0,
|
413 |
+
0.0,
|
414 |
+
0.341785728931427,
|
415 |
+
1.0
|
416 |
+
],
|
417 |
+
"mean": [
|
418 |
+
0.07747682929039001,
|
419 |
+
0.03195561468601227,
|
420 |
+
0.04244732856750488,
|
421 |
+
0.0,
|
422 |
+
0.0,
|
423 |
+
-0.01603456400334835,
|
424 |
+
0.43260177969932556
|
425 |
+
],
|
426 |
+
"min": [
|
427 |
+
-1.0183025598526,
|
428 |
+
-0.9800000190734863,
|
429 |
+
-0.9774575233459473,
|
430 |
+
0.0,
|
431 |
+
0.0,
|
432 |
+
-0.34607142210006714,
|
433 |
+
0.0
|
434 |
+
],
|
435 |
+
"q01": [
|
436 |
+
-0.780905865430832,
|
437 |
+
-0.5667179036140442,
|
438 |
+
-0.5254343223571777,
|
439 |
+
0.0,
|
440 |
+
0.0,
|
441 |
+
-0.28495091378688814,
|
442 |
+
0.0
|
443 |
+
],
|
444 |
+
"q99": [
|
445 |
+
0.9569637751579284,
|
446 |
+
0.6971374487876891,
|
447 |
+
0.8124888157844541,
|
448 |
+
0.0,
|
449 |
+
0.0,
|
450 |
+
0.1971428543329239,
|
451 |
+
1.0
|
452 |
+
],
|
453 |
+
"std": [
|
454 |
+
0.3906329572200775,
|
455 |
+
0.2998155355453491,
|
456 |
+
0.2782271206378937,
|
457 |
+
0.0,
|
458 |
+
0.0,
|
459 |
+
0.08120622485876083,
|
460 |
+
0.49528297781944275
|
461 |
+
]
|
462 |
+
},
|
463 |
+
"num_trajectories": 559,
|
464 |
+
"num_transitions": 279939,
|
465 |
+
"proprio": {
|
466 |
+
"max": [
|
467 |
+
0.0,
|
468 |
+
0.0,
|
469 |
+
0.0,
|
470 |
+
0.0,
|
471 |
+
0.0,
|
472 |
+
0.0,
|
473 |
+
0.0
|
474 |
+
],
|
475 |
+
"mean": [
|
476 |
+
0.0,
|
477 |
+
0.0,
|
478 |
+
0.0,
|
479 |
+
0.0,
|
480 |
+
0.0,
|
481 |
+
0.0,
|
482 |
+
0.0
|
483 |
+
],
|
484 |
+
"min": [
|
485 |
+
0.0,
|
486 |
+
0.0,
|
487 |
+
0.0,
|
488 |
+
0.0,
|
489 |
+
0.0,
|
490 |
+
0.0,
|
491 |
+
0.0
|
492 |
+
],
|
493 |
+
"q01": [
|
494 |
+
0.0,
|
495 |
+
0.0,
|
496 |
+
0.0,
|
497 |
+
0.0,
|
498 |
+
0.0,
|
499 |
+
0.0,
|
500 |
+
0.0
|
501 |
+
],
|
502 |
+
"q99": [
|
503 |
+
0.0,
|
504 |
+
0.0,
|
505 |
+
0.0,
|
506 |
+
0.0,
|
507 |
+
0.0,
|
508 |
+
0.0,
|
509 |
+
0.0
|
510 |
+
],
|
511 |
+
"std": [
|
512 |
+
0.0,
|
513 |
+
0.0,
|
514 |
+
0.0,
|
515 |
+
0.0,
|
516 |
+
0.0,
|
517 |
+
0.0,
|
518 |
+
0.0
|
519 |
+
]
|
520 |
+
}
|
521 |
+
},
|
522 |
+
"bc_z": {
|
523 |
+
"action": {
|
524 |
+
"mask": [
|
525 |
+
true,
|
526 |
+
true,
|
527 |
+
true,
|
528 |
+
true,
|
529 |
+
true,
|
530 |
+
true,
|
531 |
+
false
|
532 |
+
],
|
533 |
+
"max": [
|
534 |
+
0.2165454924106598,
|
535 |
+
0.1251407265663147,
|
536 |
+
0.10772687941789627,
|
537 |
+
0.33544227480888367,
|
538 |
+
0.28117990493774414,
|
539 |
+
0.40614867210388184,
|
540 |
+
1.0
|
541 |
+
],
|
542 |
+
"mean": [
|
543 |
+
-0.009958467446267605,
|
544 |
+
0.0008958321413956583,
|
545 |
+
0.004995597992092371,
|
546 |
+
0.00029755113064311445,
|
547 |
+
-0.008735382929444313,
|
548 |
+
-0.030693737789988518,
|
549 |
+
0.8344562649726868
|
550 |
+
],
|
551 |
+
"min": [
|
552 |
+
-0.1677047461271286,
|
553 |
+
-0.14630407094955444,
|
554 |
+
-0.10066790133714676,
|
555 |
+
-0.29421567916870117,
|
556 |
+
-0.32101404666900635,
|
557 |
+
-0.4635624885559082,
|
558 |
+
0.0
|
559 |
+
],
|
560 |
+
"q01": [
|
561 |
+
-0.09220654994249344,
|
562 |
+
-0.06456145539879798,
|
563 |
+
-0.049121275544166565,
|
564 |
+
-0.11594625547528267,
|
565 |
+
-0.14152548640966414,
|
566 |
+
-0.2251061636209488,
|
567 |
+
0.0
|
568 |
+
],
|
569 |
+
"q99": [
|
570 |
+
0.07628866866230968,
|
571 |
+
0.058019736707210584,
|
572 |
+
0.052540797740221024,
|
573 |
+
0.11740604028105736,
|
574 |
+
0.11703975558280955,
|
575 |
+
0.16729306846857078,
|
576 |
+
1.0
|
577 |
+
],
|
578 |
+
"std": [
|
579 |
+
0.03053455986082554,
|
580 |
+
0.0231423731893301,
|
581 |
+
0.020641816779971123,
|
582 |
+
0.04155943542718887,
|
583 |
+
0.046427831053733826,
|
584 |
+
0.0769818127155304,
|
585 |
+
0.3610210120677948
|
586 |
+
]
|
587 |
+
},
|
588 |
+
"num_trajectories": 43264,
|
589 |
+
"num_transitions": 6015535,
|
590 |
+
"proprio": {
|
591 |
+
"max": [
|
592 |
+
0.0,
|
593 |
+
0.0,
|
594 |
+
0.0,
|
595 |
+
0.0,
|
596 |
+
0.0,
|
597 |
+
0.0,
|
598 |
+
0.0
|
599 |
+
],
|
600 |
+
"mean": [
|
601 |
+
0.0,
|
602 |
+
0.0,
|
603 |
+
0.0,
|
604 |
+
0.0,
|
605 |
+
0.0,
|
606 |
+
0.0,
|
607 |
+
0.0
|
608 |
+
],
|
609 |
+
"min": [
|
610 |
+
0.0,
|
611 |
+
0.0,
|
612 |
+
0.0,
|
613 |
+
0.0,
|
614 |
+
0.0,
|
615 |
+
0.0,
|
616 |
+
0.0
|
617 |
+
],
|
618 |
+
"q01": [
|
619 |
+
0.0,
|
620 |
+
0.0,
|
621 |
+
0.0,
|
622 |
+
0.0,
|
623 |
+
0.0,
|
624 |
+
0.0,
|
625 |
+
0.0
|
626 |
+
],
|
627 |
+
"q99": [
|
628 |
+
0.0,
|
629 |
+
0.0,
|
630 |
+
0.0,
|
631 |
+
0.0,
|
632 |
+
0.0,
|
633 |
+
0.0,
|
634 |
+
0.0
|
635 |
+
],
|
636 |
+
"std": [
|
637 |
+
0.0,
|
638 |
+
0.0,
|
639 |
+
0.0,
|
640 |
+
0.0,
|
641 |
+
0.0,
|
642 |
+
0.0,
|
643 |
+
0.0
|
644 |
+
]
|
645 |
+
}
|
646 |
+
},
|
647 |
+
"berkeley_autolab_ur5": {
|
648 |
+
"action": {
|
649 |
+
"mask": [
|
650 |
+
true,
|
651 |
+
true,
|
652 |
+
true,
|
653 |
+
true,
|
654 |
+
true,
|
655 |
+
true,
|
656 |
+
false
|
657 |
+
],
|
658 |
+
"max": [
|
659 |
+
0.019999999552965164,
|
660 |
+
0.019999999552965164,
|
661 |
+
0.019999999552965164,
|
662 |
+
0.06666667014360428,
|
663 |
+
0.06666667014360428,
|
664 |
+
0.06666667014360428,
|
665 |
+
1.0
|
666 |
+
],
|
667 |
+
"mean": [
|
668 |
+
0.0005683620693162084,
|
669 |
+
0.001217700308188796,
|
670 |
+
-0.0005296372692100704,
|
671 |
+
0.00021029810886830091,
|
672 |
+
6.0695128922816366e-05,
|
673 |
+
0.001204986940138042,
|
674 |
+
0.6298308372497559
|
675 |
+
],
|
676 |
+
"min": [
|
677 |
+
-0.019999999552965164,
|
678 |
+
-0.019999999552965164,
|
679 |
+
-0.019999999552965164,
|
680 |
+
-0.06666667014360428,
|
681 |
+
-0.06666667014360428,
|
682 |
+
-0.06666667014360428,
|
683 |
+
0.0
|
684 |
+
],
|
685 |
+
"q01": [
|
686 |
+
-0.019999999552965164,
|
687 |
+
-0.019999999552965164,
|
688 |
+
-0.019999999552965164,
|
689 |
+
-0.02628571353852749,
|
690 |
+
-0.06666667014360428,
|
691 |
+
-0.03847619146108627,
|
692 |
+
0.0
|
693 |
+
],
|
694 |
+
"q99": [
|
695 |
+
0.019999999552965164,
|
696 |
+
0.019999999552965164,
|
697 |
+
0.019999999552965164,
|
698 |
+
0.031809523701667786,
|
699 |
+
0.06666667014360428,
|
700 |
+
0.036571428179740906,
|
701 |
+
1.0
|
702 |
+
],
|
703 |
+
"std": [
|
704 |
+
0.0115329809486866,
|
705 |
+
0.007990492507815361,
|
706 |
+
0.009577835910022259,
|
707 |
+
0.009432995691895485,
|
708 |
+
0.016427582129836082,
|
709 |
+
0.011053967289626598,
|
710 |
+
0.48267969489097595
|
711 |
+
]
|
712 |
+
},
|
713 |
+
"num_trajectories": 1000,
|
714 |
+
"num_transitions": 97939,
|
715 |
+
"proprio": {
|
716 |
+
"max": [
|
717 |
+
0.0,
|
718 |
+
0.0,
|
719 |
+
0.0,
|
720 |
+
0.0,
|
721 |
+
0.0,
|
722 |
+
0.0,
|
723 |
+
0.0
|
724 |
+
],
|
725 |
+
"mean": [
|
726 |
+
0.0,
|
727 |
+
0.0,
|
728 |
+
0.0,
|
729 |
+
0.0,
|
730 |
+
0.0,
|
731 |
+
0.0,
|
732 |
+
0.0
|
733 |
+
],
|
734 |
+
"min": [
|
735 |
+
0.0,
|
736 |
+
0.0,
|
737 |
+
0.0,
|
738 |
+
0.0,
|
739 |
+
0.0,
|
740 |
+
0.0,
|
741 |
+
0.0
|
742 |
+
],
|
743 |
+
"q01": [
|
744 |
+
0.0,
|
745 |
+
0.0,
|
746 |
+
0.0,
|
747 |
+
0.0,
|
748 |
+
0.0,
|
749 |
+
0.0,
|
750 |
+
0.0
|
751 |
+
],
|
752 |
+
"q99": [
|
753 |
+
0.0,
|
754 |
+
0.0,
|
755 |
+
0.0,
|
756 |
+
0.0,
|
757 |
+
0.0,
|
758 |
+
0.0,
|
759 |
+
0.0
|
760 |
+
],
|
761 |
+
"std": [
|
762 |
+
0.0,
|
763 |
+
0.0,
|
764 |
+
0.0,
|
765 |
+
0.0,
|
766 |
+
0.0,
|
767 |
+
0.0,
|
768 |
+
0.0
|
769 |
+
]
|
770 |
+
}
|
771 |
+
},
|
772 |
+
"berkeley_cable_routing": {
|
773 |
+
"action": {
|
774 |
+
"mask": [
|
775 |
+
true,
|
776 |
+
true,
|
777 |
+
true,
|
778 |
+
true,
|
779 |
+
true,
|
780 |
+
true,
|
781 |
+
false
|
782 |
+
],
|
783 |
+
"max": [
|
784 |
+
0.9633283019065857,
|
785 |
+
1.0,
|
786 |
+
1.0,
|
787 |
+
0.0,
|
788 |
+
0.0,
|
789 |
+
1.0,
|
790 |
+
0.0
|
791 |
+
],
|
792 |
+
"mean": [
|
793 |
+
-0.07139874249696732,
|
794 |
+
0.023609008640050888,
|
795 |
+
0.10241943597793579,
|
796 |
+
0.0,
|
797 |
+
0.0,
|
798 |
+
0.049671024084091187,
|
799 |
+
0.0
|
800 |
+
],
|
801 |
+
"min": [
|
802 |
+
-0.9809081554412842,
|
803 |
+
-0.9554349184036255,
|
804 |
+
-0.9994775056838989,
|
805 |
+
0.0,
|
806 |
+
0.0,
|
807 |
+
-1.0,
|
808 |
+
0.0
|
809 |
+
],
|
810 |
+
"q01": [
|
811 |
+
-0.5534318816661835,
|
812 |
+
-0.4797285574674606,
|
813 |
+
-0.5314934802055359,
|
814 |
+
0.0,
|
815 |
+
0.0,
|
816 |
+
-0.8855219376087189,
|
817 |
+
0.0
|
818 |
+
],
|
819 |
+
"q99": [
|
820 |
+
0.42652835428714786,
|
821 |
+
0.5000944086909298,
|
822 |
+
0.639823433756829,
|
823 |
+
0.0,
|
824 |
+
0.0,
|
825 |
+
0.984243879914284,
|
826 |
+
0.0
|
827 |
+
],
|
828 |
+
"std": [
|
829 |
+
0.1815500408411026,
|
830 |
+
0.1810990273952484,
|
831 |
+
0.21220779418945312,
|
832 |
+
0.0,
|
833 |
+
0.0,
|
834 |
+
0.3475511968135834,
|
835 |
+
0.0
|
836 |
+
]
|
837 |
+
},
|
838 |
+
"num_trajectories": 1647,
|
839 |
+
"num_transitions": 42328,
|
840 |
+
"proprio": {
|
841 |
+
"max": [
|
842 |
+
0.0,
|
843 |
+
0.0,
|
844 |
+
0.0,
|
845 |
+
0.0,
|
846 |
+
0.0,
|
847 |
+
0.0,
|
848 |
+
0.0
|
849 |
+
],
|
850 |
+
"mean": [
|
851 |
+
0.0,
|
852 |
+
0.0,
|
853 |
+
0.0,
|
854 |
+
0.0,
|
855 |
+
0.0,
|
856 |
+
0.0,
|
857 |
+
0.0
|
858 |
+
],
|
859 |
+
"min": [
|
860 |
+
0.0,
|
861 |
+
0.0,
|
862 |
+
0.0,
|
863 |
+
0.0,
|
864 |
+
0.0,
|
865 |
+
0.0,
|
866 |
+
0.0
|
867 |
+
],
|
868 |
+
"q01": [
|
869 |
+
0.0,
|
870 |
+
0.0,
|
871 |
+
0.0,
|
872 |
+
0.0,
|
873 |
+
0.0,
|
874 |
+
0.0,
|
875 |
+
0.0
|
876 |
+
],
|
877 |
+
"q99": [
|
878 |
+
0.0,
|
879 |
+
0.0,
|
880 |
+
0.0,
|
881 |
+
0.0,
|
882 |
+
0.0,
|
883 |
+
0.0,
|
884 |
+
0.0
|
885 |
+
],
|
886 |
+
"std": [
|
887 |
+
0.0,
|
888 |
+
0.0,
|
889 |
+
0.0,
|
890 |
+
0.0,
|
891 |
+
0.0,
|
892 |
+
0.0,
|
893 |
+
0.0
|
894 |
+
]
|
895 |
+
}
|
896 |
+
},
|
897 |
+
"berkeley_fanuc_manipulation": {
|
898 |
+
"action": {
|
899 |
+
"mask": [
|
900 |
+
true,
|
901 |
+
true,
|
902 |
+
true,
|
903 |
+
true,
|
904 |
+
true,
|
905 |
+
true,
|
906 |
+
false
|
907 |
+
],
|
908 |
+
"max": [
|
909 |
+
0.009999999776482582,
|
910 |
+
0.009999999776482582,
|
911 |
+
0.009999999776482582,
|
912 |
+
0.03490658476948738,
|
913 |
+
0.03490658476948738,
|
914 |
+
0.03490658476948738,
|
915 |
+
1.0
|
916 |
+
],
|
917 |
+
"mean": [
|
918 |
+
0.0007744057802483439,
|
919 |
+
-0.00031240080716088414,
|
920 |
+
-0.0015001941937953234,
|
921 |
+
-0.0007515158504247665,
|
922 |
+
-0.00015832878125365824,
|
923 |
+
0.00014327642566058785,
|
924 |
+
0.699295699596405
|
925 |
+
],
|
926 |
+
"min": [
|
927 |
+
-0.009999999776482582,
|
928 |
+
-0.009999999776482582,
|
929 |
+
-0.009999999776482582,
|
930 |
+
-0.03490658476948738,
|
931 |
+
-0.03490658476948738,
|
932 |
+
-0.03490658476948738,
|
933 |
+
0.0
|
934 |
+
],
|
935 |
+
"q01": [
|
936 |
+
-0.009999999776482582,
|
937 |
+
-0.009999999776482582,
|
938 |
+
-0.009999999776482582,
|
939 |
+
-0.03490658476948738,
|
940 |
+
0.0,
|
941 |
+
-0.03490658476948738,
|
942 |
+
0.0
|
943 |
+
],
|
944 |
+
"q99": [
|
945 |
+
0.009999999776482582,
|
946 |
+
0.009999999776482582,
|
947 |
+
0.009999999776482582,
|
948 |
+
0.03490658476948738,
|
949 |
+
0.0,
|
950 |
+
0.03490658476948738,
|
951 |
+
1.0
|
952 |
+
],
|
953 |
+
"std": [
|
954 |
+
0.0034070091787725687,
|
955 |
+
0.0049921851605176926,
|
956 |
+
0.005344334989786148,
|
957 |
+
0.00759894959628582,
|
958 |
+
0.004081866703927517,
|
959 |
+
0.008568956516683102,
|
960 |
+
0.4586937427520752
|
961 |
+
]
|
962 |
+
},
|
963 |
+
"num_trajectories": 415,
|
964 |
+
"num_transitions": 62613,
|
965 |
+
"proprio": {
|
966 |
+
"max": [
|
967 |
+
0.0,
|
968 |
+
0.0,
|
969 |
+
0.0,
|
970 |
+
0.0,
|
971 |
+
0.0,
|
972 |
+
0.0,
|
973 |
+
0.0
|
974 |
+
],
|
975 |
+
"mean": [
|
976 |
+
0.0,
|
977 |
+
0.0,
|
978 |
+
0.0,
|
979 |
+
0.0,
|
980 |
+
0.0,
|
981 |
+
0.0,
|
982 |
+
0.0
|
983 |
+
],
|
984 |
+
"min": [
|
985 |
+
0.0,
|
986 |
+
0.0,
|
987 |
+
0.0,
|
988 |
+
0.0,
|
989 |
+
0.0,
|
990 |
+
0.0,
|
991 |
+
0.0
|
992 |
+
],
|
993 |
+
"q01": [
|
994 |
+
0.0,
|
995 |
+
0.0,
|
996 |
+
0.0,
|
997 |
+
0.0,
|
998 |
+
0.0,
|
999 |
+
0.0,
|
1000 |
+
0.0
|
1001 |
+
],
|
1002 |
+
"q99": [
|
1003 |
+
0.0,
|
1004 |
+
0.0,
|
1005 |
+
0.0,
|
1006 |
+
0.0,
|
1007 |
+
0.0,
|
1008 |
+
0.0,
|
1009 |
+
0.0
|
1010 |
+
],
|
1011 |
+
"std": [
|
1012 |
+
0.0,
|
1013 |
+
0.0,
|
1014 |
+
0.0,
|
1015 |
+
0.0,
|
1016 |
+
0.0,
|
1017 |
+
0.0,
|
1018 |
+
0.0
|
1019 |
+
]
|
1020 |
+
}
|
1021 |
+
},
|
1022 |
+
"bridge_orig": {
|
1023 |
+
"action": {
|
1024 |
+
"mask": [
|
1025 |
+
true,
|
1026 |
+
true,
|
1027 |
+
true,
|
1028 |
+
true,
|
1029 |
+
true,
|
1030 |
+
true,
|
1031 |
+
false
|
1032 |
+
],
|
1033 |
+
"max": [
|
1034 |
+
0.41691166162490845,
|
1035 |
+
0.25864794850349426,
|
1036 |
+
0.21218234300613403,
|
1037 |
+
3.122201919555664,
|
1038 |
+
1.8618112802505493,
|
1039 |
+
6.280478477478027,
|
1040 |
+
1.0
|
1041 |
+
],
|
1042 |
+
"mean": [
|
1043 |
+
0.0002334194869035855,
|
1044 |
+
0.00013004911306779832,
|
1045 |
+
-0.00012762474943883717,
|
1046 |
+
-0.0001556558854645118,
|
1047 |
+
-0.0004039328487124294,
|
1048 |
+
0.00023557482927571982,
|
1049 |
+
0.5764579176902771
|
1050 |
+
],
|
1051 |
+
"min": [
|
1052 |
+
-0.4007510244846344,
|
1053 |
+
-0.13874775171279907,
|
1054 |
+
-0.22553899884223938,
|
1055 |
+
-3.2010786533355713,
|
1056 |
+
-1.8618112802505493,
|
1057 |
+
-6.279075622558594,
|
1058 |
+
0.0
|
1059 |
+
],
|
1060 |
+
"q01": [
|
1061 |
+
-0.02872725307941437,
|
1062 |
+
-0.04170349963009357,
|
1063 |
+
-0.026093858778476715,
|
1064 |
+
-0.08092105075716972,
|
1065 |
+
-0.09288699507713317,
|
1066 |
+
-0.20718276381492615,
|
1067 |
+
0.0
|
1068 |
+
],
|
1069 |
+
"q99": [
|
1070 |
+
0.028309678435325586,
|
1071 |
+
0.040855254605412394,
|
1072 |
+
0.040161586627364146,
|
1073 |
+
0.08192047759890528,
|
1074 |
+
0.07792850524187081,
|
1075 |
+
0.20382574498653397,
|
1076 |
+
1.0
|
1077 |
+
],
|
1078 |
+
"std": [
|
1079 |
+
0.009765930473804474,
|
1080 |
+
0.013689135201275349,
|
1081 |
+
0.012667362578213215,
|
1082 |
+
0.028534092009067535,
|
1083 |
+
0.030637972056865692,
|
1084 |
+
0.07691419124603271,
|
1085 |
+
0.4973701536655426
|
1086 |
+
]
|
1087 |
+
},
|
1088 |
+
"num_trajectories": 60064,
|
1089 |
+
"num_transitions": 2135463,
|
1090 |
+
"proprio": {
|
1091 |
+
"max": [
|
1092 |
+
0.0,
|
1093 |
+
0.0,
|
1094 |
+
0.0,
|
1095 |
+
0.0,
|
1096 |
+
0.0,
|
1097 |
+
0.0,
|
1098 |
+
0.0
|
1099 |
+
],
|
1100 |
+
"mean": [
|
1101 |
+
0.0,
|
1102 |
+
0.0,
|
1103 |
+
0.0,
|
1104 |
+
0.0,
|
1105 |
+
0.0,
|
1106 |
+
0.0,
|
1107 |
+
0.0
|
1108 |
+
],
|
1109 |
+
"min": [
|
1110 |
+
0.0,
|
1111 |
+
0.0,
|
1112 |
+
0.0,
|
1113 |
+
0.0,
|
1114 |
+
0.0,
|
1115 |
+
0.0,
|
1116 |
+
0.0
|
1117 |
+
],
|
1118 |
+
"q01": [
|
1119 |
+
0.0,
|
1120 |
+
0.0,
|
1121 |
+
0.0,
|
1122 |
+
0.0,
|
1123 |
+
0.0,
|
1124 |
+
0.0,
|
1125 |
+
0.0
|
1126 |
+
],
|
1127 |
+
"q99": [
|
1128 |
+
0.0,
|
1129 |
+
0.0,
|
1130 |
+
0.0,
|
1131 |
+
0.0,
|
1132 |
+
0.0,
|
1133 |
+
0.0,
|
1134 |
+
0.0
|
1135 |
+
],
|
1136 |
+
"std": [
|
1137 |
+
0.0,
|
1138 |
+
0.0,
|
1139 |
+
0.0,
|
1140 |
+
0.0,
|
1141 |
+
0.0,
|
1142 |
+
0.0,
|
1143 |
+
0.0
|
1144 |
+
]
|
1145 |
+
}
|
1146 |
+
},
|
1147 |
+
"cmu_stretch": {
|
1148 |
+
"action": {
|
1149 |
+
"mask": [
|
1150 |
+
true,
|
1151 |
+
true,
|
1152 |
+
true,
|
1153 |
+
true,
|
1154 |
+
true,
|
1155 |
+
true,
|
1156 |
+
false
|
1157 |
+
],
|
1158 |
+
"max": [
|
1159 |
+
0.02338407188653946,
|
1160 |
+
0.0,
|
1161 |
+
0.023404927924275398,
|
1162 |
+
0.0,
|
1163 |
+
0.0,
|
1164 |
+
0.0,
|
1165 |
+
1.0
|
1166 |
+
],
|
1167 |
+
"mean": [
|
1168 |
+
0.00036304505192674696,
|
1169 |
+
0.0,
|
1170 |
+
0.0016466958913952112,
|
1171 |
+
0.0,
|
1172 |
+
0.0,
|
1173 |
+
0.0,
|
1174 |
+
0.3987048268318176
|
1175 |
+
],
|
1176 |
+
"min": [
|
1177 |
+
-0.019353797659277916,
|
1178 |
+
0.0,
|
1179 |
+
-0.02019215188920498,
|
1180 |
+
0.0,
|
1181 |
+
0.0,
|
1182 |
+
0.0,
|
1183 |
+
0.0
|
1184 |
+
],
|
1185 |
+
"q01": [
|
1186 |
+
-0.011175686959177256,
|
1187 |
+
0.0,
|
1188 |
+
-0.0032206363626755773,
|
1189 |
+
0.0,
|
1190 |
+
0.0,
|
1191 |
+
0.0,
|
1192 |
+
0.0
|
1193 |
+
],
|
1194 |
+
"q99": [
|
1195 |
+
0.014501785952597848,
|
1196 |
+
0.0,
|
1197 |
+
0.015056106168776728,
|
1198 |
+
0.0,
|
1199 |
+
0.0,
|
1200 |
+
0.0,
|
1201 |
+
1.0
|
1202 |
+
],
|
1203 |
+
"std": [
|
1204 |
+
0.004081828519701958,
|
1205 |
+
0.0,
|
1206 |
+
0.0037743328139185905,
|
1207 |
+
0.0,
|
1208 |
+
0.0,
|
1209 |
+
0.0,
|
1210 |
+
0.48963725566864014
|
1211 |
+
]
|
1212 |
+
},
|
1213 |
+
"num_trajectories": 135,
|
1214 |
+
"num_transitions": 25016,
|
1215 |
+
"proprio": {
|
1216 |
+
"max": [
|
1217 |
+
0.0,
|
1218 |
+
0.0,
|
1219 |
+
0.0,
|
1220 |
+
0.0,
|
1221 |
+
0.0,
|
1222 |
+
0.0,
|
1223 |
+
0.0
|
1224 |
+
],
|
1225 |
+
"mean": [
|
1226 |
+
0.0,
|
1227 |
+
0.0,
|
1228 |
+
0.0,
|
1229 |
+
0.0,
|
1230 |
+
0.0,
|
1231 |
+
0.0,
|
1232 |
+
0.0
|
1233 |
+
],
|
1234 |
+
"min": [
|
1235 |
+
0.0,
|
1236 |
+
0.0,
|
1237 |
+
0.0,
|
1238 |
+
0.0,
|
1239 |
+
0.0,
|
1240 |
+
0.0,
|
1241 |
+
0.0
|
1242 |
+
],
|
1243 |
+
"q01": [
|
1244 |
+
0.0,
|
1245 |
+
0.0,
|
1246 |
+
0.0,
|
1247 |
+
0.0,
|
1248 |
+
0.0,
|
1249 |
+
0.0,
|
1250 |
+
0.0
|
1251 |
+
],
|
1252 |
+
"q99": [
|
1253 |
+
0.0,
|
1254 |
+
0.0,
|
1255 |
+
0.0,
|
1256 |
+
0.0,
|
1257 |
+
0.0,
|
1258 |
+
0.0,
|
1259 |
+
0.0
|
1260 |
+
],
|
1261 |
+
"std": [
|
1262 |
+
0.0,
|
1263 |
+
0.0,
|
1264 |
+
0.0,
|
1265 |
+
0.0,
|
1266 |
+
0.0,
|
1267 |
+
0.0,
|
1268 |
+
0.0
|
1269 |
+
]
|
1270 |
+
}
|
1271 |
+
},
|
1272 |
+
"dlr_edan_shared_control_converted_externally_to_rlds": {
|
1273 |
+
"action": {
|
1274 |
+
"mask": [
|
1275 |
+
true,
|
1276 |
+
true,
|
1277 |
+
true,
|
1278 |
+
true,
|
1279 |
+
true,
|
1280 |
+
true,
|
1281 |
+
false
|
1282 |
+
],
|
1283 |
+
"max": [
|
1284 |
+
0.18991442024707794,
|
1285 |
+
0.0739002525806427,
|
1286 |
+
0.18064819276332855,
|
1287 |
+
0.0866486132144928,
|
1288 |
+
0.13464981317520142,
|
1289 |
+
0.16910280287265778,
|
1290 |
+
1.0
|
1291 |
+
],
|
1292 |
+
"mean": [
|
1293 |
+
0.006647810339927673,
|
1294 |
+
-0.0007657372043468058,
|
1295 |
+
0.006522852927446365,
|
1296 |
+
0.0011679717572405934,
|
1297 |
+
-0.006395625416189432,
|
1298 |
+
-0.011902998201549053,
|
1299 |
+
0.6985887289047241
|
1300 |
+
],
|
1301 |
+
"min": [
|
1302 |
+
-0.10054297000169754,
|
1303 |
+
-0.08427435159683228,
|
1304 |
+
-0.13533438742160797,
|
1305 |
+
-0.17556548118591309,
|
1306 |
+
-0.18485672771930695,
|
1307 |
+
-0.2680685818195343,
|
1308 |
+
0.0
|
1309 |
+
],
|
1310 |
+
"q01": [
|
1311 |
+
-0.02987122368067503,
|
1312 |
+
-0.06013262912631035,
|
1313 |
+
-0.08286409199237824,
|
1314 |
+
-0.05924444157630205,
|
1315 |
+
-0.15986866518855095,
|
1316 |
+
-0.15636983573436739,
|
1317 |
+
0.0
|
1318 |
+
],
|
1319 |
+
"q99": [
|
1320 |
+
0.08832092039287087,
|
1321 |
+
0.042126184627413736,
|
1322 |
+
0.11311905644834042,
|
1323 |
+
0.0643695573508739,
|
1324 |
+
0.03941855944693088,
|
1325 |
+
0.156646853685379,
|
1326 |
+
1.0
|
1327 |
+
],
|
1328 |
+
"std": [
|
1329 |
+
0.021393608301877975,
|
1330 |
+
0.01814231649041176,
|
1331 |
+
0.03374375030398369,
|
1332 |
+
0.01743541844189167,
|
1333 |
+
0.03394376486539841,
|
1334 |
+
0.04641875624656677,
|
1335 |
+
0.4588589072227478
|
1336 |
+
]
|
1337 |
+
},
|
1338 |
+
"num_trajectories": 104,
|
1339 |
+
"num_transitions": 8928,
|
1340 |
+
