Sadjad Alikhani
commited on
upload required files
Browse files- input_preprocess.py +348 -0
- lwm_model.py +173 -0
- model.py +29 -0
- model_weights.pth +3 -0
- save_model.py +29 -0
- tokenizer.py +33 -0
- upload_to_huggingface.py +17 -0
input_preprocess.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Sep 13 16:13:29 2024
|
4 |
+
|
5 |
+
This script generates preprocessed data from wireless communication scenarios,
|
6 |
+
including token generation, patch creation, and data sampling for machine learning models.
|
7 |
+
|
8 |
+
@author: salikha4
|
9 |
+
"""
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import dataset_gen
|
13 |
+
import dataset_utils as dt
|
14 |
+
import os
|
15 |
+
from tqdm import tqdm
|
16 |
+
import time
|
17 |
+
import pickle
|
18 |
+
import DeepMIMOv3
|
19 |
+
|
20 |
+
vars_folder = 'variables/'
|
21 |
+
os.makedirs(vars_folder, exist_ok=True)
|
22 |
+
|
23 |
+
#%% Scenarios List
|
24 |
+
def scenarios_list():
|
25 |
+
"""Returns an array of available scenarios."""
|
26 |
+
return np.array([
|
27 |
+
'city_18_denver', 'city_15_indianapolis', 'city_19_oklahoma',
|
28 |
+
'city_12_fortworth', 'city_11_santaclara', 'city_7_sandiego'
|
29 |
+
])
|
30 |
+
|
31 |
+
|
32 |
+
#%% Token Generation
|
33 |
+
def gen_tokens(scenario_idxs, patch_gen=True, patch_size=16,
|
34 |
+
gen_deepMIMO_data=False, gen_raw=False, save_data=False):
|
35 |
+
"""
|
36 |
+
Generates tokens by preparing and preprocessing the dataset.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
scenario_idxs (list): Indices of the scenarios.
|
40 |
+
patch_gen (bool): Whether to generate patches. Defaults to True.
|
41 |
+
patch_size (int): Size of each patch. Defaults to 16.
|
42 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. Defaults to False.
|
43 |
+
gen_raw (bool): Whether to generate raw data. Defaults to False.
|
44 |
+
save_data (bool): Whether to save the preprocessed data. Defaults to False.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
preprocessed_data, sequence_length, element_length: Preprocessed data and related dimensions.
|
48 |
+
"""
|
49 |
+
|
50 |
+
vars_folder = 'variables/'
|
51 |
+
os.makedirs(vars_folder, exist_ok=True)
|
52 |
+
|
53 |
+
# Fetch scenarios
|
54 |
+
scenario_list = scenarios_list()
|
55 |
+
scenarios = scenario_list[scenario_idxs] if len(scenario_idxs) > 1 else [scenario_list[scenario_idxs[0]]]
|
56 |
+
|
57 |
+
# Patch generation or loading
|
58 |
+
if patch_gen:
|
59 |
+
patches = [patch_makerv2(patch_size=patch_size, scenario=scenario,
|
60 |
+
gen_deepMIMO_data=gen_deepMIMO_data, save_patches=False,
|
61 |
+
save_file_name=f'patch_{scenario}.p',
|
62 |
+
norm_factor=1e6, save_data=save_data)
|
63 |
+
for scenario in scenarios]
|
64 |
+
patches = np.vstack(patches)
|
65 |
+
else:
|
66 |
+
patches = [dt.load_var(vars_folder + 'patch_{scenario}.p')
|
67 |
+
for scenario in scenarios]
|
68 |
+
patches = np.vstack(patches)
|
69 |
+
|
70 |
+
word2id = {'[CLS]': 0.2 * np.ones((patch_size)), '[MASK]': 0.1 * np.ones((patch_size))}
|
71 |
+
