Upload all models and assets for av (20251001)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +310 -141
- models/embeddings/monolingual/av_128d.bin +2 -2
- models/embeddings/monolingual/av_128d_metadata.json +5 -3
- models/embeddings/monolingual/av_32d.bin +2 -2
- models/embeddings/monolingual/av_32d_metadata.json +5 -3
- models/embeddings/monolingual/av_64d.bin +2 -2
- models/embeddings/monolingual/av_64d_metadata.json +5 -3
- models/subword_markov/av_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/av_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/av_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/av_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/av_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/av_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/av_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/av_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/av_2gram_subword.parquet +2 -2
- models/subword_ngram/av_2gram_subword_metadata.json +2 -2
- models/subword_ngram/av_3gram_subword.parquet +2 -2
- models/subword_ngram/av_3gram_subword_metadata.json +2 -2
- models/subword_ngram/av_4gram_subword.parquet +2 -2
- models/subword_ngram/av_4gram_subword_metadata.json +2 -2
- models/tokenizer/av_tokenizer_16k.model +2 -2
- models/tokenizer/av_tokenizer_16k.vocab +0 -0
- models/tokenizer/av_tokenizer_32k.model +2 -2
- models/tokenizer/av_tokenizer_32k.vocab +0 -0
- models/tokenizer/av_tokenizer_64k.model +2 -2
- models/tokenizer/av_tokenizer_64k.vocab +0 -0
- models/tokenizer/av_tokenizer_8k.model +2 -2
- models/tokenizer/av_tokenizer_8k.vocab +0 -0
- models/vocabulary/av_vocabulary.parquet +2 -2
- models/vocabulary/av_vocabulary_metadata.json +10 -9
- models/word_markov/av_markov_ctx1_word.parquet +2 -2
- models/word_markov/av_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/av_markov_ctx2_word.parquet +2 -2
- models/word_markov/av_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/av_markov_ctx3_word.parquet +2 -2
- models/word_markov/av_markov_ctx3_word_metadata.json +2 -2
- models/word_markov/av_markov_ctx4_word.parquet +2 -2
- models/word_markov/av_markov_ctx4_word_metadata.json +2 -2
- models/word_ngram/av_2gram_word.parquet +2 -2
- models/word_ngram/av_2gram_word_metadata.json +2 -2
- models/word_ngram/av_3gram_word.parquet +2 -2
- models/word_ngram/av_3gram_word_metadata.json +2 -2
- models/word_ngram/av_4gram_word.parquet +2 -2
- models/word_ngram/av_4gram_word_metadata.json +2 -2
- visualizations/embedding_isotropy.png +0 -0
- visualizations/embedding_norms.png +0 -0
- visualizations/embedding_similarity.png +2 -2
- visualizations/markov_branching.png +0 -0
- visualizations/markov_contexts.png +0 -0
README.md
CHANGED
|
@@ -23,14 +23,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
value: 0.8716
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# AV - Wikilangs Models
|
|
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,61 +70,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** |
|
| 77 |
-
| **32k** | 4.
|
| 78 |
-
| **64k** | 4.
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:**
|
| 85 |
-
|
| 86 |
-
Категория:Г...`
|
| 87 |
|
| 88 |
| Vocab | Tokens | Count |
|
| 89 |
|-------|--------|-------|
|
| 90 |
-
| 8k |
|
| 91 |
-
| 16k |
|
| 92 |
-
| 32k |
|
| 93 |
-
| 64k |
|
| 94 |
|
| 95 |
-
**Sample 2:**
|
| 96 |
-
Сунж-хъалаялдаса...`
|
| 97 |
|
| 98 |
| Vocab | Tokens | Count |
|
| 99 |
|-------|--------|-------|
|
| 100 |
-
| 8k |
|
| 101 |
-
| 16k |
|
| 102 |
-
| 32k |
|
| 103 |
-
| 64k |
|
| 104 |
-
|
| 105 |
-
**Sample 3:** `Лъугьа-бахъинал
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
Хвана
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
Категория:1927`
|
| 113 |
|
| 114 |
| Vocab | Tokens | Count |
|
| 115 |
|-------|--------|-------|
|
| 116 |
-
| 8k |
|
| 117 |
-
| 16k |
|
| 118 |
-
| 32k |
|
| 119 |
-
| 64k |
|
| 120 |
|
| 121 |
|
| 122 |
### Key Findings
|
| 123 |
|
| 124 |
-
- **Best Compression:** 64k achieves 4.
|
| 125 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 126 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 127 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 128 |
|
|
@@ -131,57 +129,89 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 131 |
|
| 132 |