"proprio": {
|
1341 |
+
"max": [
|
1342 |
+
0.0,
|
1343 |
+
0.0,
|
1344 |
+
0.0,
|
1345 |
+
0.0,
|
1346 |
+
0.0,
|
1347 |
+
0.0,
|
1348 |
+
0.0
|
1349 |
+
],
|
1350 |
+
"mean": [
|
1351 |
+
0.0,
|
1352 |
+
0.0,
|
1353 |
+
0.0,
|
1354 |
+
0.0,
|
1355 |
+
0.0,
|
1356 |
+
0.0,
|
1357 |
+
0.0
|
1358 |
+
],
|
1359 |
+
"min": [
|
1360 |
+
0.0,
|
1361 |
+
0.0,
|
1362 |
+
0.0,
|
1363 |
+
0.0,
|
1364 |
+
0.0,
|
1365 |
+
0.0,
|
1366 |
+
0.0
|
1367 |
+
],
|
1368 |
+
"q01": [
|
1369 |
+
0.0,
|
1370 |
+
0.0,
|
1371 |
+
0.0,
|
1372 |
+
0.0,
|
1373 |
+
0.0,
|
1374 |
+
0.0,
|
1375 |
+
0.0
|
1376 |
+
],
|
1377 |
+
"q99": [
|
1378 |
+
0.0,
|
1379 |
+
0.0,
|
1380 |
+
0.0,
|
1381 |
+
0.0,
|
1382 |
+
0.0,
|
1383 |
+
0.0,
|
1384 |
+
0.0
|
1385 |
+
],
|
1386 |
+
"std": [
|
1387 |
+
0.0,
|
1388 |
+
0.0,
|
1389 |
+
0.0,
|
1390 |
+
0.0,
|
1391 |
+
0.0,
|
1392 |
+
0.0,
|
1393 |
+
0.0
|
1394 |
+
]
|
1395 |
+
}
|
1396 |
+
},
|
1397 |
+
"dobbe": {
|
1398 |
+
"action": {
|
1399 |
+
"mask": [
|
1400 |
+
true,
|
1401 |
+
true,
|
1402 |
+
true,
|
1403 |
+
true,
|
1404 |
+
true,
|
1405 |
+
true,
|
1406 |
+
false
|
1407 |
+
],
|
1408 |
+
"max": [
|
1409 |
+
38.590423583984375,
|
1410 |
+
17.932697296142578,
|
1411 |
+
4.843764305114746,
|
1412 |
+
1.4372116327285767,
|
1413 |
+
0.4340403974056244,
|
1414 |
+
1.2057193517684937,
|
1415 |
+
0.9998947381973267
|
1416 |
+
],
|
1417 |
+
"mean": [
|
1418 |
+
-0.0001120665911003016,
|
1419 |
+
0.0011229600058868527,
|
1420 |
+
-0.00010194431524723768,
|
1421 |
+
-7.371398532995954e-05,
|
1422 |
+
-0.00067531579406932,
|
1423 |
+
-5.6643435527803376e-05,
|
1424 |
+
0.6318281888961792
|
1425 |
+
],
|
1426 |
+
"min": [
|
1427 |
+
-5.700923442840576,
|
1428 |
+
-21.605947494506836,
|
1429 |
+
-123.72489929199219,
|
1430 |
+
-1.7229845523834229,
|
1431 |
+
-0.4998578727245331,
|
1432 |
+
-0.8867913484573364,
|
1433 |
+
1.4196479014572105e-06
|
1434 |
+
],
|
1435 |
+
"q01": [
|
1436 |
+
-0.01119564864784479,
|
1437 |
+
-0.014266146533191203,
|
1438 |
+
-0.0071747214533388615,
|
1439 |
+
-0.009444301575422287,
|
1440 |
+
-0.03990109823644161,
|
1441 |
+
-0.017422311007976532,
|
1442 |
+
4.003279136668425e-05
|
1443 |
+
],
|
1444 |
+
"q99": [
|
1445 |
+
0.01015154086053368,
|
1446 |
+
0.017181577533483497,
|
1447 |
+
0.007216989761218411,
|
1448 |
+
0.010380979906767595,
|
1449 |
+
0.03556173853576176,
|
1450 |
+
0.018032474815845446,
|
1451 |
+
0.9982578039169312
|
1452 |
+
],
|
1453 |
+
"std": [
|
1454 |
+
0.04264938458800316,
|
1455 |
+
0.04428559169173241,
|
1456 |
+
0.12224084138870239,
|
1457 |
+
0.005388413090258837,
|
1458 |
+
0.011246449314057827,
|
1459 |
+
0.006287882570177317,
|
1460 |
+
0.39732322096824646
|
1461 |
+
]
|
1462 |
+
},
|
1463 |
+
"num_trajectories": 5208,
|
1464 |
+
"num_transitions": 1139911,
|
1465 |
+
"proprio": {
|
1466 |
+
"max": [
|
1467 |
+
0.0,
|
1468 |
+
0.0,
|
1469 |
+
0.0,
|
1470 |
+
0.0,
|
1471 |
+
0.0,
|
1472 |
+
0.0,
|
1473 |
+
0.0
|
1474 |
+
],
|
1475 |
+
"mean": [
|
1476 |
+
0.0,
|
1477 |
+
0.0,
|
1478 |
+
0.0,
|
1479 |
+
0.0,
|
1480 |
+
0.0,
|
1481 |
+
0.0,
|
1482 |
+
0.0
|
1483 |
+
],
|
1484 |
+
"min": [
|
1485 |
+
0.0,
|
1486 |
+
0.0,
|
1487 |
+
0.0,
|
1488 |
+
0.0,
|
1489 |
+
0.0,
|
1490 |
+
0.0,
|
1491 |
+
0.0
|
1492 |
+
],
|
1493 |
+
"q01": [
|
1494 |
+
0.0,
|
1495 |
+
0.0,
|
1496 |
+
0.0,
|
1497 |
+
0.0,
|
1498 |
+
0.0,
|
1499 |
+
0.0,
|
1500 |
+
0.0
|
1501 |
+
],
|
1502 |
+
"q99": [
|
1503 |
+
0.0,
|
1504 |
+
0.0,
|
1505 |
+
0.0,
|
1506 |
+
0.0,
|
1507 |
+
0.0,
|
1508 |
+
0.0,
|
1509 |
+
0.0
|
1510 |
+
],
|
1511 |
+
"std": [
|
1512 |
+
0.0,
|
1513 |
+
0.0,
|
1514 |
+
0.0,
|
1515 |
+
0.0,
|
1516 |
+
0.0,
|
1517 |
+
0.0,
|
1518 |
+
0.0
|
1519 |
+
]
|
1520 |
+
}
|
1521 |
+
},
|
1522 |
+
"fmb_dataset": {
|
1523 |
+
"action": {
|
1524 |
+
"mask": [
|
1525 |
+
true,
|
1526 |
+
true,
|
1527 |
+
true,
|
1528 |
+
true,
|
1529 |
+
true,
|
1530 |
+
true,
|
1531 |
+
false
|
1532 |
+
],
|
1533 |
+
"max": [
|
1534 |
+
1.399999976158142,
|
1535 |
+
1.0,
|
1536 |
+
1.399999976158142,
|
1537 |
+
1.0,
|
1538 |
+
1.0,
|
1539 |
+
1.0,
|
1540 |
+
1.0
|
1541 |
+
],
|
1542 |
+
"mean": [
|
1543 |
+
0.059029702097177505,
|
1544 |
+
-0.06476633995771408,
|
1545 |
+
-0.09787475317716599,
|
1546 |
+
0.004325388930737972,
|
1547 |
+
0.00028963794466108084,
|
1548 |
+
-0.04457257315516472,
|
1549 |
+
0.7336440086364746
|
1550 |
+
],
|
1551 |
+
"min": [
|
1552 |
+
-1.399999976158142,
|
1553 |
+
-1.399999976158142,
|
1554 |
+
-1.0,
|
1555 |
+
-1.0,
|
1556 |
+
-1.0,
|
1557 |
+
-1.0,
|
1558 |
+
0.0
|
1559 |
+
],
|
1560 |
+
"q01": [
|
1561 |
+
-0.8257142901420593,
|
1562 |
+
-1.399999976158142,
|
1563 |
+
-1.0,
|
1564 |
+
-1.0,
|
1565 |
+
-0.3028571307659149,
|
1566 |
+
-1.0,
|
1567 |
+
0.0
|
1568 |
+
],
|
1569 |
+
"q99": [
|
1570 |
+
1.0,
|
1571 |
+
0.5257142782211304,
|
1572 |
+
1.0,
|
1573 |
+
1.0,
|
1574 |
+
0.3400000035762787,
|
1575 |
+
1.0,
|
1576 |
+
1.0
|
1577 |
+
],
|
1578 |
+
"std": [
|
1579 |
+
0.28809213638305664,
|
1580 |
+
0.2820415794849396,
|
1581 |
+
0.4626740515232086,
|
1582 |
+
0.3266514539718628,
|
1583 |
+
0.10842999070882797,
|
1584 |
+
0.3440099358558655,
|
1585 |
+
0.4435282051563263
|
1586 |
+
]
|
1587 |
+
},
|
1588 |
+
"num_trajectories": 8612,
|
1589 |
+
"num_transitions": 1137459,
|
1590 |
+
"proprio": {
|
1591 |
+
"max": [
|
1592 |
+
0.0,
|
1593 |
+
0.0,
|
1594 |
+
0.0,
|
1595 |
+
0.0,
|
1596 |
+
0.0,
|
1597 |
+
0.0,
|
1598 |
+
0.0
|
1599 |
+
],
|
1600 |
+
"mean": [
|
1601 |
+
0.0,
|
1602 |
+
0.0,
|
1603 |
+
0.0,
|
1604 |
+
0.0,
|
1605 |
+
0.0,
|
1606 |
+
0.0,
|
1607 |
+
0.0
|
1608 |
+
],
|
1609 |
+
"min": [
|
1610 |
+
0.0,
|
1611 |
+
0.0,
|
1612 |
+
0.0,
|
1613 |
+
0.0,
|
1614 |
+
0.0,
|
1615 |
+
0.0,
|
1616 |
+
0.0
|
1617 |
+
],
|
1618 |
+
"q01": [
|
1619 |
+
0.0,
|
1620 |
+
0.0,
|
1621 |
+
0.0,
|
1622 |
+
0.0,
|
1623 |
+
0.0,
|
1624 |
+
0.0,
|
1625 |
+
0.0
|
1626 |
+
],
|
1627 |
+
"q99": [
|
1628 |
+
0.0,
|
1629 |
+
0.0,
|
1630 |
+
0.0,
|
1631 |
+
0.0,
|
1632 |
+
0.0,
|
1633 |
+
0.0,
|
1634 |
+
0.0
|
1635 |
+
],
|
1636 |
+
"std": [
|
1637 |
+
0.0,
|
1638 |
+
0.0,
|
1639 |
+
0.0,
|
1640 |
+
0.0,
|
1641 |
+
0.0,
|
1642 |
+
0.0,
|
1643 |
+
0.0
|
1644 |
+
]
|
1645 |
+
}
|
1646 |
+
},
|
1647 |
+
"fractal20220817_data": {
|
1648 |
+
"action": {
|
1649 |
+
"mask": [
|
1650 |
+
true,
|
1651 |
+
true,
|
1652 |
+
true,
|
1653 |
+
true,
|
1654 |
+
true,
|
1655 |
+
true,
|
1656 |
+
false
|
1657 |
+
],
|
1658 |
+
"max": [
|
1659 |
+
2.9984593391418457,
|
1660 |
+
22.09052848815918,
|
1661 |
+
2.7507524490356445,
|
1662 |
+
1.570636510848999,
|
1663 |
+
1.5321086645126343,
|
1664 |
+
1.5691522359848022,
|
1665 |
+
1.0
|
1666 |
+
],
|
1667 |
+
"mean": [
|
1668 |
+
0.006987582892179489,
|
1669 |
+
0.006265917327255011,
|
1670 |
+
-0.01262515690177679,
|
1671 |
+
0.04333311319351196,
|
1672 |
+
-0.005756212864071131,
|
1673 |
+
0.0009130256366916001,
|
1674 |
+
0.5354204773902893
|
1675 |
+
],
|
1676 |
+
"min": [
|
1677 |
+
-2.0204520225524902,
|
1678 |
+
-5.497899532318115,
|
1679 |
+
-2.031663417816162,
|
1680 |
+
-1.569917917251587,
|
1681 |
+
-1.569892168045044,
|
1682 |
+
-1.570419430732727,
|
1683 |
+
0.0
|
1684 |
+
],
|
1685 |
+
"q01": [
|
1686 |
+
-0.22453527510166169,
|
1687 |
+
-0.14820013284683228,
|
1688 |
+
-0.231589707583189,
|
1689 |
+
-0.3517994859814644,
|
1690 |
+
-0.4193011274933815,
|
1691 |
+
-0.43643461108207704,
|
1692 |
+
0.0
|
1693 |
+
],
|
1694 |
+
"q99": [
|
1695 |
+
0.17824687153100965,
|
1696 |
+
0.14938379630446405,
|
1697 |
+
0.21842354819178575,
|
1698 |
+
0.5892666035890578,
|
1699 |
+
0.35272657424211445,
|
1700 |
+
0.44796681255102094,
|
1701 |
+
1.0
|
1702 |
+
],
|
1703 |
+
"std": [
|
1704 |
+
0.0692116990685463,
|
1705 |
+
0.05970962345600128,
|
1706 |
+
0.07353084534406662,
|
1707 |
+
0.15610496699810028,
|
1708 |
+
0.13164450228214264,
|
1709 |
+
0.14593800902366638,
|
1710 |
+
0.497110515832901
|
1711 |
+
]
|
1712 |
+
},
|
1713 |
+
"num_trajectories": 87212,
|
1714 |
+
"num_transitions": 3786400,
|
1715 |
+
"proprio": {
|
1716 |
+
"max": [
|
1717 |
+
0.0,
|
1718 |
+
0.0,
|
1719 |
+
0.0,
|
1720 |
+
0.0,
|
1721 |
+
0.0,
|
1722 |
+
0.0,
|
1723 |
+
0.0
|
1724 |
+
],
|
1725 |
+
"mean": [
|
1726 |
+
0.0,
|
1727 |
+
0.0,
|
1728 |
+
0.0,
|
1729 |
+
0.0,
|
1730 |
+
0.0,
|
1731 |
+
0.0,
|
1732 |
+
0.0
|
1733 |
+
],
|
1734 |
+
"min": [
|
1735 |
+
0.0,
|
1736 |
+
0.0,
|
1737 |
+
0.0,
|
1738 |
+
0.0,
|
1739 |
+
0.0,
|
1740 |
+
0.0,
|
1741 |
+
0.0
|
1742 |
+
],
|
1743 |
+
"q01": [
|
1744 |
+
0.0,
|
1745 |
+
0.0,
|
1746 |
+
0.0,
|
1747 |
+
0.0,
|
1748 |
+
0.0,
|
1749 |
+
0.0,
|
1750 |
+
0.0
|
1751 |
+
],
|
1752 |
+
"q99": [
|
1753 |
+
0.0,
|
1754 |
+
0.0,
|
1755 |
+
0.0,
|
1756 |
+
0.0,
|
1757 |
+
0.0,
|
1758 |
+
0.0,
|
1759 |
+
0.0
|
1760 |
+
],
|
1761 |
+
"std": [
|
1762 |
+
0.0,
|
1763 |
+
0.0,
|
1764 |
+
0.0,
|
1765 |
+
0.0,
|
1766 |
+
0.0,
|
1767 |
+
0.0,
|
1768 |
+
0.0
|
1769 |
+
]
|
1770 |
+
}
|
1771 |
+
},
|
1772 |
+
"furniture_bench_dataset_converted_externally_to_rlds": {
|
1773 |
+
"action": {
|
1774 |
+
"mask": [
|
1775 |
+
true,
|
1776 |
+
true,
|
1777 |
+
true,
|
1778 |
+
true,
|
1779 |
+
true,
|
1780 |
+
true,
|
1781 |
+
false
|
1782 |
+
],
|
1783 |
+
"max": [
|
1784 |
+
0.10000000149011612,
|
1785 |
+
0.10000000149011612,
|
1786 |
+
0.10000000149011612,
|
1787 |
+
0.8651833534240723,
|
1788 |
+
1.0909736156463623,
|
1789 |
+
2.863185405731201,
|
1790 |
+
1.0
|
1791 |
+
],
|
1792 |
+
"mean": [
|
1793 |
+
0.00014610752987209707,
|
1794 |
+
0.0010830952087417245,
|
1795 |
+
0.0006224989192560315,
|
1796 |
+
-0.003303206292912364,
|
1797 |
+
-0.0026880695950239897,
|
1798 |
+
0.018242603167891502,
|
1799 |
+
0.48854944109916687
|
1800 |
+
],
|
1801 |
+
"min": [
|
1802 |
+
-0.10495579987764359,
|
1803 |
+
-0.10939455777406693,
|
1804 |
+
-0.10000000149011612,
|
1805 |
+
-0.971906840801239,
|
1806 |
+
-1.0475432872772217,
|
1807 |
+
-3.06000018119812,
|
1808 |
+
0.0
|
1809 |
+
],
|
1810 |
+
"q01": [
|
1811 |
+
-0.053988199681043625,
|
1812 |
+
-0.05049169331789017,
|
1813 |
+
-0.032499241530895236,
|
1814 |
+
-0.1953887003660202,
|
1815 |
+
-0.41674559473991396,
|
1816 |
+
-0.8886768388748169,
|
1817 |
+
0.0
|
1818 |
+
],
|
1819 |
+
"q99": [
|
1820 |
+
0.05414841488003723,
|
1821 |
+
0.04965164884924884,
|
1822 |
+
0.060055799782276154,
|
1823 |
+
0.18231668293476103,
|
1824 |
+
0.39867786407470646,
|
1825 |
+
0.8772023963928218,
|
1826 |
+
1.0
|
1827 |
+
],
|
1828 |
+
"std": [
|
1829 |
+
0.01610708422958851,
|
1830 |
+
0.014891477301716805,
|
1831 |
+
0.014014219865202904,
|
1832 |
+
0.058274295181035995,
|
1833 |
+
0.11417088657617569,
|
1834 |
+
0.33479776978492737,
|
1835 |
+
0.49991825222969055
|
1836 |
+
]
|
1837 |
+
},
|
1838 |
+
"num_trajectories": 5100,
|
1839 |
+
"num_transitions": 3948057,
|
1840 |
+
"proprio": {
|
1841 |
+
"max": [
|
1842 |
+
0.0,
|
1843 |
+
0.0,
|
1844 |
+
0.0,
|
1845 |
+
0.0,
|
1846 |
+
0.0,
|
1847 |
+
0.0,
|
1848 |
+
0.0
|
1849 |
+
],
|
1850 |
+
"mean": [
|
1851 |
+
0.0,
|
1852 |
+
0.0,
|
1853 |
+
0.0,
|
1854 |
+
0.0,
|
1855 |
+
0.0,
|
1856 |
+
0.0,
|
1857 |
+
0.0
|
1858 |
+
],
|
1859 |
+
"min": [
|
1860 |
+
0.0,
|
1861 |
+
0.0,
|
1862 |
+
0.0,
|
1863 |
+
0.0,
|
1864 |
+
0.0,
|
1865 |
+
0.0,
|
1866 |
+
0.0
|
1867 |
+
],
|
1868 |
+
"q01": [
|
1869 |
+
0.0,
|
1870 |
+
0.0,
|
1871 |
+
0.0,
|
1872 |
+
0.0,
|
1873 |
+
0.0,
|
1874 |
+
0.0,
|
1875 |
+
0.0
|
1876 |
+
],
|
1877 |
+
"q99": [
|
1878 |
+
0.0,
|
1879 |
+
0.0,
|
1880 |
+
0.0,
|
1881 |
+
0.0,
|
1882 |
+
0.0,
|
1883 |
+
0.0,
|
1884 |
+
0.0
|
1885 |
+
],
|
1886 |
+
"std": [
|
1887 |
+
0.0,
|
1888 |
+
0.0,
|
1889 |
+
0.0,
|
1890 |
+
0.0,
|
1891 |
+
0.0,
|
1892 |
+
0.0,
|
1893 |
+
0.0
|
1894 |
+
]
|
1895 |
+
}
|
1896 |
+
},
|
1897 |
+
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": {
|
1898 |
+
"action": {
|
1899 |
+
"mask": [
|
1900 |
+
true,
|
1901 |
+
true,
|
1902 |
+
true,
|
1903 |
+
true,
|
1904 |
+
true,
|
1905 |
+
true,
|
1906 |
+
false
|
1907 |
+
],
|
1908 |
+
"max": [
|
1909 |
+
0.6634981632232666,
|
1910 |
+
0.23428471386432648,
|
1911 |
+
0.4308285415172577,
|
1912 |
+
3.1415927410125732,
|
1913 |
+
0.13647015392780304,
|
1914 |
+
3.141592502593994,
|
1915 |
+
1.0
|
1916 |
+
],
|
1917 |
+
"mean": [
|
1918 |
+
0.5274372696876526,
|
1919 |
+
0.02858201041817665,
|
1920 |
+
0.18712575733661652,
|
1921 |
+
1.2339589595794678,
|
1922 |
+
0.03226623684167862,
|
1923 |
+
-1.4199490547180176,
|
1924 |
+
0.5550631880760193
|
1925 |
+
],
|
1926 |
+
"min": [
|
1927 |
+
0.3071657121181488,
|
1928 |
+
-0.29754969477653503,
|
1929 |
+
0.06578229367733002,
|
1930 |
+
-3.1415927410125732,
|
1931 |
+
-0.04584203287959099,
|
1932 |
+
-3.141592502593994,
|
1933 |
+
0.0
|
1934 |
+
],
|
1935 |
+
"q01": [
|
1936 |
+
0.3148897051811218,
|
1937 |
+
-0.20317550599575043,
|
1938 |
+
0.06785467118024827,
|
1939 |
+
-3.140952730178833,
|
1940 |
+
-0.029743434861302376,
|
1941 |
+
-3.141091251373291,
|
1942 |
+
0.0
|
1943 |
+
],
|
1944 |
+
"q99": [
|
1945 |
+
0.6472805738449097,
|
1946 |
+
0.20846802592277527,
|
1947 |
+
0.36855655312538155,
|
1948 |
+
3.1409926891326903,
|
1949 |
+
0.11424950212240226,
|
1950 |
+
3.1410969257354737,
|
1951 |
+
1.0
|
1952 |
+
],
|
1953 |
+
"std": [
|
1954 |
+
0.08108345419168472,
|
1955 |
+
0.1116757020354271,
|
1956 |
+
0.07747554779052734,
|
1957 |
+
2.8737246990203857,
|
1958 |
+
0.02774704433977604,
|
1959 |
+
2.7678682804107666,
|
1960 |
+
0.49695101380348206
|
1961 |
+
]
|
1962 |
+
},
|
1963 |
+
"num_trajectories": 631,
|
1964 |
+
"num_transitions": 146241,
|
1965 |
+
"proprio": {
|
1966 |
+
"max": [
|
1967 |
+
0.0,
|
1968 |
+
0.0,
|
1969 |
+
0.0,
|
1970 |
+
0.0,
|
1971 |
+
0.0,
|
1972 |
+
0.0,
|
1973 |
+
0.0
|
1974 |
+
],
|
1975 |
+
"mean": [
|
1976 |
+
0.0,
|
1977 |
+
0.0,
|
1978 |
+
0.0,
|
1979 |
+
0.0,
|
1980 |
+
0.0,
|
1981 |
+
0.0,
|
1982 |
+
0.0
|
1983 |
+
],
|
1984 |
+
"min": [
|
1985 |
+
0.0,
|
1986 |
+
0.0,
|
1987 |
+
0.0,
|
1988 |
+
0.0,
|
1989 |
+
0.0,
|
1990 |
+
0.0,
|
1991 |
+
0.0
|
1992 |
+
],
|
1993 |
+
"q01": [
|
1994 |
+
0.0,
|
1995 |
+
0.0,
|
1996 |
+
0.0,
|
1997 |
+
0.0,
|
1998 |
+
0.0,
|
1999 |
+
0.0,
|
2000 |
+
0.0
|
2001 |
+
],
|
2002 |
+
"q99": [
|
2003 |
+
0.0,
|
2004 |
+
0.0,
|
2005 |
+
0.0,
|
2006 |
+
0.0,
|
2007 |
+
0.0,
|
2008 |
+
0.0,
|
2009 |
+
0.0
|
2010 |
+
],
|
2011 |
+
"std": [
|
2012 |
+
0.0,
|
2013 |
+
0.0,
|
2014 |
+
0.0,
|
2015 |
+
0.0,
|
2016 |
+
0.0,
|
2017 |
+
0.0,
|
2018 |
+
0.0
|
2019 |
+
]
|
2020 |
+
}
|
2021 |
+
},
|
2022 |
+
"jaco_play": {
|
2023 |
+
"action": {
|
2024 |
+
"mask": [
|
2025 |
+
true,
|
2026 |
+
true,
|
2027 |
+
true,
|
2028 |
+
true,
|
2029 |
+
true,
|
2030 |
+
true,
|
2031 |
+
false
|
2032 |
+
],
|
2033 |
+
"max": [
|
2034 |
+
0.20000000298023224,
|
2035 |
+
0.20000000298023224,
|
2036 |
+
0.20000000298023224,
|
2037 |
+
0.0,
|
2038 |
+
0.0,
|
2039 |
+
0.0,
|
2040 |
+
1.0
|
2041 |
+
],
|
2042 |
+
"mean": [
|
2043 |
+
0.0009658430935814977,
|
2044 |
+
-0.00580078037455678,
|
2045 |
+
-0.00395062193274498,
|
2046 |
+
0.0,
|
2047 |
+
0.0,
|
2048 |
+
0.0,
|
2049 |
+
0.34934908151626587
|
2050 |
+
],
|
2051 |
+
"min": [
|
2052 |
+
-0.20000000298023224,
|
2053 |
+
-0.20000000298023224,
|
2054 |
+
-0.20000000298023224,
|
2055 |
+
0.0,
|
2056 |
+
0.0,
|
2057 |
+
0.0,
|
2058 |
+
0.0
|
2059 |
+
],
|
2060 |
+
"q01": [
|
2061 |
+
-0.20000000298023224,
|
2062 |
+
-0.20000000298023224,
|
2063 |
+
-0.20000000298023224,
|
2064 |
+
0.0,
|
2065 |
+
0.0,
|
2066 |
+
0.0,
|
2067 |
+
0.0
|
2068 |
+
],
|
2069 |
+
"q99": [
|
2070 |
+
0.20000000298023224,
|
2071 |
+
0.20000000298023224,
|
2072 |
+
0.20000000298023224,
|
2073 |
+
0.0,
|
2074 |
+
0.0,
|
2075 |
+
0.0,
|
2076 |
+
1.0
|
2077 |
+
],
|
2078 |
+
"std": [
|
2079 |
+
0.12235074490308762,
|
2080 |
+
0.09678777307271957,
|
2081 |
+
0.11155334860086441,
|
2082 |
+
0.0,
|
2083 |
+
0.0,
|
2084 |
+
0.0,
|
2085 |
+
0.4768252968788147
|
2086 |
+
]
|
2087 |
+
},
|
2088 |
+
"num_trajectories": 1085,
|
2089 |
+
"num_transitions": 77965,
|
2090 |
+
"proprio": {
|
2091 |
+
"max": [
|
2092 |
+
0.0,
|
2093 |
+
0.0,
|
2094 |
+
0.0,
|
2095 |
+
0.0,
|
2096 |
+
0.0,
|
2097 |
+
0.0,
|
2098 |
+
0.0
|
2099 |
+
],
|
2100 |
+
"mean": [
|
2101 |
+
0.0,
|
2102 |
+
0.0,
|
2103 |
+
0.0,
|
2104 |
+
0.0,
|
2105 |
+
0.0,
|
2106 |
+
0.0,
|
2107 |
+
0.0
|
2108 |
+
],
|
2109 |
+
"min": [
|
2110 |
+
0.0,
|
2111 |
+
0.0,
|
2112 |
+
0.0,
|
2113 |
+
0.0,
|
2114 |
+
0.0,
|
2115 |
+
0.0,
|
2116 |
+
0.0
|
2117 |
+
],
|
2118 |
+
"q01": [
|
2119 |
+
0.0,
|
2120 |
+
0.0,
|
2121 |
+
0.0,
|
2122 |
+
0.0,
|
2123 |
+
0.0,
|
2124 |
+
0.0,
|
2125 |
+
0.0
|
2126 |
+
],
|
2127 |
+
"q99": [
|
2128 |
+
0.0,
|
2129 |
+
0.0,
|
2130 |
+
0.0,
|
2131 |
+
0.0,
|
2132 |
+
0.0,
|
2133 |
+
0.0,
|
2134 |
+
0.0
|
2135 |
+
],
|
2136 |
+
"std": [
|
2137 |
+
0.0,
|
2138 |
+
0.0,
|
2139 |
+
0.0,
|
2140 |
+
0.0,
|
2141 |
+
0.0,
|
2142 |
+
0.0,
|
2143 |
+
0.0
|
2144 |
+
]
|
2145 |
+
}
|
2146 |
+
},
|
2147 |
+
"kuka": {
|
2148 |
+
"action": {
|
2149 |
+
"mask": [
|
2150 |
+
true,
|
2151 |
+
true,
|
2152 |
+
true,
|
2153 |
+
true,
|
2154 |
+
true,
|
2155 |
+
true,
|
2156 |
+
false
|
2157 |
+
],
|
2158 |
+
"max": [
|
2159 |
+
0.1697135865688324,
|
2160 |
+
0.2777623236179352,
|
2161 |
+
0.43710532784461975,
|
2162 |
+
0.0,
|
2163 |
+
0.0,
|
2164 |
+
1.9684287309646606,
|
2165 |
+
1.0
|
2166 |
+
],
|
2167 |
+
"mean": [
|
2168 |
+
-0.0004668905457947403,
|
2169 |
+
0.00040138536132872105,
|
2170 |
+
-0.001280792523175478,
|
2171 |
+
0.0,
|
2172 |
+
0.0,
|
2173 |
+
-0.03722453489899635,
|
2174 |
+
0.4131543040275574
|
2175 |
+
],
|
2176 |
+
"min": [
|
2177 |
+
-0.159867063164711,
|
2178 |
+
-0.2892282009124756,
|
2179 |
+
-0.2795473635196686,
|
2180 |
+
0.0,
|
2181 |
+
0.0,
|
2182 |
+
-1.9875637292861938,
|
2183 |
+
0.0
|
2184 |
+
],
|
2185 |
+
"q01": [
|
2186 |
+
-0.06619441494345665,
|
2187 |
+
-0.08713878810405731,
|
2188 |
+
-0.15083016991615295,
|
2189 |
+
0.0,
|
2190 |
+
0.0,
|
2191 |
+
-0.5415697038173676,
|
2192 |
+
0.0
|
2193 |
+
],
|
2194 |
+
"q99": [
|
2195 |
+
0.06601839080452929,
|
2196 |
+
0.08732476785779003,
|
2197 |
+
0.18168179214000715,
|
2198 |
+
0.0,
|
2199 |
+
0.0,
|
2200 |
+
0.2923380345106127,
|
2201 |
+
1.0
|
2202 |
+
],
|
2203 |
+
"std": [
|
2204 |
+
0.02083250693976879,
|
2205 |
+
0.02915887162089348,
|
2206 |
+
0.06422865390777588,
|
2207 |
+
0.0,
|
2208 |
+
0.0,
|
2209 |
+
0.14224295318126678,
|
2210 |
+
0.49086448550224304
|
2211 |
+
]
|
2212 |
+
},
|
2213 |
+
"num_trajectories": 209880,
|
2214 |
+
"num_transitions": 2455879,
|
2215 |
+
"proprio": {
|
2216 |
+
"max": [
|
2217 |
+
0.0,
|
2218 |
+
0.0,
|
2219 |
+
0.0,
|
2220 |
+
0.0,
|
2221 |
+
0.0,
|
2222 |
+
0.0,
|
2223 |
+
0.0
|
2224 |
+
],
|
2225 |
+
"mean": [
|
2226 |
+
0.0,
|
2227 |
+
0.0,
|
2228 |
+
0.0,
|
2229 |
+
0.0,
|
2230 |
+
0.0,
|
2231 |
+
0.0,
|
2232 |
+
0.0
|
2233 |
+
],
|
2234 |
+
"min": [
|
2235 |
+
0.0,
|
2236 |
+
0.0,
|
2237 |
+
0.0,
|
2238 |
+
0.0,
|
2239 |
+
0.0,
|
2240 |
+
0.0,
|
2241 |
+
0.0
|
2242 |
+
],
|
2243 |
+
"q01": [
|
2244 |
+
0.0,
|
2245 |
+
0.0,
|
2246 |
+
0.0,
|
2247 |
+
0.0,
|
2248 |
+
0.0,
|
2249 |
+
0.0,
|
2250 |
+
0.0
|
2251 |
+
],
|
2252 |
+
"q99": [
|
2253 |
+
0.0,
|
2254 |
+
0.0,
|
2255 |
+
0.0,
|
2256 |
+
0.0,
|
2257 |
+
0.0,
|
2258 |
+
0.0,
|
2259 |