|
72 |
+
# Define dimensions
|
73 |
+
patch_size = patches.shape[2]
|
74 |
+
n_patches = patches.shape[1]
|
75 |
+
n_masks_half = int(0.15 * n_patches / 2)
|
76 |
+
sequence_length = n_patches + 1
|
77 |
+
element_length = patch_size
|
78 |
+
|
79 |
+
# Generate preprocessed data
|
80 |
+
preprocessed_data = []
|
81 |
+
for user_idx in tqdm(range(len(patches)), desc="Processing items"):
|
82 |
+
sample = make_samplev2(user_idx, patches, word2id, n_patches, n_masks_half, patch_size, gen_raw=gen_raw)
|
83 |
+
preprocessed_data.append(sample)
|
84 |
+
|
85 |
+
if save_data:
|
86 |
+
dt.save_var(preprocessed_data, vars_folder + 'preprocessed_data.p')
|
87 |
+
|
88 |
+
return preprocessed_data, sequence_length, element_length
|
89 |
+
|
90 |
+
|
91 |
+
#%% Patch Creation
|
92 |
+
def patch_makerv2(patch_size=16, scenario=None, gen_deepMIMO_data=False,
|
93 |
+
save_patches=True, save_file_name=None, norm_factor=1,
|
94 |
+
save_data=False):
|
95 |
+
"""
|
96 |
+
Creates patches from the dataset based on the scenario.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
patch_size (int): Size of each patch.
|
100 |
+
scenario (str): Selected scenario for data generation.
|
101 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
102 |
+
save_patches (bool): Whether to save generated patches.
|
103 |
+
save_file_name (str): Filename for saving patches.
|
104 |
+
norm_factor (int): Normalization factor for channels.
|
105 |
+
save_data (bool): Whether to save data.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
patch (numpy array): Generated patches.
|
109 |
+
"""
|
110 |
+
|
111 |
+
vars_folder = 'variables/'
|
112 |
+
os.makedirs(vars_folder, exist_ok=True)
|
113 |
+
|
114 |
+
data = DeepMIMO_data_gen(scenario, gen_deepMIMO_data, save_data=save_data)
|
115 |
+
idxs = np.where(data['user']['LoS'] != -1)[0]
|
116 |
+
|
117 |
+
# Reshaping and normalizing channels
|
118 |
+
original_ch = data['user']['channel'][idxs]
|
119 |
+
flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
|
120 |
+
flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag)) * norm_factor
|
121 |
+
|
122 |
+
# Create patches
|
123 |
+
n_patches = flat_channels_complex.shape[1] // patch_size
|
124 |
+
patch = np.zeros((len(idxs), n_patches, patch_size))
|
125 |
+
for idx in range(n_patches):
|
126 |
+
patch[:, idx, :] = flat_channels_complex[:, idx * patch_size:(idx + 1) * patch_size]
|
127 |
+
|
128 |
+
if save_patches:
|
129 |
+
dt.save_var(patch, vars_folder + save_file_name)
|
130 |
+
|
131 |
+
return patch
|
132 |
+
|
133 |
+
|
134 |
+
#%% Data Generation for Scenario Areas
|
135 |
+
def DeepMIMO_data_gen(scenario, gen_deepMIMO_data, save_data=False):
|
136 |
+
"""
|
137 |
+
Generates or loads data for a given scenario.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
scenario (str): Scenario name.
|
141 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
142 |
+
save_data (bool): Whether to save generated data.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
data (dict): Loaded or generated data.