|
| 133 |
|
|
|
|
|
|
|
| 134 |

|
| 135 |
|
| 136 |
### Results
|
| 137 |
|
| 138 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
-
|
| 140 |
-
| **2-gram** |
|
| 141 |
-
| **2-gram** |
|
| 142 |
-
| **3-gram** |
|
| 143 |
-
| **3-gram** |
|
| 144 |
-
| **4-gram** |
|
| 145 |
-
| **4-gram** |
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
| 149 |
-
**2-grams:**
|
| 150 |
|
| 151 |
| Rank | N-gram | Count |
|
| 152 |
|------|--------|-------|
|
| 153 |
-
| 1 |
|
| 154 |
-
| 2 |
|
| 155 |
-
| 3 |
|
| 156 |
-
| 4 |
|
| 157 |
-
| 5 |
|
| 158 |
|
| 159 |
-
**3-grams:**
|
| 160 |
|
| 161 |
| Rank | N-gram | Count |
|
| 162 |
|------|--------|-------|
|
| 163 |
-
| 1 |
|
| 164 |
-
| 2 |
|
| 165 |
-
| 3 |
|
| 166 |
-
| 4 |
|
| 167 |
-
| 5 |
|
| 168 |
|
| 169 |
-
**4-grams:**
|
| 170 |
|
| 171 |
| Rank | N-gram | Count |
|
| 172 |
|------|--------|-------|
|
| 173 |
-
| 1 |
|
| 174 |
-
| 2 |
|
| 175 |
-
| 3 |
|
| 176 |
-
| 4 |
|
| 177 |
-
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
|
| 180 |
### Key Findings
|
| 181 |
|
| 182 |
-
- **Best Perplexity:** 2-gram with
|
| 183 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 184 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 185 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 186 |
|
| 187 |
---
|
|
@@ -189,55 +219,86 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 189 |
|
| 190 |

|
| 191 |
|
|
|
|
|
|
|
| 192 |

|
| 193 |
|
| 194 |
### Results
|
| 195 |
|
| 196 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 197 |
-
|
| 198 |
-
| **1** | 0.
|
| 199 |
-
| **1** | 1.
|
| 200 |
-
| **2** | 0.
|
| 201 |
-
| **2** |
|
| 202 |
-
| **3** | 0.
|
| 203 |
-
| **3** | 0.
|
| 204 |
-
| **4** | 0.
|
| 205 |
-
| **4** | 0.
|
| 206 |
|
| 207 |
-
### Generated Text Samples
|
| 208 |
|
| 209 |
-
Below are text samples generated from each Markov chain model:
|
| 210 |
|
| 211 |
**Context Size 1:**
|
| 212 |
|
| 213 |
-
1.
|
| 214 |
-
2.
|
| 215 |
-
3.
|
| 216 |
|
| 217 |
**Context Size 2:**
|
| 218 |
|
| 219 |
-
1.
|
| 220 |
-
2.
|
| 221 |
-
3.
|
| 222 |
|
| 223 |
**Context Size 3:**
|
| 224 |
|
| 225 |
-
1. `география росу буго мухъалъул
|
| 226 |
-
2.
|
| 227 |
-
3.
|
| 228 |
|
| 229 |
**Context Size 4:**
|
| 230 |
|
| 231 |
-
1.
|
| 232 |
-
2.
|
| 233 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
|
| 236 |
### Key Findings
|
| 237 |
|
| 238 |
-
- **Best Predictability:** Context-4 with
|
| 239 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 240 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 241 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 242 |
|
| 243 |
---
|
|
@@ -253,64 +314,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 253 |
|
| 254 |
| Metric | Value |
|
| 255 |
|--------|-------|
|
| 256 |
-
| Vocabulary Size |
|
| 257 |
-
| Total Tokens |
|
| 258 |
-
| Mean Frequency |
|
| 259 |
| Median Frequency | 3 |
|
| 260 |
-
| Frequency Std Dev |
|
| 261 |
|
| 262 |
### Most Common Words
|
| 263 |
|
| 264 |
| Rank | Word | Frequency |
|
| 265 |
|------|------|-----------|
|
| 266 |
-
| 1 | ва | 7,
|
| 267 |
-
| 2 |
|
| 268 |
-
| 3 |
|
| 269 |
-
| 4 | бугеб | 2,
|
| 270 |
-
| 5 |
|
| 271 |
-
| 6 | росу | 2,
|
| 272 |
-
| 7 | мухъалъул | 2,
|
| 273 |
-
| 8 |
|
| 274 |
-
| 9 |
|
| 275 |
-
| 10 |
|
| 276 |
|
| 277 |
### Least Common Words (from vocabulary)
|
| 278 |
|
| 279 |
| Rank | Word | Frequency |
|
| 280 |
|------|------|-----------|
|
| 281 |
-
| 1 |
|
| 282 |
-
| 2 |
|
| 283 |
-
| 3 |
|
| 284 |
-
| 4 |
|
| 285 |
-
| 5 |
|
| 286 |
-
| 6 |
|
| 287 |
-
| 7 |
|
| 288 |
-
| 8 |
|
| 289 |
-
| 9 |
|
| 290 |
-
| 10 |
|
| 291 |
|
| 292 |
### Zipf's Law Analysis
|
| 293 |
|
| 294 |
| Metric | Value |
|
| 295 |
|--------|-------|
|
| 296 |
-
| Zipf Coefficient | 0.
|
| 297 |
-
| R² (Goodness of Fit) | 0.
|
| 298 |
| Adherence Quality | **excellent** |
|
| 299 |
|
| 300 |
### Coverage Analysis
|
| 301 |
|
| 302 |
| Top N Words | Coverage |
|
| 303 |
|-------------|----------|
|
| 304 |
-
| Top 100 | 22.
|
| 305 |
-
| Top 1,000 |
|
| 306 |
-
| Top 5,000 |
|
| 307 |
-
| Top 10,000 |
|
| 308 |
|
| 309 |
### Key Findings
|
| 310 |
|
| 311 |
-
- **Zipf Compliance:** R²=0.
|
| 312 |
-
- **High Frequency Dominance:** Top 100 words cover 22.
|
| 313 |
-
- **Long Tail:**
|
| 314 |
|
| 315 |
---
|
| 316 |
## 5. Word Embeddings Evaluation
|
|
@@ -323,24 +384,129 @@ Below are text samples generated from each Markov chain model:
|
|
| 323 |
|
| 324 |