+
0.0
|
2260 |
+
],
|
2261 |
+
"std": [
|
2262 |
+
0.0,
|
2263 |
+
0.0,
|
2264 |
+
0.0,
|
2265 |
+
0.0,
|
2266 |
+
0.0,
|
2267 |
+
0.0,
|
2268 |
+
0.0
|
2269 |
+
]
|
2270 |
+
}
|
2271 |
+
},
|
2272 |
+
"nyu_franka_play_dataset_converted_externally_to_rlds": {
|
2273 |
+
"action": {
|
2274 |
+
"mask": [
|
2275 |
+
true,
|
2276 |
+
true,
|
2277 |
+
true,
|
2278 |
+
true,
|
2279 |
+
true,
|
2280 |
+
true,
|
2281 |
+
false
|
2282 |
+
],
|
2283 |
+
"max": [
|
2284 |
+
0.06424188613891602,
|
2285 |
+
0.07027634978294373,
|
2286 |
+
0.06129661202430725,
|
2287 |
+
6.281067848205566,
|
2288 |
+
0.1967729926109314,
|
2289 |
+
0.26377415657043457,
|
2290 |
+
1.0
|
2291 |
+
],
|
2292 |
+
"mean": [
|
2293 |
+
0.001021989737637341,
|
2294 |
+
-0.00012002651783404872,
|
2295 |
+
0.00032894269679673016,
|
2296 |
+
0.0015034361276775599,
|
2297 |
+
-0.002198522910475731,
|
2298 |
+
-0.001663230243138969,
|
2299 |
+
0.7230083346366882
|
2300 |
+
],
|
2301 |
+
"min": [
|
2302 |
+
-0.05952230095863342,
|
2303 |
+
-0.07232445478439331,
|
2304 |
+
-0.06730806827545166,
|
2305 |
+
-6.278434753417969,
|
2306 |
+
-0.21479034423828125,
|
2307 |
+
-0.3627619743347168,
|
2308 |
+
0.0
|
2309 |
+
],
|
2310 |
+
"q01": [
|
2311 |
+
-0.03199600875377655,
|
2312 |
+
-0.032861671447753905,
|
2313 |
+
-0.03368805110454559,
|
2314 |
+
-0.12080862045288086,
|
2315 |
+
-0.12175218224525451,
|
2316 |
+
-0.11370223641395569,
|
2317 |
+
0.0
|
2318 |
+
],
|
2319 |
+
"q99": [
|
2320 |
+
0.03101520001888276,
|
2321 |
+
0.0373908892273903,
|
2322 |
+
0.03646374464035038,
|
2323 |
+
0.11764093399047852,
|
2324 |
+
0.1258920183777809,
|
2325 |
+
0.09366151213645942,
|
2326 |
+
1.0
|
2327 |
+
],
|
2328 |
+
"std": [
|
2329 |
+
0.01327415369451046,
|
2330 |
+
0.013215910643339157,
|
2331 |
+
0.012822109274566174,
|
2332 |
+
0.2732451558113098,
|
2333 |
+
0.057022541761398315,
|
2334 |
+
0.039172880351543427,
|
2335 |
+
0.44752755761146545
|
2336 |
+
]
|
2337 |
+
},
|
2338 |
+
"num_trajectories": 456,
|
2339 |
+
"num_transitions": 44875,
|
2340 |
+
"proprio": {
|
2341 |
+
"max": [
|
2342 |
+
0.0,
|
2343 |
+
0.0,
|
2344 |
+
0.0,
|
2345 |
+
0.0,
|
2346 |
+
0.0,
|
2347 |
+
0.0,
|
2348 |
+
0.0
|
2349 |
+
],
|
2350 |
+
"mean": [
|
2351 |
+
0.0,
|
2352 |
+
0.0,
|
2353 |
+
0.0,
|
2354 |
+
0.0,
|
2355 |
+
0.0,
|
2356 |
+
0.0,
|
2357 |
+
0.0
|
2358 |
+
],
|
2359 |
+
"min": [
|
2360 |
+
0.0,
|
2361 |
+
0.0,
|
2362 |
+
0.0,
|
2363 |
+
0.0,
|
2364 |
+
0.0,
|
2365 |
+
0.0,
|
2366 |
+
0.0
|
2367 |
+
],
|
2368 |
+
"q01": [
|
2369 |
+
0.0,
|
2370 |
+
0.0,
|
2371 |
+
0.0,
|
2372 |
+
0.0,
|
2373 |
+
0.0,
|
2374 |
+
0.0,
|
2375 |
+
0.0
|
2376 |
+
],
|
2377 |
+
"q99": [
|
2378 |
+
0.0,
|
2379 |
+
0.0,
|
2380 |
+
0.0,
|
2381 |
+
0.0,
|
2382 |
+
0.0,
|
2383 |
+
0.0,
|
2384 |
+
0.0
|
2385 |
+
],
|
2386 |
+
"std": [
|
2387 |
+
0.0,
|
2388 |
+
0.0,
|
2389 |
+
0.0,
|
2390 |
+
0.0,
|
2391 |
+
0.0,
|
2392 |
+
0.0,
|
2393 |
+
0.0
|
2394 |
+
]
|
2395 |
+
}
|
2396 |
+
},
|
2397 |
+
"roboturk": {
|
2398 |
+
"action": {
|
2399 |
+
"mask": [
|
2400 |
+
true,
|
2401 |
+
true,
|
2402 |
+
true,
|
2403 |
+
true,
|
2404 |
+
true,
|
2405 |
+
true,
|
2406 |
+
false
|
2407 |
+
],
|
2408 |
+
"max": [
|
2409 |
+
0.39124172925949097,
|
2410 |
+
0.4601028263568878,
|
2411 |
+
0.4870833456516266,
|
2412 |
+
1.816888689994812,
|
2413 |
+
1.8240282535552979,
|
2414 |
+
1.4824820756912231,
|
2415 |
+
1.0
|
2416 |
+
],
|
2417 |
+
"mean": [
|
2418 |
+
0.0014448732836171985,
|
2419 |
+
-0.0015945249469950795,
|
2420 |
+
-0.0011753785656765103,
|
2421 |
+
0.0023012510500848293,
|
2422 |
+
-0.0009382463176734746,
|
2423 |
+
-0.00011485807772260159,
|
2424 |
+
0.5746025443077087
|
2425 |
+
],
|
2426 |
+
"min": [
|
2427 |
+
-0.6546999216079712,
|
2428 |
+
-0.6365841031074524,
|
2429 |
+
-0.4217723608016968,
|
2430 |
+
-1.6695482730865479,
|
2431 |
+
-1.8023357391357422,
|
2432 |
+
-1.4630827903747559,
|
2433 |
+
0.0
|
2434 |
+
],
|
2435 |
+
"q01": [
|
2436 |
+
-0.1342635464668274,
|
2437 |
+
-0.19996687173843383,
|
2438 |
+
-0.1482972100377083,
|
2439 |
+
-0.20720748245716095,
|
2440 |
+
-0.09676413893699647,
|
2441 |
+
-0.18075634717941286,
|
2442 |
+
0.0
|
2443 |
+
],
|
2444 |
+
"q99": [
|
2445 |
+
0.14956976801157001,
|
2446 |
+
0.1805950567126275,
|
2447 |
+
0.18841815620660796,
|
2448 |
+
0.21615413755178453,
|
2449 |
+
0.09457383215427405,
|
2450 |
+
0.18543301910162005,
|
2451 |
+
1.0
|
2452 |
+
],
|
2453 |
+
"std": [
|
2454 |
+
0.04935386776924133,
|
2455 |
+
0.0635455846786499,
|
2456 |
+
0.061164740473032,
|
2457 |
+
0.09553450345993042,
|
2458 |
+
0.08420111238956451,
|
2459 |
+
0.06517903506755829,
|
2460 |
+
0.49452081322669983
|
2461 |
+
]
|
2462 |
+
},
|
2463 |
+
"num_trajectories": 1995,
|
2464 |
+
"num_transitions": 187507,
|
2465 |
+
"proprio": {
|
2466 |
+
"max": [
|
2467 |
+
0.0,
|
2468 |
+
0.0,
|
2469 |
+
0.0,
|
2470 |
+
0.0,
|
2471 |
+
0.0,
|
2472 |
+
0.0,
|
2473 |
+
0.0
|
2474 |
+
],
|
2475 |
+
"mean": [
|
2476 |
+
0.0,
|
2477 |
+
0.0,
|
2478 |
+
0.0,
|
2479 |
+
0.0,
|
2480 |
+
0.0,
|
2481 |
+
0.0,
|
2482 |
+
0.0
|
2483 |
+
],
|
2484 |
+
"min": [
|
2485 |
+
0.0,
|
2486 |
+
0.0,
|
2487 |
+
0.0,
|
2488 |
+
0.0,
|
2489 |
+
0.0,
|
2490 |
+
0.0,
|
2491 |
+
0.0
|
2492 |
+
],
|
2493 |
+
"q01": [
|
2494 |
+
0.0,
|
2495 |
+
0.0,
|
2496 |
+
0.0,
|
2497 |
+
0.0,
|
2498 |
+
0.0,
|
2499 |
+
0.0,
|
2500 |
+
0.0
|
2501 |
+
],
|
2502 |
+
"q99": [
|
2503 |
+
0.0,
|
2504 |
+
0.0,
|
2505 |
+
0.0,
|
2506 |
+
0.0,
|
2507 |
+
0.0,
|
2508 |
+
0.0,
|
2509 |
+
0.0
|
2510 |
+
],
|
2511 |
+
"std": [
|
2512 |
+
0.0,
|
2513 |
+
0.0,
|
2514 |
+
0.0,
|
2515 |
+
0.0,
|
2516 |
+
0.0,
|
2517 |
+
0.0,
|
2518 |
+
0.0
|
2519 |
+
]
|
2520 |
+
}
|
2521 |
+
},
|
2522 |
+
"stanford_hydra_dataset_converted_externally_to_rlds": {
|
2523 |
+
"action": {
|
2524 |
+
"mask": [
|
2525 |
+
true,
|
2526 |
+
true,
|
2527 |
+
true,
|
2528 |
+
true,
|
2529 |
+
true,
|
2530 |
+
true,
|
2531 |
+
false
|
2532 |
+
],
|
2533 |
+
"max": [
|
2534 |
+
0.02499854564666748,
|
2535 |
+
0.02499903365969658,
|
2536 |
+
0.024999922141432762,
|
2537 |
+
0.24974457919597626,
|
2538 |
+
0.24997030198574066,
|
2539 |
+
0.24999946355819702,
|
2540 |
+
1.0
|
2541 |
+
],
|
2542 |
+
"mean": [
|
2543 |
+
0.0007790001109242439,
|
2544 |
+
0.00013707754260394722,
|
2545 |
+
-0.0002548607881180942,
|
2546 |
+
0.0012903271708637476,
|
2547 |
+
-0.004751681815832853,
|
2548 |
+
0.002692886395379901,
|
2549 |
+
0.48855218291282654
|
2550 |
+
],
|
2551 |
+
"min": [
|
2552 |
+
-0.024999044835567474,
|
2553 |
+
-0.024999700486660004,
|
2554 |
+
-0.02499929815530777,
|
2555 |
+
-0.24993225932121277,
|
2556 |
+
-0.2499666064977646,
|
2557 |
+
-0.2499932497739792,
|
2558 |
+
0.0
|
2559 |
+
],
|
2560 |
+
"q01": [
|
2561 |
+
-0.019992006458342076,
|
2562 |
+
-0.02415412735193968,
|
2563 |
+
-0.022941758055239916,
|
2564 |
+
-0.11085530579090118,
|
2565 |
+
-0.12024572037160397,
|
2566 |
+
-0.13314770206809043,
|
2567 |
+
0.0
|
2568 |
+
],
|
2569 |
+
"q99": [
|
2570 |
+
0.022886231057345868,
|
2571 |
+
0.022358838934451335,
|
2572 |
+
0.02410089675337076,
|
2573 |
+
0.12370114490389822,
|
2574 |
+
0.11323311634361738,
|
2575 |
+
0.18474749639630164,
|
2576 |
+
1.0
|
2577 |
+
],
|
2578 |
+
"std": [
|
2579 |
+
0.008022161200642586,
|
2580 |
+
0.009131459519267082,
|
2581 |
+
0.009574338793754578,
|
2582 |
+
0.04122216999530792,
|
2583 |
+
0.0384303517639637,
|
2584 |
+
0.04606688767671585,
|
2585 |
+
0.49976691603660583
|
2586 |
+
]
|
2587 |
+
},
|
2588 |
+
"num_trajectories": 570,
|
2589 |
+
"num_transitions": 358234,
|
2590 |
+
"proprio": {
|
2591 |
+
"max": [
|
2592 |
+
0.0,
|
2593 |
+
0.0,
|
2594 |
+
0.0,
|
2595 |
+
0.0,
|
2596 |
+
0.0,
|
2597 |
+
0.0,
|
2598 |
+
0.0
|
2599 |
+
],
|
2600 |
+
"mean": [
|
2601 |
+
0.0,
|
2602 |
+
0.0,
|
2603 |
+
0.0,
|
2604 |
+
0.0,
|
2605 |
+
0.0,
|
2606 |
+
0.0,
|
2607 |
+
0.0
|
2608 |
+
],
|
2609 |
+
"min": [
|
2610 |
+
0.0,
|
2611 |
+
0.0,
|
2612 |
+
0.0,
|
2613 |
+
0.0,
|
2614 |
+
0.0,
|
2615 |
+
0.0,
|
2616 |
+
0.0
|
2617 |
+
],
|
2618 |
+
"q01": [
|
2619 |
+
0.0,
|
2620 |
+
0.0,
|
2621 |
+
0.0,
|
2622 |
+
0.0,
|
2623 |
+
0.0,
|
2624 |
+
0.0,
|
2625 |
+
0.0
|
2626 |
+
],
|
2627 |
+
"q99": [
|
2628 |
+
0.0,
|
2629 |
+
0.0,
|
2630 |
+
0.0,
|
2631 |
+
0.0,
|
2632 |
+
0.0,
|
2633 |
+
0.0,
|
2634 |
+
0.0
|
2635 |
+
],
|
2636 |
+
"std": [
|
2637 |
+
0.0,
|
2638 |
+
0.0,
|
2639 |
+
0.0,
|
2640 |
+
0.0,
|
2641 |
+
0.0,
|
2642 |
+
0.0,
|
2643 |
+
0.0
|
2644 |
+
]
|
2645 |
+
}
|
2646 |
+
},
|
2647 |
+
"taco_play": {
|
2648 |
+
"action": {
|
2649 |
+
"mask": [
|
2650 |
+
true,
|
2651 |
+
true,
|
2652 |
+
true,
|
2653 |
+
true,
|
2654 |
+
true,
|
2655 |
+
true,
|
2656 |
+
false
|
2657 |
+
],
|
2658 |
+
"max": [
|
2659 |
+
1.4915844202041626,
|
2660 |
+
2.1842432022094727,
|
2661 |
+
2.6836395263671875,
|
2662 |
+
5.035226821899414,
|
2663 |
+
2.665864944458008,
|
2664 |
+
4.250768661499023,
|
2665 |
+
1.0
|
2666 |
+
],
|
2667 |
+
"mean": [
|
2668 |
+
-0.003845922416076064,
|
2669 |
+
0.009671456180512905,
|
2670 |
+
0.012780580669641495,
|
2671 |
+
-0.005403771996498108,
|
2672 |
+
-0.009606587700545788,
|
2673 |
+
-0.002480733208358288,
|
2674 |
+
0.4263913035392761
|
2675 |
+
],
|
2676 |
+
"min": [
|
2677 |
+
-4.242457866668701,
|
2678 |
+
-3.192805051803589,
|
2679 |
+
-1.3371467590332031,
|
2680 |
+
-4.202683448791504,
|
2681 |
+
-2.6722638607025146,
|
2682 |
+
-3.3467135429382324,
|
2683 |
+
0.0
|
2684 |
+
],
|
2685 |
+
"q01": [
|
2686 |
+
-0.7106140398979186,
|
2687 |
+
-1.056944659948349,
|
2688 |
+
-0.5878450274467468,
|
2689 |
+
-0.7682853937149048,
|
2690 |
+
-0.7180147767066956,
|
2691 |
+
-1.5527938604354858,
|
2692 |
+
0.0
|
2693 |
+
],
|
2694 |
+
"q99": [
|
2695 |
+
0.6482916426658629,
|
2696 |
+
1.0051310062408447,
|
2697 |
+
0.9480248689651489,
|
2698 |
+
0.6926478147506714,
|
2699 |
+
0.6351067513227462,
|
2700 |
+
1.628010264635086,
|
2701 |
+
1.0
|
2702 |
+
],
|
2703 |
+
"std": [
|
2704 |
+
0.23254038393497467,
|
2705 |
+
0.36298269033432007,
|
2706 |
+
0.28692901134490967,
|
2707 |
+
0.2617705166339874,
|
2708 |
+
0.2438892275094986,
|
2709 |
+
0.5216503143310547,
|
2710 |
+
0.4946896731853485
|
2711 |
+
]
|
2712 |
+
},
|
2713 |
+
"num_trajectories": 3603,
|
2714 |
+
"num_transitions": 237798,
|
2715 |
+
"proprio": {
|
2716 |
+
"max": [
|
2717 |
+
0.0,
|
2718 |
+
0.0,
|
2719 |
+
0.0,
|
2720 |
+
0.0,
|
2721 |
+
0.0,
|
2722 |
+
0.0,
|
2723 |
+
0.0
|
2724 |
+
],
|
2725 |
+
"mean": [
|
2726 |
+
0.0,
|
2727 |
+
0.0,
|
2728 |
+
0.0,
|
2729 |
+
0.0,
|
2730 |
+
0.0,
|
2731 |
+
0.0,
|
2732 |
+
0.0
|
2733 |
+
],
|
2734 |
+
"min": [
|
2735 |
+
0.0,
|
2736 |
+
0.0,
|
2737 |
+
0.0,
|
2738 |
+
0.0,
|
2739 |
+
0.0,
|
2740 |
+
0.0,
|
2741 |
+
0.0
|
2742 |
+
],
|
2743 |
+
"q01": [
|
2744 |
+
0.0,
|
2745 |
+
0.0,
|
2746 |
+
0.0,
|
2747 |
+
0.0,
|
2748 |
+
0.0,
|
2749 |
+
0.0,
|
2750 |
+
0.0
|
2751 |
+
],
|
2752 |
+
"q99": [
|
2753 |
+
0.0,
|
2754 |
+
0.0,
|
2755 |
+
0.0,
|
2756 |
+
0.0,
|
2757 |
+
0.0,
|
2758 |
+
0.0,
|
2759 |
+
0.0
|
2760 |
+
],
|
2761 |
+
"std": [
|
2762 |
+
0.0,
|
2763 |
+
0.0,
|
2764 |
+
0.0,
|
2765 |
+
0.0,
|
2766 |
+
0.0,
|
2767 |
+
0.0,
|
2768 |
+
0.0
|
2769 |
+
]
|
2770 |
+
}
|
2771 |
+
},
|
2772 |
+
"toto": {
|
2773 |
+
"action": {
|
2774 |
+
"mask": [
|
2775 |
+
true,
|
2776 |
+
true,
|
2777 |
+
true,
|
2778 |
+
true,
|
2779 |
+
true,
|
2780 |
+
true,
|
2781 |
+
false
|
2782 |
+
],
|
2783 |
+
"max": [
|
2784 |
+
0.6839867234230042,
|
2785 |
+
0.4454185664653778,
|
2786 |
+
0.7984078526496887,
|
2787 |
+
2.120781660079956,
|
2788 |
+
1.371164321899414,
|
2789 |
+
1.4118704795837402,
|
2790 |
+
0.0
|
2791 |
+
],
|
2792 |
+
"mean": [
|
2793 |
+
0.38542115688323975,
|
2794 |
+
0.007769413758069277,
|
2795 |
+
0.3632740378379822,
|
2796 |
+
-0.6652036905288696,
|
2797 |
+
0.1890396922826767,
|
2798 |
+
0.03298724442720413,
|
2799 |
+
0.0
|
2800 |
+
],
|
2801 |
+
"min": [
|
2802 |
+
0.09922284632921219,
|
2803 |
+
-0.5180193781852722,
|
2804 |
+
0.13791072368621826,
|
2805 |
+
-2.635117530822754,
|
2806 |
+
-1.0734480619430542,
|
2807 |
+
-1.9282547235488892,
|
2808 |
+
0.0
|
2809 |
+
],
|
2810 |
+
"q01": [
|
2811 |
+
0.1756722891330719,
|
2812 |
+
-0.3077590811252594,
|
2813 |
+
0.235383919775486,
|
2814 |
+
-2.0908505964279174,
|
2815 |
+
-0.6191593289375306,
|
2816 |
+
-0.7488683319091797,
|
2817 |
+
0.0
|
2818 |
+
],
|
2819 |
+
"q99": [
|
2820 |
+
0.6136963081359863,
|
2821 |
+
0.33704194784164443,
|
2822 |
+
0.6681221985816956,
|
2823 |
+
0.7422861719131538,
|
2824 |
+
0.7955395007133507,
|
2825 |
+
0.740464625358582,
|
2826 |
+
0.0
|
2827 |
+
],
|
2828 |
+
"std": [
|
2829 |
+
0.12211652100086212,
|
2830 |
+
0.19378550350666046,
|
2831 |
+
0.10178236663341522,
|
2832 |
+
0.5725259184837341,
|
2833 |
+
0.29884573817253113,
|
2834 |
+
0.3259911835193634,
|
2835 |
+
0.0
|
2836 |
+
]
|
2837 |
+
},
|
2838 |
+
"num_trajectories": 1003,
|
2839 |
+
"num_transitions": 325699,
|
2840 |
+
"proprio": {
|
2841 |
+
"max": [
|
2842 |
+
0.0,
|
2843 |
+
0.0,
|
2844 |
+
0.0,
|
2845 |
+
0.0,
|
2846 |
+
0.0,
|
2847 |
+
0.0,
|
2848 |
+
0.0
|
2849 |
+
],
|
2850 |
+
"mean": [
|
2851 |
+
0.0,
|
2852 |
+
0.0,
|
2853 |
+
0.0,
|
2854 |
+
0.0,
|
2855 |
+
0.0,
|
2856 |
+
0.0,
|
2857 |
+
0.0
|
2858 |
+
],
|
2859 |
+
"min": [
|
2860 |
+
0.0,
|
2861 |
+
0.0,
|
2862 |
+
0.0,
|
2863 |
+
0.0,
|
2864 |
+
0.0,
|
2865 |
+
0.0,
|
2866 |
+
0.0
|
2867 |
+
],
|
2868 |
+
"q01": [
|
2869 |
+
0.0,
|
2870 |
+
0.0,
|
2871 |
+
0.0,
|
2872 |
+
0.0,
|
2873 |
+
0.0,
|
2874 |
+
0.0,
|
2875 |
+
0.0
|
2876 |
+
],
|
2877 |
+
"q99": [
|
2878 |
+
0.0,
|
2879 |
+
0.0,
|
2880 |
+
0.0,
|
2881 |
+
0.0,
|
2882 |
+
0.0,
|
2883 |
+
0.0,
|
2884 |
+
0.0
|
2885 |
+
],
|
2886 |
+
"std": [
|
2887 |
+
0.0,
|
2888 |
+
0.0,
|
2889 |
+
0.0,
|
2890 |
+
0.0,
|
2891 |
+
0.0,
|
2892 |
+
0.0,
|
2893 |
+
0.0
|
2894 |
+
]
|
2895 |
+
}
|
2896 |
+
},
|
2897 |
+
"ucsd_kitchen_dataset_converted_externally_to_rlds": {
|
2898 |
+
"action": {
|
2899 |
+
"mask": [
|
2900 |
+
true,
|
2901 |
+
true,
|
2902 |
+
true,
|
2903 |
+
true,
|
2904 |
+
true,
|
2905 |
+
true,
|
2906 |
+
false
|
2907 |
+
],
|
2908 |
+
"max": [
|
2909 |
+
678.0,
|
2910 |
+
400.0,
|
2911 |
+
507.0,
|
2912 |
+
180.00001525878906,
|
2913 |
+
6.000013828277588,
|
2914 |
+
116.99998474121094,
|
2915 |
+
1.0
|
2916 |
+
],
|
2917 |
+
"mean": [
|
2918 |
+
410.37567138671875,
|
2919 |
+
116.9518814086914,
|
2920 |
+
192.35032653808594,
|
2921 |
+
-121.22441864013672,
|
2922 |
+
-33.84893035888672,
|
2923 |
+
50.016136169433594,
|
2924 |
+
0.741813600063324
|
2925 |
+
],
|
2926 |
+
"min": [
|
2927 |
+
172.0,
|
2928 |
+
-166.0,
|
2929 |
+
-99.99999237060547,
|
2930 |
+
-180.00001525878906,
|
2931 |
+
-89.0,
|
2932 |
+
-96.00010681152344,
|
2933 |
+
0.0
|
2934 |
+
],
|
2935 |
+
"q01": [
|
2936 |
+
200.00001052856445,
|
2937 |
+
-102.31004211425781,
|
2938 |
+
-94.99993370056153,
|
2939 |
+
-180.00001525878906,
|
2940 |
+
-88.00001525878906,
|
2941 |
+
-38.999977111816406,
|
2942 |
+
0.0
|
2943 |
+
],
|
2944 |
+
"q99": [
|
2945 |
+
637.0,
|
2946 |
+
368.30999999999995,
|
2947 |
+
493.0,
|
2948 |
+
180.00001525878906,
|
2949 |
+
0.999983012676239,
|
2950 |
+
105.00001525878906,
|
2951 |
+
1.0
|
2952 |
+
],
|
2953 |
+
"std": [
|
2954 |
+
122.81494903564453,
|
2955 |
+
108.8009033203125,
|
2956 |
+
130.303466796875,
|
2957 |
+
116.28205108642578,
|
2958 |
+
27.621843338012695,
|
2959 |
+
41.02094650268555,
|
2960 |
+
0.43763357400894165
|
2961 |
+
]
|
2962 |
+
},
|
2963 |
+
"num_trajectories": 150,
|
2964 |
+
"num_transitions": 3970,
|
2965 |
+
"proprio": {
|
2966 |
+
"max": [
|
2967 |
+
0.0,
|
2968 |
+
0.0,
|
2969 |
+
0.0,
|
2970 |
+
0.0,
|
2971 |
+
0.0,
|
2972 |
+
0.0,
|
2973 |
+
0.0
|
2974 |
+
],
|
2975 |
+
"mean": [
|
2976 |
+
0.0,
|
2977 |
+
0.0,
|
2978 |
+
0.0,
|
2979 |
+
0.0,
|
2980 |
+
0.0,
|
2981 |
+
0.0,
|
2982 |
+
0.0
|
2983 |
+
],
|
2984 |
+
"min": [
|
2985 |
+
0.0,
|
2986 |
+
0.0,
|
2987 |
+
0.0,
|
2988 |
+
0.0,
|
2989 |
+
0.0,
|
2990 |
+
0.0,
|
2991 |
+
0.0
|
2992 |
+
],
|
2993 |
+
"q01": [
|
2994 |
+
0.0,
|
2995 |
+
0.0,
|
2996 |
+
0.0,
|
2997 |
+
0.0,
|
2998 |
+
0.0,
|
2999 |
+
0.0,
|
3000 |
+
0.0
|
3001 |
+
],
|
3002 |
+
"q99": [
|
3003 |
+
0.0,
|
3004 |
+
0.0,
|
3005 |
+
0.0,
|
3006 |
+
0.0,
|
3007 |
+
0.0,
|
3008 |
+
0.0,
|
3009 |
+
0.0
|
3010 |
+
],
|
3011 |
+
"std": [
|
3012 |
+
0.0,
|
3013 |
+
0.0,
|
3014 |
+
0.0,
|
3015 |
+
0.0,
|
3016 |
+
0.0,
|
3017 |
+
0.0,
|
3018 |
+
0.0
|
3019 |
+
]
|
3020 |
+
}
|
3021 |
+
},
|
3022 |
+
"utaustin_mutex": {
|
3023 |
+
"action": {
|
3024 |
+
"mask": [
|
3025 |
+
true,
|
3026 |
+
true,
|
3027 |
+
true,
|
3028 |
+
true,
|
3029 |
+
true,
|
3030 |
+
true,
|
3031 |
+
false
|
3032 |
+
],
|
3033 |
+
"max": [
|
3034 |
+
1.0,
|
3035 |
+
1.0,
|
3036 |
+
1.0,
|
3037 |
+
0.375,
|
3038 |
+
0.375,
|
3039 |
+
0.375,
|
3040 |
+
1.0
|
3041 |
+
],
|
3042 |
+
"mean": [
|
3043 |
+
0.06176406890153885,
|
3044 |
+
-0.005005486309528351,
|
3045 |
+
0.10216785222291946,
|
3046 |
+
-0.03314131125807762,
|
3047 |
+
0.013895004987716675,
|
3048 |
+
-0.011317633092403412,
|
3049 |
+
0.5038976669311523
|
3050 |
+
],
|
3051 |
+
"min": [
|
3052 |
+
-1.0,
|
3053 |
+
-1.0,
|
3054 |
+
-1.0,
|
3055 |
+
-0.375,
|
3056 |
+
-0.375,
|
3057 |
+
-0.375,
|
3058 |
+
0.0
|
3059 |
+
],
|
3060 |
+
"q01": [
|
3061 |
+
-0.4285714328289032,
|
3062 |
+
-0.9800000190734863,
|
3063 |
+
-0.5571428537368774,
|
3064 |
+
-0.375,
|
3065 |
+
-0.15642857551574707,
|
3066 |
+
-0.335357129573822,
|
3067 |
+
0.0
|
3068 |
+
],
|
3069 |
+
"q99": [
|
3070 |
+
0.5914285778999329,
|
3071 |
+
0.9714285731315613,
|
3072 |
+
1.0,
|
3073 |
+
0.3278571367263794,
|
3074 |
+
0.207857146859169,
|
3075 |
+
0.25607141852378845,
|
3076 |
+
1.0
|
3077 |
+
],
|
3078 |
+
"std": [
|
3079 |
+
0.1875014752149582,
|
3080 |
+
0.4468473494052887,
|
3081 |
+
0.3792876601219177,
|
3082 |
+
0.14097853004932404,
|
3083 |
+
0.06453701853752136,
|
3084 |
+
0.11765272170305252,
|
3085 |
+
0.501045286655426
|
3086 |
+
]
|
3087 |
+
},
|
3088 |
+
"num_trajectories": 1500,
|
3089 |
+
"num_transitions": 361883,
|
3090 |
+
"proprio": {
|
3091 |
+
"max": [
|
3092 |
+
0.0,
|
3093 |
+
0.0,
|
3094 |
+
0.0,
|
3095 |
+
0.0,
|
3096 |
+
0.0,
|
3097 |
+
0.0,
|
3098 |
+
0.0
|
3099 |
+
],
|
3100 |
+
"mean": [
|
3101 |
+
0.0,
|
3102 |
+
0.0,
|
3103 |
+
0.0,
|
3104 |
+
0.0,
|
3105 |
+
0.0,
|
3106 |
+
0.0,
|
3107 |
+
0.0
|
3108 |
+
],
|
3109 |
+
"min": [
|
3110 |
+
0.0,
|
3111 |
+
0.0,
|
3112 |
+
0.0,
|
3113 |
+
0.0,
|
3114 |
+
0.0,
|
3115 |
+
0.0,
|
3116 |
+
0.0
|
3117 |
+
],
|
3118 |
+
"q01": [
|
3119 |
+
0.0,
|
3120 |
+
0.0,
|
3121 |
+
0.0,
|
3122 |
+
0.0,
|
3123 |
+
0.0,
|
3124 |
+
0.0,
|
3125 |
+
0.0
|
3126 |
+
],
|
3127 |
+
"q99": [
|
3128 |
+
0.0,
|
3129 |
+
0.0,
|
3130 |
+
0.0,
|
3131 |
+
0.0,
|
3132 |
+
0.0,
|
3133 |
+
0.0,
|
3134 |
+
0.0
|
3135 |
+
],
|
3136 |
+
"std": [
|
3137 |
+
0.0,
|
3138 |
+
0.0,
|
3139 |
+
0.0,
|
3140 |
+
0.0,
|
3141 |
+
0.0,
|
3142 |
+
0.0,
|
3143 |
+
0.0
|
3144 |
+
]
|
3145 |
+
}
|
3146 |
+
},
|
3147 |
+
"viola": {
|
3148 |
+
"action": {
|
3149 |
+
"mask": [
|
3150 |
+
true,
|
3151 |
+
true,
|
3152 |
+
true,
|
3153 |
+
true,
|
3154 |
+
true,
|
3155 |
+
true,
|
3156 |
+
false
|
3157 |
+
],
|
3158 |
+
"max": [
|
3159 |
+
1.0,
|
3160 |
+