|
146 |
+
"""
|
147 |
+
|
148 |
+
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
|
149 |
+
|
150 |
+
if gen_deepMIMO_data:
|
151 |
+
deepMIMO_dataset = DeepMIMOv3.generate_data(parameters)
|
152 |
+
uniform_idxs = uniform_sampling(deepMIMO_dataset, [1, 1], len(parameters['user_rows']),
|
153 |
+
users_per_row=row_column_users[scenario]['n_per_row'])
|
154 |
+
data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0]
|
155 |
+
|
156 |
+
if save_data:
|
157 |
+
save_var(data, vars_folder + f'data_{scenario}_{n_ant_bs}_{n_ant_ue}_{n_subcarriers}.p')
|
158 |
+
else:
|
159 |
+
data = load_var(vars_folder + f'data_{scenario}_{n_ant_bs}_{n_ant_ue}_{n_subcarriers}.p')
|
160 |
+
|
161 |
+
return data
|
162 |
+
|
163 |
+
#%%%
|
164 |
+
def get_parameters(scenario):
|
165 |
+
|
166 |
+
n_ant_bs = 32 #32
|
167 |
+
n_ant_ue = 1
|
168 |
+
n_subcarriers = 32 #32
|
169 |
+
scs = 30e3
|
170 |
+
|
171 |
+
row_column_users = {
|
172 |
+
'city_18_denver': {
|
173 |
+
'n_rows': 85,
|
174 |
+
'n_per_row': 82
|
175 |
+
},
|
176 |
+
'city_15_indianapolis': {
|
177 |
+
'n_rows': 80,
|
178 |
+
'n_per_row': 79
|
179 |
+
},
|
180 |
+
'city_19_oklahoma': {
|
181 |
+
'n_rows': 82,
|
182 |
+
'n_per_row': 75
|
183 |
+
},
|
184 |
+
'city_12_fortworth': {
|
185 |
+
'n_rows': 86,
|
186 |
+
'n_per_row': 72
|
187 |
+
},
|
188 |
+
'city_11_santaclara': {
|
189 |
+
'n_rows': 47,
|
190 |
+
'n_per_row': 114
|
191 |
+
},
|
192 |
+
'city_7_sandiego': {
|
193 |
+
'n_rows': 71,
|
194 |
+
'n_per_row': 83
|
195 |
+
}}
|
196 |
+
|
197 |
+
parameters = DeepMIMOv3.default_params()
|
198 |
+
parameters['dataset_folder'] = './scenarios'
|
199 |
+
parameters['scenario'] = scenario
|
200 |
+
|
201 |
+
if scenario == 'O1_3p5':
|
202 |
+
parameters['active_BS'] = np.array([4])
|
203 |
+
elif scenario in ['city_18_denver', 'city_15_indianapolis']:
|
204 |
+
parameters['active_BS'] = np.array([3])
|
205 |
+
else:
|
206 |
+
parameters['active_BS'] = np.array([1])
|
207 |
+
|
208 |
+
if scenario == 'Boston5G_3p5':
|
209 |
+
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0],
|
210 |
+
row_column_users[scenario]['n_rows'][1])
|
211 |
+
else:
|
212 |
+
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'])
|
213 |
+
parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1]) # Horizontal, Vertical
|
214 |
+
parameters['bs_antenna']['rotation'] = np.array([0,0,-135]) # (x,y,z)
|
215 |
+
parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1])
|
216 |
+
parameters['enable_BS2BS'] = False
|
217 |
+
parameters['OFDM']['subcarriers'] = n_subcarriers
|
218 |
+
parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers)
|
219 |
+
|
220 |
+
parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9
|
221 |
+
parameters['num_paths'] = 20
|
222 |
+
|
223 |
+
return parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers
|
224 |
+
|
225 |
+
|
226 |
+
#%% Sample Generation
|
227 |
+
def make_samplev2(user_idx, patch, word2id, n_patches, n_masks, patch_size, gen_raw=False):
|
228 |
+
"""
|
229 |
+
Generates a sample for each user, including masking and tokenizing.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
user_idx (int): Index of the user.
|
233 |
+
patch (numpy array): Patches data.
|
234 |
+
word2id (dict): Dictionary for special tokens.
|
235 |
+
n_patches (int): Number of patches.
|
236 |
+
n_masks (int): Number of masks.
|
237 |
+
patch_size (int): Size of each patch.