|
| 325 |
|
| 326 |
-
### Model Comparison
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
### Key Findings
|
| 336 |
|
| 337 |
- **Best Isotropy:** mono_32d with 0.8716 (more uniform distribution)
|
| 338 |
-
- **
|
| 339 |
-
- **
|
| 340 |
-
- **Recommendation:**
|
| 341 |
|
| 342 |
---
|
| 343 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |

|
| 346 |
|
|
@@ -348,11 +514,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 348 |
|
| 349 |
| Component | Recommended | Rationale |
|
| 350 |
|-----------|-------------|-----------|
|
| 351 |
-
| Tokenizer | **
|
| 352 |
-
| N-gram | **
|
| 353 |
-
| Markov | **Context-4** | Highest predictability (
|
| 354 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 355 |
|
|
|
|
| 356 |
---
|
| 357 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 358 |
|
|
@@ -542,7 +709,8 @@ If you use these models in your research, please cite:
|
|
| 542 |
author = {Kamali, Omar},
|
| 543 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 544 |
year = {2025},
|
| 545 |
-
|
|
|
|
| 546 |
url = {https://huggingface.co/wikilangs}
|
| 547 |
institution = {Omneity Labs}
|
| 548 |
}
|
|
@@ -558,7 +726,8 @@ MIT License - Free for academic and commercial use.
|
|
| 558 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 559 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 560 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 561 |
---
|
| 562 |
*Generated by Wikilangs Models Pipeline*
|
| 563 |
|
| 564 |
-
*Report Date:
|
|
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
+
value: 4.697
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
value: 0.8716
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
+
value: 0
|
| 33 |
+
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
# AV - Wikilangs Models
|
|
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 48 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
| 53 |
+
|
| 54 |

|
| 55 |
|
| 56 |
### Analysis and Evaluation
|
|
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
+
- [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
|
| 64 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
| 67 |
|
|
|
|
| 70 |
|
| 71 |

|
| 72 |
|
| 73 |
+

|
| 74 |
+
|
| 75 |
+

|
| 76 |
+
|
| 77 |
+

|
| 78 |
+
|
| 79 |
### Results
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
+
| **8k** | 3.636x | 3.64 | 0.0717% | 252,363 |
|
| 84 |
+
| **16k** | 4.040x | 4.04 | 0.0797% | 227,147 |
|
| 85 |
+
| **32k** | 4.391x | 4.40 | 0.0866% | 208,961 |
|
| 86 |
+
| **64k** | 4.697x 🏆 | 4.70 | 0.0927% | 195,348 |
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
+
**Sample 1:** `Хъипчахъ () гъорлъе уна жибго Хъипчахъ росу. Гьеб росулъ гьабула . росаби`
|
|
|
|
|
|
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
+
| 8k | `▁хъ ип ч ахъ ▁() ▁гъорлъе ▁уна ▁жибго ▁хъ ип ... (+9 more)` | 19 |
|
| 97 |
+
| 16k | `▁хъ ип ч ахъ ▁() ▁гъорлъе ▁уна ▁жибго ▁хъ ип ... (+9 more)` | 19 |
|
| 98 |
+
| 32k | `▁хъипчахъ ▁() ▁гъорлъе ▁уна ▁жибго ▁хъипчахъ ▁росу . ▁гьеб ▁росулъ ... (+3 more)` | 13 |
|
| 99 |
+
| 64k | `▁хъипчахъ ▁() ▁гъорлъе ▁уна ▁жибго ▁хъипчахъ ▁росу . ▁гьеб ▁росулъ ... (+3 more)` | 13 |
|
| 100 |
|
| 101 |
+
**Sample 2:** `26-абилеб июль — грегорианияб календаралда рекъон къо (високоснияб соналъ — свер...`
|
|
|
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁ 2 6 - абилеб ▁июль ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+19 more)` | 29 |
|
| 106 |
+
| 16k | `▁ 2 6 - абилеб ▁июль ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+19 more)` | 29 |
|
| 107 |
+
| 32k | `▁ 2 6 - абилеб ▁июль ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+19 more)` | 29 |
|
| 108 |
+
| 64k | `▁ 2 6 - абилеб ▁июль ▁— ▁грегорианияб ▁календаралда ▁рекъон ... (+19 more)` | 29 |
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
**Sample 3:** `() ккола Билкан районалда гъорлъе унеб росу. росаби`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
+
| 8k | `▁() ▁ккола ▁билкан ▁районалда ▁гъорлъе ▁унеб ▁росу . ▁росаби` | 9 |
|
| 115 |
+
| 16k | `▁() ▁ккола ▁билкан ▁районалда ▁гъорлъе ▁унеб ▁росу . ▁росаби` | 9 |
|
| 116 |
+
| 32k | `▁() ▁ккола ▁билкан ▁районалда ▁гъорлъе ▁унеб ▁росу . ▁росаби` | 9 |
|
| 117 |
+
| 64k | `▁() ▁ккола ▁билкан ▁районалда ▁гъорлъе ▁унеб ▁росу . ▁росаби` | 9 |
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
+
- **Best Compression:** 64k achieves 4.697x compression
|
| 123 |
+
- **Lowest UNK Rate:** 8k with 0.0717% unknown tokens
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
|
|
| 129 |
|
| 130 |