1.0,
|
3161 |
+
1.0,
|
3162 |
+
0.375,
|
3163 |
+
0.36321428418159485,
|
3164 |
+
0.375,
|
3165 |
+
1.0
|
3166 |
+
],
|
3167 |
+
"mean": [
|
3168 |
+
0.04761844128370285,
|
3169 |
+
-0.029204415157437325,
|
3170 |
+
0.05586736649274826,
|
3171 |
+
-0.002618510741740465,
|
3172 |
+
0.006867344491183758,
|
3173 |
+
-0.01682133786380291,
|
3174 |
+
0.7323777675628662
|
3175 |
+
],
|
3176 |
+
"min": [
|
3177 |
+
-1.0,
|
3178 |
+
-1.0,
|
3179 |
+
-1.0,
|
3180 |
+
-0.375,
|
3181 |
+
-0.375,
|
3182 |
+
-0.375,
|
3183 |
+
0.0
|
3184 |
+
],
|
3185 |
+
"q01": [
|
3186 |
+
-0.9628571271896362,
|
3187 |
+
-1.0,
|
3188 |
+
-1.0,
|
3189 |
+
-0.26249998807907104,
|
3190 |
+
-0.21321429312229156,
|
3191 |
+
-0.3385714292526245,
|
3192 |
+
0.0
|
3193 |
+
],
|
3194 |
+
"q99": [
|
3195 |
+
0.9114285707473755,
|
3196 |
+
0.868571400642395,
|
3197 |
+
1.0,
|
3198 |
+
0.2817857265472412,
|
3199 |
+
0.2239285707473755,
|
3200 |
+
0.3557142913341522,
|
3201 |
+
1.0
|
3202 |
+
],
|
3203 |
+
"std": [
|
3204 |
+
0.39157867431640625,
|
3205 |
+
0.4076525568962097,
|
3206 |
+
0.40077948570251465,
|
3207 |
+
0.10023996233940125,
|
3208 |
+
0.0844319611787796,
|
3209 |
+
0.10375042259693146,
|
3210 |
+
0.44260647892951965
|
3211 |
+
]
|
3212 |
+
},
|
3213 |
+
"num_trajectories": 150,
|
3214 |
+
"num_transitions": 76324,
|
3215 |
+
"proprio": {
|
3216 |
+
"max": [
|
3217 |
+
0.0,
|
3218 |
+
0.0,
|
3219 |
+
0.0,
|
3220 |
+
0.0,
|
3221 |
+
0.0,
|
3222 |
+
0.0,
|
3223 |
+
0.0
|
3224 |
+
],
|
3225 |
+
"mean": [
|
3226 |
+
0.0,
|
3227 |
+
0.0,
|
3228 |
+
0.0,
|
3229 |
+
0.0,
|
3230 |
+
0.0,
|
3231 |
+
0.0,
|
3232 |
+
0.0
|
3233 |
+
],
|
3234 |
+
"min": [
|
3235 |
+
0.0,
|
3236 |
+
0.0,
|
3237 |
+
0.0,
|
3238 |
+
0.0,
|
3239 |
+
0.0,
|
3240 |
+
0.0,
|
3241 |
+
0.0
|
3242 |
+
],
|
3243 |
+
"q01": [
|
3244 |
+
0.0,
|
3245 |
+
0.0,
|
3246 |
+
0.0,
|
3247 |
+
0.0,
|
3248 |
+
0.0,
|
3249 |
+
0.0,
|
3250 |
+
0.0
|
3251 |
+
],
|
3252 |
+
"q99": [
|
3253 |
+
0.0,
|
3254 |
+
0.0,
|
3255 |
+
0.0,
|
3256 |
+
0.0,
|
3257 |
+
0.0,
|
3258 |
+
0.0,
|
3259 |
+
0.0
|
3260 |
+
],
|
3261 |
+
"std": [
|
3262 |
+
0.0,
|
3263 |
+
0.0,
|
3264 |
+
0.0,
|
3265 |
+
0.0,
|
3266 |
+
0.0,
|
3267 |
+
0.0,
|
3268 |
+
0.0
|
3269 |
+
]
|
3270 |
+
}
|
3271 |
+
}
|
3272 |
+
},
|
3273 |
+
"output_projector_states": false,
|
3274 |
+
"pad_to_multiple_of": 64,
|
3275 |
+
"pad_token_id": 32000,
|
3276 |
+
"text_config": {
|
3277 |
+
"model_type": "llama",
|
3278 |
+
"pad_token_id": 32000,
|
3279 |
+
"torch_dtype": "bfloat16",
|
3280 |
+
"vocab_size": 32064
|
3281 |
+
},
|
3282 |
+
"timm_model_ids": [
|
3283 |
+
"vit_large_patch14_reg4_dinov2.lvd142m",
|
3284 |
+
"vit_so400m_patch14_siglip_224"
|
3285 |
+
],
|
3286 |
+
"timm_override_act_layers": [
|
3287 |
+
null,
|
3288 |
+
null
|
3289 |
+
],
|
3290 |
+
"torch_dtype": "bfloat16",
|
3291 |
+
"transformers_version": "4.40.1",
|
3292 |
+
"use_fused_vision_backbone": true,
|
3293 |
+
"vision_backbone_id": "dinosiglip-vit-so-224px"
|
3294 |
+
}
|
configuration_prismatic.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
configuration_prismatic.py
|
3 |
+
|
4 |
+
HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
|
5 |
+
Default configuration specifies `siglip-224px+7b`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Any, Dict, List, Optional
|
9 |
+
|
10 |
+
from transformers import PretrainedConfig
|
11 |
+
from transformers.models.auto import CONFIG_MAPPING
|
12 |
+
|
13 |
+
# === Utilities for Mapping Prismatic names to HF names ===
|
14 |
+
# fmt: off
|
15 |
+
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
|
16 |
+
"clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
|
17 |
+
|
18 |
+
"clip-vit-l-336px": [336],
|
19 |
+
"siglip-vit-so400m-384px": [384],
|
20 |
+
|
21 |
+
"dinoclip-vit-l-336px": [336, 336],
|
22 |
+
"dinosiglip-vit-so-224px": [224, 224],
|
23 |
+
"dinosiglip-vit-so-384px": [384, 384],
|
24 |
+
}
|
25 |
+
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
|
26 |
+
"clip-vit-l": ["vit_large_patch14_clip_224.openai"],
|
27 |
+
"clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
|
28 |
+
|
29 |
+
"dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
|
30 |
+
"in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
|
31 |
+
|
32 |
+
"siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
|
33 |
+
"siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
|
34 |
+
|
35 |
+
"dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
|
36 |
+
"dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
|
37 |
+
"dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
|
38 |
+
}
|
39 |
+
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
|
40 |
+
"clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
|
41 |
+
"dinov2-vit-l": [None], "in1k-vit-l": [None],
|
42 |
+
"siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
|
43 |
+
"dinoclip-vit-l-336px": [None, "quick_gelu"],
|
44 |
+
"dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
|
45 |
+
}
|
46 |
+
|
47 |
+
LLM_BACKBONE_TO_HF_PATH = {
|
48 |
+
"llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
|
49 |
+
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
|
50 |
+
|
51 |
+
"vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
|
52 |
+
|
53 |
+
"mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
|
54 |
+
"mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
|
55 |
+
|
56 |
+
"phi-2-3b": "microsoft/phi-2",
|
57 |
+
}
|
58 |
+
LLM_BACKBONE_TO_HF_METACLASS = {
|
59 |
+
"llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
|
60 |
+
"vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
|
61 |
+
|
62 |
+
"mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
|
63 |
+
|
64 |
+
"phi-2-3b": "phi",
|
65 |
+
}
|
66 |
+
|
67 |
+
VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
|
68 |
+
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
|
69 |
+
# fmt: on
|
70 |
+
|
71 |
+
|
72 |
+
class PrismaticConfig(PretrainedConfig):
|
73 |
+
model_type: str = "prismatic"
|
74 |
+
is_composition: bool = False
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
vision_backbone_id: str = "siglip-vit-so400m",
|
79 |
+
llm_backbone_id: str = "vicuna-v15-7b",
|
80 |
+
arch_specifier: str = "no-align+gelu-mlp",
|
81 |
+
use_fused_vision_backbone: Optional[bool] = None,
|
82 |
+
image_resize_strategy: str = "letterbox",
|
83 |
+
text_config: Optional[Dict[str, Any]] = None,
|
84 |
+
llm_max_length: int = 2048,
|
85 |
+
pad_token_id: int = 32000,
|
86 |
+
pad_to_multiple_of: int = 64,
|
87 |
+
output_projector_states: bool = False,
|
88 |
+
**kwargs: str,
|
89 |
+
) -> None:
|
90 |
+
if vision_backbone_id not in VALID_VISION_BACKBONES:
|
91 |
+
raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
|
92 |
+
|
93 |
+
if llm_backbone_id not in VALID_LLM_BACKBONES:
|
94 |
+
raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
|
95 |
+
|
96 |
+
# Set Prismatic Configuration Fields
|
97 |
+
self.vision_backbone_id = vision_backbone_id
|
98 |
+
self.llm_backbone_id = llm_backbone_id
|
99 |
+
self.arch_specifier = arch_specifier
|
100 |
+
self.output_projector_states = output_projector_states
|
101 |
+
|
102 |
+
# [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
|
103 |
+
self.use_fused_vision_backbone = (
|
104 |
+
use_fused_vision_backbone
|
105 |
+
if use_fused_vision_backbone is not None
|
106 |
+
else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
|
107 |
+
)
|
108 |
+
|
109 |
+
self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
|
110 |
+
self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
|
111 |
+
self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
|
112 |
+
self.image_resize_strategy = image_resize_strategy
|
113 |
+
|
114 |
+
self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
|
115 |
+
self.llm_max_length = llm_max_length
|
116 |
+
self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
|
117 |
+
|
118 |
+
# [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
|
119 |
+
self.text_config = (
|
120 |
+
CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
|
121 |
+
if text_config is not None
|
122 |
+
else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
|
123 |
+
)
|
124 |
+
|
125 |
+
# Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
|
126 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
127 |
+
|
128 |
+
|
129 |
+
class OpenVLAConfig(PrismaticConfig):
|
130 |
+
model_type: str = "openvla"
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
|
135 |
+
n_action_bins: int = 256,
|
136 |
+
**kwargs: str,
|
137 |
+
) -> None:
|
138 |
+
self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
|
139 |
+
|
140 |
+
super().__init__(**kwargs)
|
dataset_statistics.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"kinova": {
|
3 |
+
"action": {
|
4 |
+
"mean": [
|
5 |
+
-0.00020067453442607075,
|
6 |
+
-0.0006858264678157866,
|
7 |
+
-0.009424498304724693,
|
8 |
+
0.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
-0.4078544080257416
|
12 |
+
],
|
13 |
+
"std": [
|
14 |
+
0.024468697607517242,
|
15 |
+
0.018178345635533333,
|
16 |
+
0.0452522449195385,
|
17 |
+
0.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.9132017493247986
|
21 |
+
],
|
22 |
+
"max": [
|
23 |
+
0.09284012019634247,
|
24 |
+
0.07762093842029572,
|
25 |
+
0.10962827503681183,
|
26 |
+
0.0,
|
27 |
+
0.0,
|
28 |
+
0.0,
|
29 |
+
1.0
|
30 |
+
],
|
31 |
+
"min": [
|
32 |
+
-0.10259060561656952,
|
33 |
+
-0.0854005366563797,
|
34 |
+
-0.10095969587564468,
|
35 |
+
0.0,
|
36 |
+
0.0,
|
37 |
+
0.0,
|
38 |
+
-1.0
|
39 |
+
],
|
40 |
+
"q01": [
|
41 |
+
-0.06314262807369232,
|
42 |
+
-0.05193830907344818,
|
43 |
+
-0.07782501727342606,
|
44 |
+
0.0,
|
45 |
+
0.0,
|
46 |
+
0.0,
|
47 |
+
-1.0
|
48 |
+
],
|
49 |
+
"q99": [
|
50 |
+
0.05859208554029463,
|
51 |
+
0.05156266748905182,
|
52 |
+
0.10301319599151611,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
0.0,
|
56 |
+
1.0
|
57 |
+
],
|
58 |
+
"mask": [
|
59 |
+
true,
|
60 |
+
true,
|
61 |
+
true,
|
62 |
+
true,
|
63 |
+
true,
|
64 |
+
true,
|
65 |
+
false
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"proprio": {
|
69 |
+
"mean": [
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
0.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0
|
77 |
+
],
|
78 |
+
"std": [
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
0.0,
|
84 |
+
0.0,
|
85 |
+
0.0
|
86 |
+
],
|
87 |
+
"max": [
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0
|
95 |
+
],
|
96 |
+
"min": [
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
0.0,
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0
|
104 |
+
],
|
105 |
+
"q01": [
|
106 |
+
0.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
"q99": [
|
115 |
+
0.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0
|
122 |
+
]
|
123 |
+
},
|
124 |
+
"num_transitions": 30989,
|
125 |
+
"num_trajectories": 500
|
126 |
+
}
|
127 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 32000,
|
6 |
+
"transformers_version": "4.40.1"
|
7 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7316b3247611adeeafbd568b138cb7304714769bafd1f319b50f805f7c5ea583
|
3 |
+
size 4925122448
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:455420564198274670132405a3ceaa88f195a440f190bbf9e69d2e2069c7d27c
|
3 |
+
size 4947392496
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02958aabd098eda1e09d09003c685e10ababaa517ef8797fe323f9ea04a20501
|
3 |
+
size 4947417456
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cf0dc008529e1b94f03ddff8341ecc317aa0ff8251e0742e805eacaabc240c3
|
3 |
+
size 262668432
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,989 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15082474368
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
270 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
271 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
273 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
274 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
279 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
280 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
281 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
282 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
283 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
284 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
287 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
296 |
+
"language_model.model.norm.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"projector.fc1.bias": "model-00001-of-00004.safetensors",
|
298 |
+
"projector.fc1.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"projector.fc2.bias": "model-00001-of-00004.safetensors",
|
300 |
+
"projector.fc2.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"projector.fc3.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"projector.fc3.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"vision_backbone.featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
304 |
+
"vision_backbone.featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"vision_backbone.featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
306 |
+
"vision_backbone.featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"vision_backbone.featurizer.blocks.0.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
308 |
+
"vision_backbone.featurizer.blocks.0.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
309 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
310 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
312 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"vision_backbone.featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"vision_backbone.featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"vision_backbone.featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
316 |
+
"vision_backbone.featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"vision_backbone.featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
318 |
+
"vision_backbone.featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"vision_backbone.featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
320 |
+
"vision_backbone.featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"vision_backbone.featurizer.blocks.1.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
322 |
+
"vision_backbone.featurizer.blocks.1.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
323 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
324 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
325 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"vision_backbone.featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
328 |
+
"vision_backbone.featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
329 |
+
"vision_backbone.featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
330 |
+
"vision_backbone.featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
331 |
+
"vision_backbone.featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
332 |
+
"vision_backbone.featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"vision_backbone.featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
334 |
+
"vision_backbone.featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
335 |
+
"vision_backbone.featurizer.blocks.10.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
336 |
+
"vision_backbone.featurizer.blocks.10.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
337 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
338 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
339 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
340 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
341 |
+
"vision_backbone.featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
342 |
+
"vision_backbone.featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
343 |
+
"vision_backbone.featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
344 |
+
"vision_backbone.featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
345 |
+
"vision_backbone.featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
346 |
+
"vision_backbone.featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"vision_backbone.featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
348 |
+
"vision_backbone.featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"vision_backbone.featurizer.blocks.11.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
350 |
+
"vision_backbone.featurizer.blocks.11.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
351 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
352 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
354 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"vision_backbone.featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
356 |
+
"vision_backbone.featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"vision_backbone.featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
358 |
+
"vision_backbone.featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"vision_backbone.featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
360 |
+
"vision_backbone.featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"vision_backbone.featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"vision_backbone.featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"vision_backbone.featurizer.blocks.12.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
364 |
+
"vision_backbone.featurizer.blocks.12.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
365 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
366 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
368 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"vision_backbone.featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
370 |
+
"vision_backbone.featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"vision_backbone.featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
372 |
+
"vision_backbone.featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"vision_backbone.featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"vision_backbone.featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"vision_backbone.featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
376 |
+
"vision_backbone.featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"vision_backbone.featurizer.blocks.13.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
378 |
+
"vision_backbone.featurizer.blocks.13.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
379 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
380 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
382 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"vision_backbone.featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
384 |
+
"vision_backbone.featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"vision_backbone.featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"vision_backbone.featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"vision_backbone.featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"vision_backbone.featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"vision_backbone.featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"vision_backbone.featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"vision_backbone.featurizer.blocks.14.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