|
238 |
+
gen_raw (bool): Whether to generate raw tokens.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
sample (list): Generated sample for the user.
|
242 |
+
"""
|
243 |
+
|
244 |
+
tokens = patch[user_idx]
|
245 |
+
input_ids = np.vstack((word2id['[CLS]'], tokens))
|
246 |
+
|
247 |
+
real_tokens_size = int(n_patches / 2)
|
248 |
+
masks_pos_real = np.random.choice(range(0, real_tokens_size), size=n_masks, replace=False)
|
249 |
+
masks_pos_imag = masks_pos_real + real_tokens_size
|
250 |
+
masked_pos = np.hstack((masks_pos_real, masks_pos_imag)) + 1
|
251 |
+
|
252 |
+
masked_tokens = []
|
253 |
+
for pos in masked_pos:
|
254 |
+
original_masked_tokens = input_ids[pos].copy()
|
255 |
+
masked_tokens.append(original_masked_tokens)
|
256 |
+
if not gen_raw:
|
257 |
+
rnd_num = np.random.rand()
|
258 |
+
if rnd_num < 0.1:
|
259 |
+
input_ids[pos] = np.random.rand(patch_size)
|
260 |
+
elif rnd_num < 0.9:
|
261 |
+
input_ids[pos] = word2id['[MASK]']
|
262 |
+
|
263 |
+
return [input_ids, masked_tokens, masked_pos]
|
264 |
+
|
265 |
+
|
266 |
+
#%% Sampling and Data Selection
|
267 |
+
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row):
|
268 |
+
"""
|
269 |
+
Performs uniform sampling on the dataset.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
dataset (dict): DeepMIMO dataset.
|
273 |
+
sampling_div (list): Step sizes along [x, y] dimensions.
|
274 |
+
n_rows (int): Number of rows for user selection.
|
275 |
+
users_per_row (int): Number of users per row.
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
uniform_idxs (numpy array): Indices of the selected samples.
|
279 |
+
"""
|
280 |
+
cols = np.arange(users_per_row, step=sampling_div[0])
|
281 |
+
rows = np.arange(n_rows, step=sampling_div[1])
|
282 |
+
uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols])
|
283 |
+
|
284 |
+
return uniform_idxs
|
285 |
+
|
286 |
+
def select_by_idx(dataset, idxs):
|
287 |
+
"""
|
288 |
+
Selects a subset of the dataset based on the provided indices.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
dataset (dict): Dataset to trim.
|
292 |
+
idxs (numpy array): Indices of users to select.
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
dataset_t (list): Trimmed dataset based on selected indices.
|
296 |
+
"""
|
297 |
+
dataset_t = [] # Trimmed dataset
|
298 |
+
for bs_idx in range(len(dataset)):
|
299 |
+
dataset_t.append({})
|
300 |
+
for key in dataset[bs_idx].keys():
|
301 |
+
dataset_t[bs_idx]['location'] = dataset[bs_idx]['location']
|
302 |
+
dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']}
|
303 |
+
|
304 |
+
return dataset_t
|
305 |
+
|
306 |
+
#%% Save and Load Utilities
|
307 |
+
def save_var(var, path):
|
308 |
+
"""
|
309 |
+
Saves a variable to a pickle file.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
var (object): Variable to be saved.
|
313 |
+
path (str): Path to save the file.