|
| 131 |
|
| 132 |
+

|
| 133 |
+
|
| 134 |

|
| 135 |
|
| 136 |
### Results
|
| 137 |
|
| 138 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
+
| **2-gram** | Word | 3,247 | 11.66 | 6,413 | 22.5% | 54.2% |
|
| 141 |
+
| **2-gram** | Subword | 428 🏆 | 8.74 | 4,133 | 57.8% | 96.7% |
|
| 142 |
+
| **3-gram** | Word | 2,834 | 11.47 | 6,427 | 26.0% | 57.0% |
|
| 143 |
+
| **3-gram** | Subword | 3,424 | 11.74 | 28,949 | 23.6% | 62.9% |
|
| 144 |
+
| **4-gram** | Word | 8,629 | 13.07 | 17,392 | 16.9% | 37.2% |
|
| 145 |
+
| **4-gram** | Subword | 15,875 | 13.95 | 119,337 | 12.4% | 36.8% |
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
| 149 |
+
**2-grams (Word):**
|
| 150 |
|
| 151 |
| Rank | N-gram | Count |
|
| 152 |
|------|--------|-------|
|
| 153 |
+
| 1 | `росу буго` | 509 |
|
| 154 |
+
| 2 | `лъугьа бахъинал` | 496 |
|
| 155 |
+
| 3 | `география росу` | 461 |
|
| 156 |
+
| 4 | `цо цо` | 455 |
|
| 157 |
+
| 5 | `of the` | 441 |
|
| 158 |
|
| 159 |
+
**3-grams (Word):**
|
| 160 |
|
| 161 |
| Rank | N-gram | Count |
|
| 162 |
|------|--------|-------|
|
| 163 |
+
| 1 | `география росу буго` | 448 |
|
| 164 |
+
| 2 | `лъугьа бахъинал гьаруна` | 368 |
|
| 165 |
+
| 3 | `бахъинал гьаруна хвана` | 358 |
|
| 166 |
+
| 4 | `байрамал лъугьа бахъинал` | 353 |
|
| 167 |
+
| 5 | `гьаруна хвана ишараби` | 352 |
|
| 168 |
|
| 169 |
+
**4-grams (Word):**
|
| 170 |
|
| 171 |
| Rank | N-gram | Count |
|
| 172 |
|------|--------|-------|
|
| 173 |
+
| 1 | `лъугьа ��ахъинал гьаруна хвана` | 358 |
|
| 174 |
+
| 2 | `байрамал лъугьа бахъинал гьаруна` | 352 |
|
| 175 |
+
| 3 | `къо байрамал лъугьа бахъинал` | 351 |
|
| 176 |
+
| 4 | `бахъинал гьаруна хвана ишараби` | 349 |
|
| 177 |
+
| 5 | `демография ккола моноэтникияб авар` | 329 |
|
| 178 |
+
|
| 179 |
+
**2-grams (Subword):**
|
| 180 |
+
|
| 181 |
+
| Rank | N-gram | Count |
|
| 182 |
+
|------|--------|-------|
|
| 183 |
+
| 1 | `а л` | 82,724 |
|
| 184 |
+
| 2 | `л _` | 63,062 |
|
| 185 |
+
| 3 | `л ъ` | 52,236 |
|
| 186 |
+
| 4 | `а _` | 52,185 |
|
| 187 |
+
| 5 | `у л` | 49,900 |
|
| 188 |
+
|
| 189 |
+
**3-grams (Subword):**
|
| 190 |
+
|
| 191 |
+
| Rank | N-gram | Count |
|
| 192 |
+
|------|--------|-------|
|
| 193 |
+
| 1 | `у л _` | 33,240 |
|
| 194 |
+
| 2 | `л ъ у` | 30,603 |
|
| 195 |
+
| 3 | `ъ у л` | 25,387 |
|
| 196 |
+
| 4 | `а л ъ` | 23,574 |
|
| 197 |
+
| 5 | `_ г ь` | 22,295 |
|
| 198 |
+
|
| 199 |
+
**4-grams (Subword):**
|
| 200 |
+
|
| 201 |
+
| Rank | N-gram | Count |
|
| 202 |
+
|------|--------|-------|
|
| 203 |
+
| 1 | `л ъ у л` | 23,988 |
|
| 204 |
+
| 2 | `ъ у л _` | 21,518 |
|
| 205 |
+
| 3 | `а л ъ у` | 16,083 |
|
| 206 |
+
| 4 | `а л д а` | 11,383 |
|
| 207 |
+
| 5 | `_ г ь е` | 11,094 |
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
+
- **Best Perplexity:** 2-gram (subword) with 428
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
+
- **Coverage:** Top-1000 patterns cover ~37% of corpus
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
|
|
| 219 |
|
| 220 |