392 |
+
"vision_backbone.featurizer.blocks.14.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
393 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
394 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
396 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"vision_backbone.featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"vision_backbone.featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"vision_backbone.featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"vision_backbone.featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"vision_backbone.featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"vision_backbone.featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"vision_backbone.featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"vision_backbone.featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"vision_backbone.featurizer.blocks.15.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
406 |
+
"vision_backbone.featurizer.blocks.15.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
407 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
408 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"vision_backbone.featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
412 |
+
"vision_backbone.featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"vision_backbone.featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
414 |
+
"vision_backbone.featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"vision_backbone.featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"vision_backbone.featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"vision_backbone.featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"vision_backbone.featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"vision_backbone.featurizer.blocks.16.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
420 |
+
"vision_backbone.featurizer.blocks.16.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
421 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"vision_backbone.featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"vision_backbone.featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"vision_backbone.featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"vision_backbone.featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"vision_backbone.featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"vision_backbone.featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"vision_backbone.featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"vision_backbone.featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"vision_backbone.featurizer.blocks.17.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
434 |
+
"vision_backbone.featurizer.blocks.17.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
435 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"vision_backbone.featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"vision_backbone.featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"vision_backbone.featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"vision_backbone.featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"vision_backbone.featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"vision_backbone.featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"vision_backbone.featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"vision_backbone.featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"vision_backbone.featurizer.blocks.18.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
448 |
+
"vision_backbone.featurizer.blocks.18.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
449 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"vision_backbone.featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"vision_backbone.featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"vision_backbone.featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"vision_backbone.featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"vision_backbone.featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"vision_backbone.featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"vision_backbone.featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"vision_backbone.featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"vision_backbone.featurizer.blocks.19.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
462 |
+
"vision_backbone.featurizer.blocks.19.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
463 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"vision_backbone.featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
468 |
+
"vision_backbone.featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"vision_backbone.featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"vision_backbone.featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"vision_backbone.featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"vision_backbone.featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"vision_backbone.featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"vision_backbone.featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"vision_backbone.featurizer.blocks.2.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
476 |
+
"vision_backbone.featurizer.blocks.2.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
477 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"vision_backbone.featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"vision_backbone.featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"vision_backbone.featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"vision_backbone.featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"vision_backbone.featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"vision_backbone.featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"vision_backbone.featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"vision_backbone.featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"vision_backbone.featurizer.blocks.20.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
490 |
+
"vision_backbone.featurizer.blocks.20.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
491 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
492 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"vision_backbone.featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"vision_backbone.featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"vision_backbone.featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"vision_backbone.featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"vision_backbone.featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"vision_backbone.featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"vision_backbone.featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"vision_backbone.featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"vision_backbone.featurizer.blocks.21.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
504 |
+
"vision_backbone.featurizer.blocks.21.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
505 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"vision_backbone.featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"vision_backbone.featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"vision_backbone.featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"vision_backbone.featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"vision_backbone.featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"vision_backbone.featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"vision_backbone.featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
516 |
+
"vision_backbone.featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"vision_backbone.featurizer.blocks.22.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
518 |
+
"vision_backbone.featurizer.blocks.22.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
519 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"vision_backbone.featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"vision_backbone.featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"vision_backbone.featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"vision_backbone.featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"vision_backbone.featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
528 |
+
"vision_backbone.featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"vision_backbone.featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"vision_backbone.featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"vision_backbone.featurizer.blocks.23.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
532 |
+
"vision_backbone.featurizer.blocks.23.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
533 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"vision_backbone.featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"vision_backbone.featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"vision_backbone.featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
540 |
+
"vision_backbone.featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"vision_backbone.featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"vision_backbone.featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"vision_backbone.featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"vision_backbone.featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"vision_backbone.featurizer.blocks.3.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
546 |
+
"vision_backbone.featurizer.blocks.3.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
547 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"vision_backbone.featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
552 |
+
"vision_backbone.featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"vision_backbone.featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"vision_backbone.featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"vision_backbone.featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"vision_backbone.featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"vision_backbone.featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"vision_backbone.featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"vision_backbone.featurizer.blocks.4.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
560 |
+
"vision_backbone.featurizer.blocks.4.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
561 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
564 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"vision_backbone.featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"vision_backbone.featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"vision_backbone.featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"vision_backbone.featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"vision_backbone.featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"vision_backbone.featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"vision_backbone.featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"vision_backbone.featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"vision_backbone.featurizer.blocks.5.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
574 |
+
"vision_backbone.featurizer.blocks.5.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
575 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
576 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"vision_backbone.featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"vision_backbone.featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"vision_backbone.featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"vision_backbone.featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"vision_backbone.featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"vision_backbone.featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"vision_backbone.featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"vision_backbone.featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"vision_backbone.featurizer.blocks.6.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
588 |
+
"vision_backbone.featurizer.blocks.6.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
589 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"vision_backbone.featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"vision_backbone.featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"vision_backbone.featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"vision_backbone.featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"vision_backbone.featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"vision_backbone.featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"vision_backbone.featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
600 |
+
"vision_backbone.featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"vision_backbone.featurizer.blocks.7.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
602 |
+
"vision_backbone.featurizer.blocks.7.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
603 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"vision_backbone.featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"vision_backbone.featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"vision_backbone.featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"vision_backbone.featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"vision_backbone.featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
612 |
+
"vision_backbone.featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"vision_backbone.featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"vision_backbone.featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"vision_backbone.featurizer.blocks.8.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
616 |
+
"vision_backbone.featurizer.blocks.8.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
617 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"vision_backbone.featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"vision_backbone.featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"vision_backbone.featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
624 |
+
"vision_backbone.featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"vision_backbone.featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"vision_backbone.featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"vision_backbone.featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"vision_backbone.featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"vision_backbone.featurizer.blocks.9.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
630 |
+
"vision_backbone.featurizer.blocks.9.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
631 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"vision_backbone.featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
636 |
+
"vision_backbone.featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"vision_backbone.featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"vision_backbone.featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"vision_backbone.featurizer.cls_token": "model-00001-of-00004.safetensors",
|
640 |
+
"vision_backbone.featurizer.norm.bias": "model-00001-of-00004.safetensors",
|
641 |
+
"vision_backbone.featurizer.norm.weight": "model-00001-of-00004.safetensors",
|
642 |
+
"vision_backbone.featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
|
643 |
+
"vision_backbone.featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
|
644 |
+
"vision_backbone.featurizer.pos_embed": "model-00001-of-00004.safetensors",
|
645 |
+
"vision_backbone.featurizer.reg_token": "model-00001-of-00004.safetensors",
|
646 |
+
"vision_backbone.fused_featurizer.attn_pool.kv.bias": "model-00001-of-00004.safetensors",
|
647 |
+
"vision_backbone.fused_featurizer.attn_pool.kv.weight": "model-00001-of-00004.safetensors",
|
648 |
+
"vision_backbone.fused_featurizer.attn_pool.latent": "model-00001-of-00004.safetensors",
|
649 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"vision_backbone.fused_featurizer.attn_pool.norm.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"vision_backbone.fused_featurizer.attn_pool.norm.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"vision_backbone.fused_featurizer.attn_pool.proj.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"vision_backbone.fused_featurizer.attn_pool.proj.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"vision_backbone.fused_featurizer.attn_pool.q.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"vision_backbone.fused_featurizer.attn_pool.q.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
660 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"vision_backbone.fused_featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"vision_backbone.fused_featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"vision_backbone.fused_featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"vision_backbone.fused_featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
672 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"vision_backbone.fused_featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"vision_backbone.fused_featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"vision_backbone.fused_featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"vision_backbone.fused_featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
684 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"vision_backbone.fused_featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"vision_backbone.fused_featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"vision_backbone.fused_featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
694 |
+
"vision_backbone.fused_featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
695 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
696 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
697 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
698 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"vision_backbone.fused_featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
704 |
+
"vision_backbone.fused_featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
705 |
+
"vision_backbone.fused_featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
706 |
+
"vision_backbone.fused_featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
708 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
710 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
712 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
713 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
714 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
715 |
+
"vision_backbone.fused_featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
716 |
+
"vision_backbone.fused_featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
717 |
+
"vision_backbone.fused_featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
718 |
+
"vision_backbone.fused_featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
720 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
721 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
722 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
723 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
724 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
726 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"vision_backbone.fused_featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
728 |
+
"vision_backbone.fused_featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
729 |
+
"vision_backbone.fused_featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
730 |
+
"vision_backbone.fused_featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
731 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
732 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
733 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
734 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
735 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
736 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
737 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
738 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
739 |
+
"vision_backbone.fused_featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
740 |
+
"vision_backbone.fused_featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
741 |
+
"vision_backbone.fused_featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
742 |
+
"vision_backbone.fused_featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
743 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
744 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
745 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
746 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
747 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
748 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
749 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
750 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
751 |
+
"vision_backbone.fused_featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
752 |
+
"vision_backbone.fused_featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
753 |
+
"vision_backbone.fused_featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
754 |
+
"vision_backbone.fused_featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
755 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
756 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
757 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
758 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
759 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
760 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
761 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
762 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
763 |
+
"vision_backbone.fused_featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
764 |
+
"vision_backbone.fused_featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
765 |
+
"vision_backbone.fused_featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
766 |
+
"vision_backbone.fused_featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
767 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
768 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
769 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
770 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
771 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
772 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
773 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
774 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
775 |
+
"vision_backbone.fused_featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
776 |
+
"vision_backbone.fused_featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
777 |
+
"vision_backbone.fused_featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
778 |
+
"vision_backbone.fused_featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
779 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
780 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
781 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
782 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
783 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
784 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
785 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
786 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
787 |
+
"vision_backbone.fused_featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
788 |
+
"vision_backbone.fused_featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
789 |
+
"vision_backbone.fused_featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
790 |
+
"vision_backbone.fused_featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
791 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
792 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
793 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
794 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
795 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
796 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
797 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
798 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
799 |
+
"vision_backbone.fused_featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
800 |
+
"vision_backbone.fused_featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
801 |
+
"vision_backbone.fused_featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
802 |
+
"vision_backbone.fused_featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
803 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
804 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
805 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
806 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
807 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
808 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
809 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
810 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
811 |
+
"vision_backbone.fused_featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
812 |
+
"vision_backbone.fused_featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
813 |
+
"vision_backbone.fused_featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
814 |
+
"vision_backbone.fused_featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
815 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
816 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
817 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
818 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
819 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
820 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
821 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
822 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
823 |
+
"vision_backbone.fused_featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
824 |
+
"vision_backbone.fused_featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
825 |
+
"vision_backbone.fused_featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
826 |
+
"vision_backbone.fused_featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
827 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
828 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
829 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
830 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
831 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
832 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
833 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
834 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
835 |
+
"vision_backbone.fused_featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
836 |
+
"vision_backbone.fused_featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
837 |
+
"vision_backbone.fused_featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
838 |
+
"vision_backbone.fused_featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
839 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
840 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
841 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
842 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
843 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
844 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
845 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
846 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
847 |
+
"vision_backbone.fused_featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
848 |
+
"vision_backbone.fused_featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
849 |
+
"vision_backbone.fused_featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
850 |
+
"vision_backbone.fused_featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
851 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
852 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
853 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
854 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
855 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
856 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
857 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
858 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
859 |
+
"vision_backbone.fused_featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
860 |
+
"vision_backbone.fused_featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
861 |
+
"vision_backbone.fused_featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
862 |
+
"vision_backbone.fused_featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
863 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
864 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
865 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
866 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
867 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
868 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
869 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
870 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
871 |
+
"vision_backbone.fused_featurizer.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
|
872 |
+
"vision_backbone.fused_featurizer.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
873 |
+
"vision_backbone.fused_featurizer.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
|
874 |
+
"vision_backbone.fused_featurizer.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
875 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
876 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
877 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
878 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
879 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
880 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
881 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
882 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
883 |
+
"vision_backbone.fused_featurizer.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
|
884 |
+
"vision_backbone.fused_featurizer.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
885 |
+
"vision_backbone.fused_featurizer.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
|
886 |
+
"vision_backbone.fused_featurizer.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
887 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
888 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
889 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
890 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
891 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
892 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
893 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
894 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
895 |
+
"vision_backbone.fused_featurizer.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
|
896 |
+
"vision_backbone.fused_featurizer.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
897 |
+
"vision_backbone.fused_featurizer.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
|
898 |
+
"vision_backbone.fused_featurizer.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
899 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
900 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
901 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
902 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
903 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
904 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
905 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
906 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
907 |
+
"vision_backbone.fused_featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
908 |
+
"vision_backbone.fused_featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
909 |
+
"vision_backbone.fused_featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
910 |
+
"vision_backbone.fused_featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
911 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
912 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
913 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
914 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
915 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
916 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
917 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
918 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
919 |
+
"vision_backbone.fused_featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
920 |
+
"vision_backbone.fused_featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
921 |
+
"vision_backbone.fused_featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
922 |
+
"vision_backbone.fused_featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
923 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
924 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
925 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
926 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
927 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
928 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
929 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
930 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
931 |
+
"vision_backbone.fused_featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
932 |
+
"vision_backbone.fused_featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
933 |
+
"vision_backbone.fused_featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
934 |
+
"vision_backbone.fused_featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
935 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
936 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
937 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
938 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
939 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
940 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
941 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
942 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
943 |
+
"vision_backbone.fused_featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
944 |
+
"vision_backbone.fused_featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
945 |
+
"vision_backbone.fused_featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
946 |
+
"vision_backbone.fused_featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
947 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
948 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
949 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
950 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
951 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
952 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
953 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
954 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
955 |
+
"vision_backbone.fused_featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
956 |
+
"vision_backbone.fused_featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
957 |
+
"vision_backbone.fused_featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
958 |
+
"vision_backbone.fused_featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
959 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
960 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
961 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
962 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
963 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
964 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
965 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
966 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
967 |
+
"vision_backbone.fused_featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
968 |
+
"vision_backbone.fused_featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
969 |
+
"vision_backbone.fused_featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
970 |
+
"vision_backbone.fused_featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
971 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
972 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
973 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
974 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
975 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
976 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
977 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
978 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
979 |
+
"vision_backbone.fused_featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
980 |
+
"vision_backbone.fused_featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
981 |
+
"vision_backbone.fused_featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
982 |
+
"vision_backbone.fused_featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
983 |
+
"vision_backbone.fused_featurizer.norm.bias": "model-00001-of-00004.safetensors",
|
984 |
+
"vision_backbone.fused_featurizer.norm.weight": "model-00001-of-00004.safetensors",
|
985 |
+
"vision_backbone.fused_featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
|
986 |
+
"vision_backbone.fused_featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
|
987 |
+
"vision_backbone.fused_featurizer.pos_embed": "model-00001-of-00004.safetensors"
|
988 |
+
}
|
989 |
+
}
|
modeling_prismatic.py
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modeling_prismatic.py
|
3 |
+
|
4 |
+
Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
|
5 |
+
from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
|
6 |
+
logic in `prismatic.models.vlms.prismatic.py`.