|
| 221 |
|
| 222 |
+

|
| 223 |
+
|
| 224 |

|
| 225 |
|
| 226 |
### Results
|
| 227 |
|
| 228 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
+
| **1** | Word | 0.6602 | 1.580 | 3.57 | 91,234 | 34.0% |
|
| 231 |
+
| **1** | Subword | 1.1781 | 2.263 | 9.32 | 1,145 | 0.0% |
|
| 232 |
+
| **2** | Word | 0.1256 | 1.091 | 1.21 | 324,656 | 87.4% |
|
| 233 |
+
| **2** | Subword | 0.9990 | 1.999 | 5.68 | 10,664 | 0.1% |
|
| 234 |
+
| **3** | Word | 0.0281 | 1.020 | 1.04 | 392,645 | 97.2% |
|
| 235 |
+
| **3** | Subword | 0.7935 | 1.733 | 3.66 | 60,534 | 20.6% |
|
| 236 |
+
| **4** | Word | 0.0114 🏆 | 1.008 | 1.02 | 406,500 | 98.9% |
|
| 237 |
+
| **4** | Subword | 0.5614 | 1.476 | 2.33 | 221,628 | 43.9% |
|
| 238 |
|
| 239 |
+
### Generated Text Samples (Word-based)
|
| 240 |
|
| 241 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 242 |
|
| 243 |
**Context Size 1:**
|
| 244 |
|
| 245 |
+
1. `ва бищун хирияб рокьуе рецц гьабун росулӏ историкияб кьучӏги x гіасру ккола гъуниб округалъул цӏигӏу...`
|
| 246 |
+
2. `буго гьединго гьолокьги бекьизабун буго шумеразул ги къасимехалъ бачӏингун чагӏазда макьаби контрола...`
|
| 247 |
+
3. `ккола гьижрияб соналъул 29 август цояб гьелъул буго гьанже батизе бегьула 1 гуржистаналъул бищун бор...`
|
| 248 |
|
| 249 |
**Context Size 2:**
|
| 250 |
|
| 251 |
+
1. `росу буго лъарагӏлъиялда хасавхъала мухъалда хасавхъалаялдаса 24 км ялъ жанубиябгин бакъбаккудехун а...`
|
| 252 |
+
2. `лъугьа бахъинал гьаруна хвана ишараби мугъчӏ��аял гь балагье хіужаби иццал адабият гіурус маціалда бу...`
|
| 253 |
+
3. `география росу буго лъарагӏлъиялда дибирилросу мухъалда дибирилросуялдаса 10 км ялъ шималиябгин бакъ...`
|
| 254 |
|
| 255 |
**Context Size 3:**
|
| 256 |
|
| 257 |
+
1. `география росу буго мухъалъул марказ хӏебдаса 15 километралъ бакъбаккудехун халкъ мугъчӏваял регӏела...`
|
| 258 |
+
2. `лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье трактат адабият тайпаби изданиял`
|
| 259 |
+
3. `байрамал лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье трактат адабият тайпаби издания...`
|
| 260 |
|
| 261 |
**Context Size 4:**
|
| 262 |
|
| 263 |
+
1. `байрамал лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье`
|
| 264 |
+
2. `къо байрамал лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье`
|
| 265 |
+
3. `лъугьа бахъинал гьаруна хвана ишараби мугъчӏваял гь балагье`
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
### Generated Text Samples (Subword-based)
|
| 269 |
+
|
| 270 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 271 |
+
|
| 272 |
+
**Context Size 1:**
|
| 273 |
+
|
| 274 |
+
1. `_iv–_гъугіо_usth`
|
| 275 |
+
2. `абиза_и._д_2%_ке`
|
| 276 |
+
3. `л_—_ilissoldan_|`
|
| 277 |
+
|
| 278 |
+
**Context Size 2:**
|
| 279 |
+
|
| 280 |
+
1. `алъахъану_кконие_`
|
| 281 |
+
2. `л_адекалабаяракӏ)`
|
| 282 |
+
3. `лъул_кіаялъул_на_`
|
| 283 |
+
|
| 284 |
+
**Context Size 3:**
|
| 285 |
+
|
| 286 |
+
1. `ул_къотӏагораний_в`
|
| 287 |
+
2. `лъул_реал_карт_гӏа`
|
| 288 |
+
3. `ъулгун_ар-рип_хъал`
|
| 289 |
+
|
| 290 |
+
**Context Size 4:**
|
| 291 |
+
|
| 292 |
+
1. `лъул_хіалалда_чӏали`
|
| 293 |
+
2. `ъул_большая_и_казбе`
|
| 294 |
+
3. `алъул_руго_9:_мугъч`
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
+
- **Best Predictability:** Context-4 (word) with 98.9% predictability
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
+
- **Memory Trade-off:** Larger contexts require more storage (221,628 contexts)
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
+
| Vocabulary Size | 34,392 |
|
| 318 |
+
| Total Tokens | 405,867 |
|
| 319 |
+
| Mean Frequency | 11.80 |
|
| 320 |
| Median Frequency | 3 |
|
| 321 |
+
| Frequency Std Dev | 73.46 |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
+
| 1 | ва | 7,245 |
|
| 328 |
+
| 2 | буго | 5,074 |
|
| 329 |
+
| 3 | ккола | 2,830 |
|
| 330 |
+
| 4 | бугеб | 2,699 |
|
| 331 |
+
| 5 | гьеб | 2,222 |
|
| 332 |
+
| 6 | росу | 2,175 |
|
| 333 |
+
| 7 | мухъалъул | 2,030 |
|
| 334 |
+
| 8 | цо | 1,833 |
|
| 335 |
+
| 9 | the | 1,815 |
|
| 336 |
+
| 10 | соналъ | 1,799 |
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
+
| 1 | долтул | 2 |
|
| 343 |
+
| 2 | кӏалалдаса | 2 |
|
| 344 |
+
| 3 | шаргі | 2 |
|
| 345 |
+
| 4 | харитӏун | 2 |
|
| 346 |
+
| 5 | луткунги | 2 |
|
| 347 |
+
| 6 | беглъуда | 2 |
|
| 348 |
+
| 7 | къацӏар | 2 |
|
| 349 |
+
| 8 | мичегь | 2 |
|
| 350 |
+
| 9 | хъурукал | 2 |
|
| 351 |
+
| 10 | мягьле | 2 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
+
| Zipf Coefficient | 0.9506 |
|
| 358 |
+
| R² (Goodness of Fit) | 0.993368 |
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
+
| Top 100 | 22.5% |
|
| 366 |
+
| Top 1,000 | 50.8% |
|
| 367 |
+
| Top 5,000 | 73.6% |
|
| 368 |
+
| Top 10,000 | 83.3% |
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
+
- **Zipf Compliance:** R²=0.9934 indicates excellent adherence to Zipf's law
|
| 373 |
+
- **High Frequency Dominance:** Top 100 words cover 22.5% of corpus
|
| 374 |
+
- **Long Tail:** 24,392 words needed for remaining 16.7% coverage
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 384 |
|
| 385 |

|
| 386 |
|
|
|
|
| 387 |
|
| 388 |
+
### 5.1 Cross-Lingual Alignment
|
| 389 |
+
|
| 390 |
+
> *Note: Multilingual alignment visualization not available for this language.*
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
### 5.2 Model Comparison
|
| 394 |
+
|
| 395 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
+
| **mono_32d** | 32 | 0.8716 🏆 | 0.3278 | N/A | N/A |
|
| 398 |
+
| **mono_64d** | 64 | 0.7240 | 0.2821 | N/A | N/A |
|
| 399 |
+
| **mono_128d** | 128 | 0.2461 | 0.2702 | N/A | N/A |
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
- **Best Isotropy:** mono_32d with 0.8716 (more uniform distribution)
|
| 404 |
+
- **Semantic Density:** Average pairwise similarity of 0.2934. Lower values indicate better semantic separation.
|
| 405 |
+
- **Alignment Quality:** No aligned models evaluated in this run.
|
| 406 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
+
## 6. Morphological Analysis (Experimental)
|
| 410 |
+
|
| 411 |
+
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
+
|
| 413 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
+
|
| 415 |
+
### 6.1 Productivity & Complexity
|
| 416 |
+
|
| 417 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
+
|--------|-------|----------------|----------------|
|
| 419 |
+
| Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
|
| 420 |
+
| Idiomaticity Gap | **-1.000** | Low formulaic content | - |
|
| 421 |
+
|
| 422 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
+
|
| 424 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 425 |
+
|
| 426 |
+
#### Productive Prefixes
|
| 427 |
+
| Prefix | Examples |
|
| 428 |
+
|--------|----------|
|
| 429 |
+
| `-гь` | гьамчукъотӏи, гьечӏони, гьаркьалги |
|
| 430 |
+
| `-гӏ` | гӏасру, гӏаракъи, гӏелмуялде |
|
| 431 |
+
| `-ма` | материялъул, машгьадалда, магіарухъ |
|
| 432 |
+
|
| 433 |
+
#### Productive Suffixes
|
| 434 |
+
| Suffix | Examples |
|
| 435 |
+
|--------|----------|
|
| 436 |
+
| `-л` | сабабал, материялъул, рикӏкӏиналъул |
|
| 437 |
+
| `-а` | елена, современника, шагьаралда |
|
| 438 |
+
| `-ул` | материялъул, рикӏкӏиналъул, хӏажиевасул |
|
| 439 |
+
| `-да` | шагьаралда, машгьадалда, флорида |
|
| 440 |
+
| `-ъул` | материялъул, рикӏкӏиналъул, медициналъул |
|
| 441 |
+
| `-лъул` | материялъул, рикӏкӏиналъул, медициналъул |
|
| 442 |
+
| `-ал` | сабабал, кьурахарал, къезавидал |
|
| 443 |
+
| `-лда` | шагьаралда, машгьадалда, борталда |
|
| 444 |
+
|
| 445 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 446 |
+
|
| 447 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 448 |
+
|
| 449 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 450 |
+
|------|----------|------------------|----------|
|
| 451 |
+
| `алъу` | 1.82x | 100 contexts | алъул, далъун, ралъуе |
|
| 452 |
+
| `агьа` | 1.89x | 59 contexts | дагьа, багьа, загьаб |
|
| 453 |
+
| `ялъу` | 2.04x | 43 contexts | ялъул, аялъул, ялъуни |
|
| 454 |
+
| `ьабу` | 2.16x | 29 contexts | гьабу, гьабун, кьабун |
|
| 455 |
+
| `иялъ` | 1.96x | 36 contexts | абиялъе, химиялъ, лъиялъе |
|
| 456 |
+
| `иялд` | 1.83x | 35 contexts | сиялда, азиялда, азиялде |
|
| 457 |
+
| `анал` | 1.42x | 70 contexts | данал, канал, ханал |
|
| 458 |
+
| `ралъ` | 1.49x | 53 contexts | ралъад, ралъуе, хералъ |
|
| 459 |
+
| `буге` | 2.00x | 17 contexts | бугел, бугез, бугеб |
|
| 460 |
+
| `иста` | 2.02x | 16 contexts | систан, христа, лазистан |
|
| 461 |
+
| `лдас` | 2.06x | 15 contexts | лдаса, алдаса, ялдаса |
|
| 462 |
+
| `азда` | 1.62x | 32 contexts | мазда, раздан, ишазда |
|
| 463 |
+
|
| 464 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 465 |
+
|
| 466 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 467 |
+
|
| 468 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 469 |
+
|--------|--------|-----------|----------|
|
| 470 |
+
| `-гь` | `-л` | 44 words | гьавамухъал, гьудулзабазул |
|
| 471 |
+
| `-ма` | `-л` | 40 words | мажлисалъул, маринил |
|
| 472 |
+
| `-гӏ` | `-л` | 38 words | гӏурусазул, гӏалиевалъул |
|
| 473 |
+
| `-ма` | `-а` | 35 words | макъалоялда, малъана |
|
| 474 |
+
| `-гӏ` | `-а` | 29 words | гӏуцӏиялда, гӏодула |
|
| 475 |
+
| `-гь` | `-а` | 28 words | гьада, гьала |
|
| 476 |
+
| `-гӏ` | `-ул` | 25 words | гӏурусазул, гӏалиевалъул |
|
| 477 |
+
| `-гь` | `-ул` | 24 words | гьудулзабазул, гьезул |
|
| 478 |
+
| `-ма` | `-ул` | 21 words | мажлисалъул, мактабалъул |
|
| 479 |
+
| `-ма` | `-да` | 16 words | макъалоялда, макъалаялда |
|
| 480 |
+
|
| 481 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 482 |
+
|
| 483 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 484 |
+
|
| 485 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 486 |
+
|------|-----------------|------------|------|
|
| 487 |
+
| руччабаздаги | **`руччабаз-да-ги`** | 6.0 | `руччабаз` |
|
| 488 |
+
| хронологиялъул | **`хронология-лъул`** | 4.5 | `хронология` |
|
| 489 |
+
| теориялда | **`теория-лда`** | 4.5 | `теория` |
|
| 490 |
+
| къавмазул | **`къавмаз-ул`** | 4.5 | `къавмаз` |
|
| 491 |
+
| къанагӏатал | **`къанагӏат-ал`** | 4.5 | `къанагӏат` |
|
| 492 |
+
| групалъул | **`група-лъул`** | 4.5 | `група` |
|
| 493 |
+
| ракьалъул | **`ракьа-лъул`** | 4.5 | `ракьа` |
|
| 494 |
+
| такрарлъул | **`такрар-лъул`** | 4.5 | `такрар` |
|
| 495 |
+
| алвеолариялги | **`алвеолариял-ги`** | 4.5 | `алвеолариял` |
|
| 496 |
+
| европалъул | **`европа-лъул`** | 4.5 | `европа` |
|
| 497 |
+
| гьабулаго | **`гь-абулаго`** | 4.5 | `абулаго` |
|
| 498 |
+
| рахъалъги | **`рахъалъ-ги`** | 4.5 | `рахъалъ` |
|
| 499 |
+
| пассажирги | **`пассажир-ги`** | 4.5 | `пассажир` |
|
| 500 |
+
| партиялъул | **`партия-лъул`** | 4.5 | `партия` |
|
| 501 |
+
| оппозициялъул | **`оппозиция-лъул`** | 4.5 | `оппозиция` |
|
| 502 |
+
|
| 503 |
+
### 6.6 Linguistic Interpretation
|
| 504 |
+
|
| 505 |
+
> **Automated Insight:**
|
| 506 |
+
The language AV appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
|
| 507 |
+
|
| 508 |
+
---
|
| 509 |
+
## 7. Summary & Recommendations
|
| 510 |
|
| 511 |