|
7 |
+
|
8 |
+
Note =>> for the time being, not adding the custom HF "docstring" formatting.
|
9 |
+
|
10 |
+
References [LLaVa, IDEFICS-2]:
|
11 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
|
12 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
|
13 |
+
"""
|
14 |
+
|
15 |
+
import logging
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from functools import partial
|
18 |
+
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import timm
|
22 |
+
import tokenizers
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
import transformers
|
26 |
+
from timm.models.vision_transformer import LayerScale
|
27 |
+
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
28 |
+
from transformers.modeling_outputs import ModelOutput
|
29 |
+
|
30 |
+
from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
|
31 |
+
|
32 |
+
# Get Logger
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
# === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
|
37 |
+
IGNORE_INDEX = -100
|
38 |
+
|
39 |
+
|
40 |
+
# === Utility Functions for Monkey-Patching ===
|
41 |
+
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
|
42 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
43 |
+
result = fn(*args, **kwargs)
|
44 |
+
return result[0] if isinstance(result, tuple) else result
|
45 |
+
|
46 |
+
return wrapper
|
47 |
+
|
48 |
+
|
49 |
+
# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
|
50 |
+
# =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
|
51 |
+
# =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
|
52 |
+
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
|
54 |
+
|
55 |
+
|
56 |
+
def ls_apply_patch(ls_module: LayerScale):
|
57 |
+
ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
|
58 |
+
ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
|
59 |
+
del ls_module.gamma
|
60 |
+
|
61 |
+
|
62 |
+
# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
|
63 |
+
class PrismaticVisionBackbone(nn.Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
use_fused_vision_backbone: bool,
|
67 |
+
image_sizes: List[int],
|
68 |
+
timm_model_ids: List[str],
|
69 |
+
timm_override_act_layers: List[Optional[str]],
|
70 |
+
) -> None:
|
71 |
+
super().__init__()
|
72 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
73 |
+
|
74 |
+
# [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
|
75 |
+
# =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
|
76 |
+
# Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
|
77 |
+
assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
|
78 |
+
self.featurizer = timm.create_model(
|
79 |
+
timm_model_ids[0],
|
80 |
+
pretrained=False,
|
81 |
+
num_classes=0,
|
82 |
+
img_size=image_sizes[0],
|
83 |
+
act_layer=timm_override_act_layers[0],
|
84 |
+
)
|
85 |
+
self.featurizer.forward = unpack_tuple(
|
86 |
+
partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2})
|
87 |
+
)
|
88 |
+
self.embed_dim = self.featurizer.embed_dim
|
89 |
+
|
90 |
+
# If `use_fused_vision_backbone` =>> create "beta" featurizer
|
91 |
+
if self.use_fused_vision_backbone:
|
92 |
+
self.fused_featurizer = timm.create_model(
|
93 |
+
timm_model_ids[1],
|
94 |
+
pretrained=False,
|
95 |
+
num_classes=0,
|
96 |
+
img_size=image_sizes[1],
|
97 |
+
act_layer=timm_override_act_layers[1],
|
98 |
+
)
|
99 |
+
self.fused_featurizer.forward = unpack_tuple(
|
100 |
+
partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2})
|
101 |
+
)
|
102 |
+
self.embed_dim += self.fused_featurizer.embed_dim
|
103 |
+
|
104 |
+
# Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale
|
105 |
+
for module in self.featurizer.modules():
|
106 |
+
if isinstance(module, LayerScale):
|
107 |
+
ls_apply_patch(module)
|
108 |
+
|
109 |
+
if self.use_fused_vision_backbone:
|
110 |
+
for module in self.fused_featurizer.modules():
|
111 |
+
if isinstance(module, LayerScale):
|
112 |
+
ls_apply_patch(module)
|
113 |
+
|
114 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
115 |
+
"""Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
|
116 |
+
if not self.use_fused_vision_backbone:
|
117 |
+
return self.featurizer(pixel_values)
|
118 |
+
|
119 |
+
# Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
|
120 |
+
img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
|
121 |
+
patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
|
122 |
+
|
123 |
+
return torch.cat([patches, patches_fused], dim=2)
|
124 |
+
|
125 |
+
|
126 |
+
# === Prismatic Projector (nn.Module) Definitions ===
|
127 |
+
class PrismaticProjector(nn.Module):
|
128 |
+
def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
|
129 |
+
super().__init__()
|
130 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
131 |
+
self.vision_dim, self.llm_dim = vision_dim, llm_dim
|
132 |
+
|
133 |
+
# Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
|
134 |
+
if not self.use_fused_vision_backbone:
|
135 |
+
self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
|
136 |
+
self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
137 |
+
self.act_fn1 = nn.GELU()
|
138 |
+
else:
|
139 |
+
initial_projection_dim = 4 * vision_dim
|
140 |
+
self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
|
141 |
+
self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
|
142 |
+
self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
143 |
+
self.act_fn1 = nn.GELU()
|
144 |
+
self.act_fn2 = nn.GELU()
|
145 |
+
|
146 |
+
def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
|
147 |
+
if not self.use_fused_vision_backbone:
|
148 |
+
projected_features = self.fc1(img_patches)
|
149 |
+
projected_features = self.act_fn1(projected_features)
|
150 |
+
projected_features = self.fc2(projected_features)
|
151 |
+
else:
|
152 |
+
projected_features = self.fc1(img_patches)
|
153 |
+
projected_features = self.act_fn1(projected_features)
|
154 |
+
projected_features = self.fc2(projected_features)
|
155 |
+
projected_features = self.act_fn2(projected_features)
|
156 |
+
projected_features = self.fc3(projected_features)
|
157 |
+
|
158 |
+
return projected_features
|
159 |
+
|
160 |
+
|
161 |
+
# === Main HF Class Definitions ===
|
162 |
+
@dataclass
|
163 |
+
class PrismaticCausalLMOutputWithPast(ModelOutput):
|
164 |
+
"""Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
|
165 |
+
|
166 |
+
loss: Optional[torch.FloatTensor] = None
|
167 |
+
logits: torch.FloatTensor = None
|
168 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
169 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
170 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
171 |
+
|
172 |
+
# Additions for VLMs
|
173 |
+
projector_features: Optional[torch.FloatTensor] = None
|
174 |
+
|
175 |
+
|
176 |
+
class PrismaticPreTrainedModel(PreTrainedModel):
|
177 |
+
config_class: PretrainedConfig = PrismaticConfig
|
178 |
+
base_model_prefix: str = "model"
|
179 |
+
supports_gradient_checkpointing: bool = True
|
180 |
+
|
181 |
+
_no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
|
182 |
+
_skip_keys_device_placement: str = "past_key_values"
|
183 |
+
_supports_flash_attn_2: bool = True
|
184 |
+
|
185 |
+
def _init_weights(self, module: nn.Module) -> None:
|
186 |
+
# Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
|
187 |
+
# => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
|
188 |
+
# https://github.com/TRI-ML/prismatic-vlms
|
189 |
+
std = (
|
190 |
+
self.config.initializer_range
|
191 |
+
if hasattr(self.config, "initializer_range")
|
192 |
+
else self.config.text_config.initializer_range
|
193 |
+
)
|
194 |
+
|
195 |
+
if hasattr(module, "class_embedding"):
|
196 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
197 |
+
|
198 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
199 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
200 |
+
if module.bias is not None:
|
201 |
+
module.bias.data.zero_()
|
202 |
+
elif isinstance(module, nn.Embedding):
|
203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
204 |
+
if module.padding_idx is not None:
|
205 |
+
module.weight.data[module.padding_idx].zero_()
|
206 |
+
|
207 |
+
@property
|
208 |
+
def _supports_sdpa(self) -> bool:
|
209 |
+
"""Check LLM supports SDPA Attention"""
|
210 |
+
return self.language_model._supports_sdpa
|
211 |
+
|
212 |
+
|
213 |
+
class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
|
214 |
+
def __init__(self, config: PrismaticConfig) -> None:
|
215 |
+
super().__init__(config)
|
216 |
+
|
217 |
+
# [Validation] Lightweight Validate on `config` Fields + Dependency Versions
|
218 |
+
if config.use_fused_vision_backbone is None:
|
219 |
+
raise ValueError("Missing config field `use_fused_vision_backbone`")
|
220 |
+
|
221 |
+
if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
|
222 |
+
raise NotImplementedError(
|
223 |
+
"TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
|
224 |
+
"if you urgently need support for latest TIMM versions."
|
225 |
+
)
|
226 |
+
|
227 |
+
if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
|
228 |
+
logger.warning(
|
229 |
+
f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
|
230 |
+
f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
|
231 |
+
f"there might be inference-time regressions due to dependency changes. If in doubt, please"
|
232 |
+
f"use the above versions."
|
233 |
+
)
|
234 |
+
|
235 |
+
# Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
|
236 |
+
self.vision_backbone = PrismaticVisionBackbone(
|
237 |
+
config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
|
238 |
+
)
|
239 |
+
|
240 |
+
# Create Multimodal Projector
|
241 |
+
self.projector = PrismaticProjector(
|
242 |
+
config.use_fused_vision_backbone,
|
243 |
+
vision_dim=self.vision_backbone.embed_dim,
|
244 |
+
llm_dim=config.text_config.hidden_size,
|
245 |
+
)
|
246 |
+
|
247 |
+
# Instantiate LLM Backbone
|
248 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
249 |
+
config.text_config, attn_implementation=config._attn_implementation
|
250 |
+
)
|
251 |
+
self.vocab_size = config.text_config.vocab_size
|
252 |
+
self.pad_token_id = config.pad_token_id
|
253 |
+
|
254 |
+
# HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
|
255 |
+
self.post_init()
|
256 |
+
|
257 |
+
# === `PreTrainedModel` Boilerplate ===
|
258 |
+
def get_input_embeddings(self) -> nn.Module:
|
259 |
+
return self.language_model.get_input_embeddings()
|
260 |
+
|
261 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
262 |
+
self.language_model.set_input_embeddings(value)
|
263 |
+
|
264 |
+
def get_output_embeddings(self) -> nn.Module:
|
265 |
+
return self.language_model.get_output_embeddings()
|
266 |
+
|
267 |
+
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
|
268 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
269 |
+
|
270 |
+
def get_decoder(self) -> nn.Module:
|
271 |
+
return self.language_model.get_decoder()
|
272 |
+
|
273 |
+
def set_decoder(self, decoder: nn.Module) -> None:
|
274 |
+
self.language_model.set_decoder(decoder)
|
275 |
+
|
276 |
+
def tie_weights(self) -> None:
|
277 |
+
self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
|
278 |
+
|
279 |
+
def resize_token_embeddings(
|
280 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
281 |
+
) -> nn.Embedding:
|
282 |
+
updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
283 |
+
|
284 |
+
# Update config/instance variables
|
285 |
+
self.config.text_config.vocab_size = updated_embeddings.num_embeddings
|
286 |
+
self.vocab_size = updated_embeddings.num_embeddings
|
287 |
+
|
288 |
+
return updated_embeddings
|
289 |
+
|
290 |
+
# === Core Prismatic VLM `forward()` Logic ===
|
291 |
+
def forward(
|
292 |
+
self,
|
293 |
+
input_ids: Optional[torch.LongTensor] = None,
|
294 |
+
attention_mask: Optional[torch.Tensor] = None,
|
295 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
296 |
+
labels: Optional[torch.LongTensor] = None,
|
297 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
298 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
299 |
+
use_cache: Optional[bool] = None,
|
300 |
+
output_attentions: Optional[bool] = None,
|
301 |
+
output_hidden_states: Optional[bool] = None,
|
302 |
+
output_projector_features: Optional[bool] = None,
|
303 |
+
return_dict: Optional[bool] = None,
|
304 |
+
) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
|
305 |
+
"""Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
|
306 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
307 |
+
output_hidden_states = (
|
308 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
309 |
+
)
|
310 |
+
output_projector_features = output_projector_features if output_projector_features is not None else False
|
311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
312 |
+
|
313 |
+
# Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
|
314 |
+
use_cache = use_cache and not self.training
|
315 |
+
|
316 |
+
# Instantiate Placeholder for Projector Features
|
317 |
+
projected_patch_embeddings = None
|
318 |
+
|
319 |
+
# Note :: We only support forward passes with the following cases:
|
320 |
+
# => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
|
321 |
+
# => Unimodal Forward :: (pixel_values is None)
|
322 |
+
# => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
|
323 |
+
|
324 |
+
# === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
|
325 |
+
if input_ids.shape[1] == 1:
|
326 |
+
assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
|
327 |
+
assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
|
328 |
+
assert labels is None, "Unexpected key `labels` provided during cached generation!"