|
| 512 |
|
|
|
|
| 514 |
|
| 515 |
| Component | Recommended | Rationale |
|
| 516 |
|-----------|-------------|-----------|
|
| 517 |
+
| Tokenizer | **64k BPE** | Best compression (4.70x) |
|
| 518 |
+
| N-gram | **2-gram** | Lowest perplexity (428) |
|
| 519 |
+
| Markov | **Context-4** | Highest predictability (98.9%) |
|
| 520 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 521 |
|
| 522 |
+
|
| 523 |
---
|
| 524 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 525 |
|
|
|
|
| 709 |
author = {Kamali, Omar},
|
| 710 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 711 |
year = {2025},
|
| 712 |
+
doi = {10.5281/zenodo.18073153},
|
| 713 |
+
publisher = {Zenodo},
|
| 714 |
url = {https://huggingface.co/wikilangs}
|
| 715 |
institution = {Omneity Labs}
|
| 716 |
}
|
|
|
|
| 726 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 727 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 728 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 729 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 730 |
---
|
| 731 |
*Generated by Wikilangs Models Pipeline*
|
| 732 |
|
| 733 |
+
*Report Date: 2026-01-03 05:23:28*
|
models/embeddings/monolingual/av_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:086998639c3328d1f88a224eb653bef49f8aa011b5880d7feb85792cbe742361
|
| 3 |
+
size 1036208926
|
models/embeddings/monolingual/av_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 11654
|
| 15 |
}
|
models/embeddings/monolingual/av_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6290250d27a46d72b90ede94292690c45a0a3f14bdbf05ab7aa5d07aa2093541
|
| 3 |
+
size 259258654
|
models/embeddings/monolingual/av_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 11654
|
| 15 |
}
|
models/embeddings/monolingual/av_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b709ff729efabdd809f80746b620dba08607a5b3377d6237ee6f2434e1eb3c2
|
| 3 |
+
size 518242078
|
models/embeddings/monolingual/av_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 11654
|
| 15 |
}
|
models/subword_markov/av_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4517ac9631ea8dbfee38f5e0a123dfdfec510e3a9c1219d351bc1fd509b60c17
|
| 3 |
+
size 81084
|
models/subword_markov/av_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 1145,
|
| 6 |
+
"total_transitions": 3671343
|
| 7 |
}
|
models/subword_markov/av_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2851c37f629eaaf5084dca27968d6cf91fd8843aa330d489a4440f208d3e60cd
|
| 3 |
+
size 486043
|
models/subword_markov/av_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 10664,
|
| 6 |
+
"total_transitions": 3667770
|
| 7 |
}
|
models/subword_markov/av_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e93984ebab9588d00463857f800a79e61319598925a11d5785c24e04809162f3
|
| 3 |
+
size 1681476
|
models/subword_markov/av_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 60534,
|
| 6 |
+
"total_transitions": 3664197
|
| 7 |
}
|
models/subword_markov/av_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df78890cb55850cde1e4fbcdb06710bcbf3c0a04113c2fb5a81c53eb29e9a8bc
|
| 3 |
+
size 4643917
|
models/subword_markov/av_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 221628,
|
| 6 |
+
"total_transitions": 3660624
|
| 7 |
}
|
models/subword_ngram/av_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:933b0de1b63cb20550e97fa2419bacf817141c74827bc4e101e5d76c7780509c
|
| 3 |
+
size 54611
|
models/subword_ngram/av_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_ngrams": 4133,
|
| 6 |
+
"total_ngrams": 3671343
|
| 7 |
}
|
models/subword_ngram/av_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca32b51e264e1da8fb8ad605682f565e4a0fd97590d147b080946a6cf8993da2
|
| 3 |
+
size 370254
|
models/subword_ngram/av_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_ngrams": 28949,
|
| 6 |
+
"total_ngrams": 3667770
|
| 7 |
}
|
models/subword_ngram/av_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1511e4aa7f03fe2637243fa72bb121ccae146a0024ee7a81f233a708cc2778bb
|
| 3 |
+
size 1469426
|
models/subword_ngram/av_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_ngrams": 119337,
|
| 6 |
+
"total_ngrams": 3664197
|
| 7 |
}
|
models/tokenizer/av_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95f05447a801c104acaac9e4a45ef1ade9a750529b7be0b69f4ee702b40bdd0f
|
| 3 |
+
size 579855
|
models/tokenizer/av_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/av_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bcc76ebd732e7de0cc3f1d1a7445d6e9812fc5861347bfbdb764a34ab378093a
|
| 3 |
+
size 943739
|
models/tokenizer/av_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/av_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e25c37c305a3f71acc7fde1f68cea5d1b999e9cc76e1a9ae7e946535b348e7eb
|
| 3 |
+
size 1709450
|
models/tokenizer/av_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/av_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:69224dbe8521456dbe0800e5c74893d56ecd3d316ce5785f5ea5922ff2f1af24
|
| 3 |
+
size 404399
|
models/tokenizer/av_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/av_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7310d663e46f21c8df63d5030b41ef164690182783e77aaf70f0bb2efff7bb0
|
| 3 |
+
size 661413
|
models/vocabulary/av_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "av",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "av",
|
| 3 |
+
"vocabulary_size": 34392,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.1973921591928009,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.19702269707347111,
|
| 9 |
+
"top_1000": 0.4456231702442555,
|
| 10 |
+
"top_5000": 0.6456771851739821,
|
| 11 |
+
"top_10000": 0.7303661131936867
|
| 12 |
},
|
| 13 |
+
"hapax_count": 56968,
|
| 14 |
+
"hapax_ratio": 0.623555166374781,
|
| 15 |
+
"total_documents": 3573
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/av_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e06648f80de88e4993ac542ab602cc9aac6b01b06f56ff96c14658afaf6be279
|
| 3 |
+
size 4391092
|
models/word_markov/av_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 91234,
|
| 6 |
+
"total_transitions": 459262
|
| 7 |
}
|
models/word_markov/av_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c68afd2ecd43feece23866755466060024bed9599ffd5b4fb7f0eebba9e44b7c
|
| 3 |
+
size 9606282
|
models/word_markov/av_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 324656,
|
| 6 |
+
"total_transitions": 455689
|
| 7 |
}
|
models/word_markov/av_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f09b691f7a4f20607265b8fbe10331f64de10a5d0492129209c70e0fac37837
|
| 3 |
+
size 11942432
|
models/word_markov/av_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 392645,
|
| 6 |
+
"total_transitions": 452116
|
| 7 |
}
|
models/word_markov/av_markov_ctx4_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d983a9226228a9202fb65e4494c1671eacd7872fafdff4b618a0f3e99c703539
|
| 3 |
+
size 14036981
|
models/word_markov/av_markov_ctx4_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_contexts": 406500,
|
| 6 |
+
"total_transitions": 448543
|
| 7 |
}
|
models/word_ngram/av_2gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca8324fa6f1298f13453cb69c80bda1c34da42ca4d16390fc0f21e33c68f286c
|
| 3 |
+
size 164610
|
models/word_ngram/av_2gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_ngrams": 6413,
|
| 6 |
+
"total_ngrams": 459262
|
| 7 |
}
|
models/word_ngram/av_3gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d863fc44b978ead18ea6982afba0be260335838763c4435ad08e18f827ded683
|
| 3 |
+
size 202995
|
models/word_ngram/av_3gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_ngrams": 6427,
|
| 6 |
+
"total_ngrams": 455689
|
| 7 |
}
|
models/word_ngram/av_4gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca081b844faf3f648da186cea540ee1d8a8481a461588ae8b2a7f220a80f8acb
|
| 3 |
+
size 568270
|
models/word_ngram/av_4gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "av",
|
| 5 |
+
"unique_ngrams": 17392,
|
| 6 |
+
"total_ngrams": 452116
|
| 7 |
}
|
visualizations/embedding_isotropy.png
CHANGED
|
|
visualizations/embedding_norms.png
CHANGED
|
|
visualizations/embedding_similarity.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
visualizations/markov_branching.png
CHANGED
|
|
visualizations/markov_contexts.png
CHANGED
|
|