|
329 |
+
|
330 |
+
language_model_output = self.language_model(
|
331 |
+
input_ids=input_ids,
|
332 |
+
attention_mask=None,
|
333 |
+
position_ids=None,
|
334 |
+
past_key_values=past_key_values,
|
335 |
+
inputs_embeds=None,
|
336 |
+
labels=None,
|
337 |
+
use_cache=use_cache,
|
338 |
+
output_attentions=output_attentions,
|
339 |
+
output_hidden_states=output_hidden_states,
|
340 |
+
return_dict=return_dict,
|
341 |
+
)
|
342 |
+
|
343 |
+
# === Handle Unimodal Forward ===
|
344 |
+
elif pixel_values is None:
|
345 |
+
assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
|
346 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
347 |
+
|
348 |
+
language_model_output = self.language_model(
|
349 |
+
input_ids=input_ids,
|
350 |
+
attention_mask=attention_mask,
|
351 |
+
position_ids=None,
|
352 |
+
past_key_values=None,
|
353 |
+
inputs_embeds=None,
|
354 |
+
labels=labels,
|
355 |
+
use_cache=use_cache,
|
356 |
+
output_attentions=output_attentions,
|
357 |
+
output_hidden_states=output_hidden_states,
|
358 |
+
return_dict=return_dict,
|
359 |
+
)
|
360 |
+
|
361 |
+
# === Handle Multimodal Forward ===
|
362 |
+
elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
|
363 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
364 |
+
|
365 |
+
# Visual Feature Extraction
|
366 |
+
patch_features = self.vision_backbone(pixel_values)
|
367 |
+
|
368 |
+
# Projection Logic =>> Update Attention Mask
|
369 |
+
projected_patch_embeddings = self.projector(patch_features)
|
370 |
+
projected_patch_attention_mask = None
|
371 |
+
if attention_mask is not None:
|
372 |
+
projected_patch_attention_mask = torch.full(
|
373 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
374 |
+
fill_value=True,
|
375 |
+
dtype=attention_mask.dtype,
|
376 |
+
device=attention_mask.device,
|
377 |
+
)
|
378 |
+
|
379 |
+
# Get Input Embeddings (from Language Model Embeddings)
|
380 |
+
input_embeddings = self.get_input_embeddings()(input_ids)
|
381 |
+
|
382 |
+
# Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
|
383 |
+
multimodal_embeddings = torch.cat(
|
384 |
+
[input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
|
385 |
+
)
|
386 |
+
multimodal_attention_mask = None
|
387 |
+
if attention_mask is not None:
|
388 |
+
multimodal_attention_mask = torch.cat(
|
389 |
+
[attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
|
390 |
+
)
|
391 |
+
|
392 |
+
# Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
|
393 |
+
multimodal_labels = None
|
394 |
+
if labels is not None:
|
395 |
+
projected_patch_labels = torch.full(
|
396 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
397 |
+
fill_value=IGNORE_INDEX,
|
398 |
+
dtype=labels.dtype,
|
399 |
+
device=labels.device,
|
400 |
+
)
|
401 |
+
multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
|
402 |
+
|
403 |
+
# Dispatch to Language Model
|
404 |
+
language_model_output = self.language_model(
|
405 |
+
input_ids=None,
|
406 |
+
attention_mask=multimodal_attention_mask,
|
407 |
+
position_ids=None,
|
408 |
+
past_key_values=None,
|
409 |
+
inputs_embeds=multimodal_embeddings,
|
410 |
+
labels=multimodal_labels,
|
411 |
+
use_cache=use_cache,
|
412 |
+
output_attentions=output_attentions,
|
413 |
+
output_hidden_states=output_hidden_states,
|
414 |
+
return_dict=return_dict,
|
415 |
+
)
|
416 |
+
|
417 |
+
# === Otherwise =>> Assume Invalid! ===
|
418 |
+
elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
|
419 |
+
raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
|
420 |
+
|
421 |
+
else:
|
422 |
+
raise ValueError(
|
423 |
+
"Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
|
424 |
+
f"=> `input_ids` = {input_ids is not None}\n"
|
425 |
+
f"=> `attention_mask` = {attention_mask is not None}\n"
|
426 |
+
f"=> `pixel_values` = {pixel_values is not None}\n"
|
427 |
+
f"=> `labels` = {labels is not None}\n"
|
428 |
+
f"=> `input_embeds` = {inputs_embeds is not None}\n"
|
429 |
+
f"=> `past_key_values` = {past_key_values is not None}\n"
|
430 |
+
f"=> `use_cache` = {use_cache}"
|
431 |
+
)
|
432 |
+
|
433 |
+
# Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
|
434 |
+
if not return_dict:
|
435 |
+
if output_projector_features and (projected_patch_embeddings is not None):
|
436 |
+
return *language_model_output, projected_patch_embeddings
|
437 |
+
|
438 |
+
return language_model_output
|
439 |
+
|
440 |
+
return PrismaticCausalLMOutputWithPast(
|
441 |
+
loss=language_model_output.loss,
|
442 |
+
logits=language_model_output.logits,
|
443 |
+
past_key_values=language_model_output.past_key_values,
|
444 |
+
hidden_states=language_model_output.hidden_states,
|
445 |
+
attentions=language_model_output.attentions,
|
446 |
+
projector_features=projected_patch_embeddings,
|
447 |
+
)
|
448 |
+
|
449 |
+
# === GenerationMixin Methods ===
|
450 |
+
def prepare_inputs_for_generation(
|
451 |
+
self,
|
452 |
+
input_ids: Optional[torch.Tensor] = None,
|
453 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
454 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
455 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
456 |
+
attention_mask: Optional[torch.Tensor] = None,
|
457 |
+
**kwargs: str,
|
458 |
+
) -> Dict[str, torch.Tensor]:
|
459 |
+
"""Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
|
460 |
+
if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
|
461 |
+
(inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
|
462 |
+
):
|
463 |
+
raise ValueError("Generation with batch size > 1 is not currently supported!")
|
464 |
+
|
465 |
+
# Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
|
466 |
+
if past_key_values is not None:
|
467 |
+
input_ids = input_ids[:, -1:]
|
468 |
+
|
469 |
+
# If `input_embeds` are passed, we only want to use them in the 1st generation step
|
470 |
+
if inputs_embeds is not None and past_key_values is None:
|
471 |
+
model_inputs = {"input_embeds": inputs_embeds}
|
472 |
+
else:
|
473 |
+
model_inputs = {"input_ids": input_ids}
|
474 |
+
|
475 |
+
# Make sure `pixel_values` are preserved in `model_inputs`
|
476 |
+
model_inputs.update(
|
477 |
+
{
|
478 |
+
"attention_mask": attention_mask,
|
479 |
+
"pixel_values": pixel_values,
|
480 |
+
"past_key_values": past_key_values,
|
481 |
+
"use_cache": kwargs.get("use_cache"),
|
482 |
+
}
|
483 |
+
)
|
484 |
+
|
485 |
+
return model_inputs
|
486 |
+
|
487 |
+
# Defer to Language Model (all handle this differently, with different return types)
|
488 |
+
def _reorder_cache(self, *args, **kwargs) -> Any:
|
489 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
490 |
+
|
491 |
+
|
492 |
+
class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
|
493 |
+
config_class: PretrainedConfig = OpenVLAConfig
|
494 |
+
|
495 |
+
def __init__(self, config: OpenVLAConfig) -> None:
|
496 |
+
super().__init__(config)
|
497 |
+
self.norm_stats = config.norm_stats
|
498 |
+
|
499 |
+
# Compute action bins
|
500 |
+
self.bins = np.linspace(-1, 1, config.n_action_bins)
|
501 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
502 |
+
|
503 |
+
# Compute vocab size for de-tokenization -- revert added "multiple of"
|
504 |
+
self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
|
505 |
+
|
506 |
+
def predict_action(
|
507 |
+
self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs
|
508 |
+
) -> np.ndarray:
|
509 |
+
"""Thin wrapper around .generate() that decodes predicted actions and unnormalizes them."""
|
510 |
+
# We need to add this special empty token ('') after the colon (':') token in "ASSISTANT:"
|
511 |
+
# in order for the predictions to match the training configuration and be accurate.
|
512 |
+
input_ids = torch.cat(
|
513 |
+
(input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
|
514 |
+
)
|
515 |
+
|
516 |
+
# Run VLA inference
|
517 |
+
generated_ids = self.generate(input_ids, max_new_tokens=self.get_action_dim(unnorm_key), **kwargs)
|
518 |
+
|
519 |
+
# Extract predicted action tokens and translate into (normalized) continuous actions
|
520 |
+
predicted_action_token_ids = generated_ids[0, -self.get_action_dim(unnorm_key) :].cpu().numpy()
|
521 |
+
discretized_actions = self.vocab_size - predicted_action_token_ids
|
522 |
+
discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
523 |
+
normalized_actions = self.bin_centers[discretized_actions]
|
524 |
+
|
525 |
+
# Unnormalize actions
|
526 |
+
action_norm_stats = self.get_action_stats(unnorm_key)
|
527 |
+
mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
|
528 |
+
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
|
529 |
+
actions = np.where(
|
530 |
+
mask,
|
531 |
+
0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
|
532 |
+
normalized_actions,
|
533 |
+
)
|
534 |
+
|
535 |
+
return actions
|
536 |
+
|
537 |
+
@staticmethod
|
538 |
+
def _check_unnorm_key(norm_stats, unnorm_key):
|
539 |
+
if unnorm_key is None:
|
540 |
+
assert len(norm_stats) == 1, (
|
541 |
+
f"Your model was trained on more than one dataset, "
|
542 |
+
f"please pass a `unnorm_key` from the following options to choose the statistics "
|
543 |
+
f"used for un-normalizing actions: {norm_stats.keys()}"
|
544 |
+
)
|
545 |
+
unnorm_key = next(iter(norm_stats.keys()))
|
546 |
+
|
547 |
+
assert unnorm_key in norm_stats, (
|
548 |
+
f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
|
549 |
+
f"please choose from: {norm_stats.keys()}"
|
550 |
+
)
|
551 |
+
return unnorm_key
|
552 |
+
|
553 |
+
def get_action_dim(self, unnorm_key=None):
|
554 |
+
"""Dimensionality of the policy's action space."""
|
555 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
556 |
+
return len(self.norm_stats[unnorm_key]["action"]["q01"])
|
557 |
+
|
558 |
+
def get_action_stats(self, unnorm_key=None):
|
559 |
+
"""Dimensionality of the policy's action space."""
|
560 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
561 |
+
return self.norm_stats[unnorm_key]["action"]
|
preprocessor_config.json
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticImageProcessor",
|
4 |
+
"AutoProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticProcessor"
|
5 |
+
},
|
6 |
+
"image_processor_type": "PrismaticImageProcessor",
|
7 |
+
"image_resize_strategy": "resize-naive",
|
8 |
+
"input_sizes": [
|
9 |
+
[
|
10 |
+
3,
|
11 |
+
224,
|
12 |
+
224
|
13 |
+
],
|
14 |
+
[
|
15 |
+
3,
|
16 |
+
224,
|
17 |
+
224
|
18 |
+
]
|
19 |
+
],
|
20 |
+
"interpolations": [
|
21 |
+
"bicubic",
|
22 |
+
"bicubic"
|
23 |
+
],
|
24 |
+
"means": [
|
25 |
+
[
|
26 |
+
0.485,
|
27 |
+
0.456,
|
28 |
+
0.406
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.5,
|
32 |
+
0.5,
|
33 |
+
0.5
|
34 |
+
]
|
35 |
+
],
|
36 |
+
"processor_class": "PrismaticProcessor",
|
37 |
+
"stds": [
|
38 |
+
[
|
39 |
+
0.229,
|
40 |
+
0.224,
|
41 |
+
0.225
|
42 |
+
],
|
43 |
+
[
|
44 |
+
0.5,
|
45 |
+
0.5,
|
46 |
+
0.5
|
47 |
+
]
|
48 |
+
],
|
49 |
+
"tvf_crop_params": [
|
50 |
+
{
|
51 |
+
"output_size": [
|
52 |
+
224,
|
53 |
+
224
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"output_size": [
|
58 |
+
224,
|
59 |
+
224
|
60 |
+
]
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"tvf_do_letterbox": false,
|
64 |
+
"tvf_letterbox_fill": null,
|
65 |
+
"tvf_normalize_params": [
|
66 |
+
{
|
67 |
+
"inplace": false,
|
68 |
+
"mean": [
|
69 |
+
0.484375,
|
70 |
+
0.455078125,
|
71 |
+
0.40625
|
72 |
+
],
|
73 |
+
"std": [
|
74 |
+
0.228515625,
|
75 |
+
0.2236328125,
|
76 |
+
0.224609375
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"inplace": false,
|
81 |
+
"mean": [
|
82 |
+
0.5,
|
83 |
+
0.5,
|
84 |
+
0.5
|
85 |
+
],
|
86 |
+
"std": [
|
87 |
+
0.5,
|
88 |
+
0.5,
|
89 |
+
0.5
|
90 |
+
]
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"tvf_resize_params": [
|
94 |
+
{
|
95 |
+
"antialias": true,
|
96 |
+
"interpolation": 3,
|
97 |
+
"max_size": null,
|
98 |
+
"size": [
|
99 |
+
224,
|
100 |
+
224
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"antialias": true,
|
105 |
+
"interpolation": 3,
|
106 |
+
"max_size": null,
|
107 |
+
"size": [
|
108 |
+
224,
|
109 |
+
224
|
110 |
+
]
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"use_fused_vision_backbone": true
|
114 |
+
}
|
processing_prismatic.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
processing_prismatic.py
|
3 |
+
|
4 |
+
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
|
5 |
+
specifies `siglip-224px+7b`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Any, ClassVar, List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import timm.data
|
11 |
+
import torch
|
12 |
+
import torchvision.transforms.functional as TVF
|
13 |
+
from PIL import Image
|
14 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
15 |
+
from transformers import PreTrainedTokenizerBase
|
16 |
+
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
|
17 |
+
from transformers.processing_utils import ProcessorMixin
|
18 |
+
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
19 |
+
from transformers.utils import TensorType
|
20 |
+
|
21 |
+
|
22 |
+
# === Image Processing ===
|
23 |
+
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
|
24 |
+
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
|
25 |
+
(w, h), max_wh = image.size, max(image.size)
|
26 |
+
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
|
27 |
+
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
|
28 |
+
|
29 |
+
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
|
30 |
+
|
31 |
+
|
32 |
+
class PrismaticImageProcessor(ImageProcessingMixin):
|
33 |
+
model_input_names: ClassVar[List[str]] = ["pixel_values"]
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
use_fused_vision_backbone: bool = False,
|
38 |
+
image_resize_strategy: str = "letterbox",
|
39 |
+
input_sizes: Optional[List[Tuple[int, int, int]]] = None,
|
40 |
+
interpolations: Optional[List[str]] = None,
|
41 |
+
means: Optional[List[Tuple[float, float, float]]] = None,
|
42 |
+
stds: Optional[List[Tuple[float, float, float]]] = None,
|
43 |
+
**kwargs: str,
|
44 |
+
) -> None:
|
45 |
+
"""
|
46 |
+
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
|
47 |
+
created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
|
48 |
+
|
49 |
+
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
|
50 |
+
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
|
51 |
+
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
|
52 |
+
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
|
53 |
+
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
|
54 |
+
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
|
55 |
+
"""
|
56 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
57 |
+
self.image_resize_strategy = image_resize_strategy
|
58 |
+
|
59 |
+
# Handle `None` default values
|
60 |
+
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
|
61 |
+
means = [(0.5, 0.5, 0.5)] if means is None else means
|
62 |
+
stds = [(0.5, 0.5, 0.5)] if stds is None else stds
|
63 |
+
|
64 |
+
# TIMM `data_cfg` Parameters
|
65 |
+
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
|
66 |
+
|
67 |
+
# Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
|
68 |
+
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
|
69 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
70 |
+
|
71 |
+
for idx in range(len(input_sizes)):
|
72 |
+
transform = timm.data.create_transform(
|
73 |
+
input_size=self.input_sizes[idx],
|
74 |
+
interpolation=self.interpolations[idx],
|
75 |
+
mean=self.means[idx],
|
76 |
+
std=self.stds[idx],
|
77 |
+
crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
|
78 |
+
crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
|
79 |
+
is_training=False, # No image augmentations when loading the transform!
|
80 |
+
)
|
81 |
+
|
82 |
+
# [Validation] Ensure appropriate transform structure, expected sizes
|
83 |
+
if not (
|
84 |
+
isinstance(transform, Compose)
|
85 |
+
and (len(transform.transforms) == 4)
|
86 |
+
and isinstance(transform.transforms[0], Resize)
|
87 |
+
and isinstance(transform.transforms[1], CenterCrop)
|
88 |
+
and isinstance(transform.transforms[2], ToTensor)
|
89 |
+
and isinstance(transform.transforms[3], Normalize)
|
90 |
+
and (transform.transforms[0].size == self.input_sizes[idx][-1])
|
91 |
+
and (transform.transforms[1].size == self.input_sizes[idx][-2:])
|
92 |
+
):
|
93 |
+
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
|
94 |
+
|
95 |
+
# HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
|
96 |
+
# => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
|
97 |
+
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
|
98 |
+
self.tvf_resize_params.append(
|
99 |
+
{
|
100 |
+
"size": resize_t.size,
|
101 |
+
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
|
102 |
+
"max_size": None,
|
103 |
+
"antialias": True,
|
104 |
+
}
|
105 |
+
)
|
106 |
+
self.tvf_crop_params.append({"output_size": crop_t.size})
|
107 |
+
self.tvf_normalize_params.append(
|
108 |
+
{
|
109 |
+
"mean": norm_t.mean.float().numpy().tolist(),
|
110 |
+
"std": norm_t.std.float().numpy().tolist(),
|
111 |
+
"inplace": False,
|
112 |
+
}
|
113 |
+
)
|
114 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
115 |
+
|
116 |
+
# Handle Prismatic `image_resize_strategy`
|
117 |
+
if self.image_resize_strategy == "resize-naive":
|
118 |
+
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
|
119 |
+
elif self.image_resize_strategy == "letterbox":
|
120 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
|
121 |
+
elif self.image_resize_strategy == "resize-crop":
|
122 |
+
pass
|
123 |
+
else:
|
124 |
+
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
|
125 |
+
|
126 |
+
# Dispatch **kwargs to super()
|
127 |
+
super().__init__(**kwargs)
|
128 |
+
|
129 |
+
def apply_transform(self, img: Image.Image) -> torch.Tensor:
|
130 |
+
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
|
131 |
+
if self.tvf_do_letterbox:
|
132 |
+
img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
|
133 |
+
|
134 |
+
# [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
|
135 |
+
imgs_t = []
|
136 |
+
for idx in range(len(self.input_sizes)):
|
137 |
+
img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
|
138 |
+
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
|
139 |
+
img_idx_t = TVF.to_tensor(img_idx)
|
140 |
+
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
|
141 |
+
imgs_t.append(img_idx_t)
|
142 |
+
|
143 |
+
# [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
|
144 |
+
img_t = torch.vstack(imgs_t)
|
145 |
+
|
146 |
+
return img_t
|
147 |
+
|
148 |
+
def preprocess(
|
149 |
+
self,
|
150 |
+
images: Union[Image.Image, List[Image.Image]],
|
151 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
152 |
+
**_: str,
|
153 |
+
) -> BatchFeature:
|
154 |
+
"""
|
155 |
+
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
|
156 |
+
explicitly only handle PIL.Image.Image instances for simplicity.
|
157 |
+
|
158 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
159 |
+
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
|
160 |
+
|
161 |
+
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
|
162 |
+
"""
|
163 |
+
if not isinstance(images, list):
|
164 |
+
images = [images]
|
165 |
+
|
166 |
+
# Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
|
167 |
+
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
|
168 |
+
|
169 |
+
# Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
|
170 |
+
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
|
171 |
+
|
172 |
+
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
|
173 |
+
return self.preprocess(images, **kwargs)
|
174 |
+
|
175 |
+
|
176 |
+
# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
|
177 |
+
# =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
|
178 |
+
class PrismaticProcessor(ProcessorMixin):
|
179 |
+
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
|
180 |
+
image_processor_class: str = "AutoImageProcessor"
|
181 |
+
tokenizer_class: str = "AutoTokenizer"
|
182 |
+
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
image_processor: Optional[ImageProcessingMixin] = None,
|
186 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
187 |
+
) -> None:
|
188 |
+
super().__init__(image_processor, tokenizer)
|
189 |
+
|
190 |
+
def __call__(
|
191 |
+
self,
|
192 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
193 |
+
images: Union[Image.Image, List[Image.Image]],
|
194 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
195 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
196 |
+
max_length: Optional[int] = None,
|
197 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
198 |
+
) -> BatchFeature:
|
199 |
+
"""
|
200 |
+
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
|
201 |
+
forwards images to PrismaticImageProcessor.
|
202 |
+
|
203 |
+
@param text: The (batch) of text to encode; must be a string or list of strings.
|
204 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
205 |
+
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
|
206 |
+
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
|
207 |
+
@param max_length: Maximum length (in tokens) to truncate
|
208 |
+
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
|
209 |
+
|
210 |
+
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
|
211 |
+
"""
|
212 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
|
213 |
+
text_inputs = self.tokenizer(
|
214 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
215 |
+
)
|
216 |
+
|
217 |
+
# [Validate] Need same number of images and text inputs!
|
218 |
+
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
|
219 |
+
raise ValueError("Batch is malformed; expected same number of images and text inputs!")
|
220 |
+
|
221 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
222 |
+
|
223 |
+
# === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
|
224 |
+
def batch_decode(
|
225 |
+
self,
|
226 |
+
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
227 |
+
skip_special_tokens: bool = False,
|
228 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
229 |
+
**kwargs: str,
|
230 |
+
) -> List[str]:
|
231 |
+
return self.tokenizer.batch_decode(
|
232 |
+
sequences=sequences,
|
233 |
+
skip_special_tokens=skip_special_tokens,
|
234 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
235 |
+
**kwargs,
|
236 |
+
)
|
237 |
+
|
238 |
+
def decode(
|
239 |
+
self,
|
240 |
+
token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
241 |
+
skip_special_tokens: bool = False,
|
242 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
243 |
+
**kwargs: str,
|
244 |
+
) -> str:
|
245 |
+
return self.tokenizer.decode(
|
246 |
+
token_ids=token_ids,
|
247 |
+
skip_special_tokens=skip_special_tokens,
|
248 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
249 |
+
**kwargs,
|
250 |
+
)
|
251 |
+
|
252 |
+
@property
|
253 |
+
def model_input_names(self) -> List[str]:
|
254 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
255 |
+
image_processor_input_names = self.image_processor.model_input_names
|
256 |
+
|
257 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "PrismaticProcessor"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<PAD>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<PAD>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"auto_map": {
|
39 |
+
"AutoProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticProcessor"
|
40 |
+
},
|
41 |
+
"bos_token": "<s>",
|
42 |
+
"clean_up_tokenization_spaces": false,
|
43 |
+
"eos_token": "</s>",
|
44 |
+
"legacy": false,
|
45 |
+
"model_max_length": 2048,
|
46 |
+
"pad_token": "<PAD>",
|
47 |
+
"padding_side": "right",
|
48 |
+
"processor_class": "PrismaticProcessor",
|
49 |
+
"sp_model_kwargs": {},
|
50 |
+
"tokenizer_class": "LlamaTokenizer",
|
51 |
+
"unk_token": "<unk>",
|
52 |
+
"use_default_system_prompt": false
|
53 |
+
}
|