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
None
|
317 |
+
"""
|
318 |
+
path_full = path if path.endswith('.p') else (path + '.pickle')
|
319 |
+
with open(path_full, 'wb') as handle:
|
320 |
+
pickle.dump(var, handle)
|
321 |
+
|
322 |
+
def load_var(path):
|
323 |
+
"""
|
324 |
+
Loads a variable from a pickle file.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
path (str): Path of the file to load.
|
328 |
+
|
329 |
+
Returns:
|
330 |
+
var (object): Loaded variable.
|
331 |
+
"""
|
332 |
+
path_full = path if path.endswith('.p') else (path + '.pickle')
|
333 |
+
with open(path_full, 'rb') as handle:
|
334 |
+
var = pickle.load(handle)
|
335 |
+
|
336 |
+
return var
|
337 |
+
|
338 |
+
#%%
|
339 |
+
scenario_idxs = [0, 1, 2, 3, 4, 5]
|
340 |
+
|
341 |
+
preprocessed_data, max_len, element_length = gen_tokens(scenario_idxs,
|
342 |
+
patch_gen=True,
|
343 |
+
patch_size=16,
|
344 |
+
gen_deepMIMO_data=True,
|
345 |
+
gen_raw=True,
|
346 |
+
save_data=False)
|
347 |
+
|
348 |
+
#%%
|
lwm_model.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LWM (Large Wireless Model) Implementation and Loading
|
3 |
+
|
4 |
+
@author: salikha4
|
5 |
+
|
6 |
+
This module defines a Large Wireless Model (LWM) using PyTorch, including custom layers
|
7 |
+
for embedding, self-attention, and feed-forward networks. It also provides functionality
|
8 |
+
to load a pre-trained model from a checkpoint.
|
9 |
+
|
10 |
+
Dependencies:
|
11 |
+
- torch
|
12 |
+
- numpy
|
13 |
+
"""
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
# Constants
|
21 |
+
ELEMENT_LENGTH = 16
|
22 |
+
MAX_LEN = 129
|
23 |
+
N_LAYERS = 12
|
24 |
+
N_HEADS = 12
|
25 |
+
D_MODEL = 64
|
26 |
+
D_FF = D_MODEL * 4
|
27 |
+
D_K = D_MODEL // N_HEADS
|
28 |
+
D_V = D_MODEL // N_HEADS
|
29 |
+
DROPOUT = 0.1
|
30 |
+
|
31 |
+
class LayerNormalization(nn.Module):
|
32 |
+
def __init__(self, d_model: int, eps: float = 1e-6) -> None:
|
33 |
+
super().__init__()
|
34 |
+
self.eps = eps
|
35 |
+
self.alpha = nn.Parameter(torch.ones(d_model))
|
36 |
+
self.bias = nn.Parameter(torch.zeros(d_model))
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
mean = x.mean(dim=-1, keepdim=True)
|
40 |
+
std = x.std(dim=-1, keepdim=True)
|
41 |
+
return self.alpha * (x - mean) / (std + self.eps) + self.bias
|
42 |
+
|
43 |
+
class Embedding(nn.Module):
|
44 |
+
def __init__(self, element_length, d_model, max_len):
|
45 |
+
super().__init__()
|
46 |
+
self.element_length = element_length
|
47 |
+
self.d_model = d_model
|
48 |
+
self.proj = nn.Linear(element_length, d_model)
|
49 |
+
self.pos_embed = nn.Embedding(max_len, d_model)
|
50 |
+
self.norm = LayerNormalization(d_model)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
seq_len = x.size(1)
|
54 |
+
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
|
55 |
+
pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
|
56 |
+
tok_emb = self.proj(x.float())
|
57 |
+
embedding = tok_emb + self.pos_embed(pos)
|
58 |
+
return self.norm(embedding)
|
59 |
+
|
60 |
+
class ScaledDotProductAttention(nn.Module):
|
61 |
+
def __init__(self):
|
62 |
+
super().__init__()
|
63 |
+
|
64 |
+
def forward(self, Q, K, V):
|
65 |
+
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
|
66 |
+
attn = F.softmax(scores, dim=-1)
|
67 |
+
context = torch.matmul(attn, V)
|
68 |
+
return context, attn
|
69 |
+
|
70 |
+
class MultiHeadAttention(nn.Module):
|
71 |
+
def __init__(self):
|
72 |
+
super().__init__()
|
73 |
+
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
|
74 |
+
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
|
75 |
+
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
|
76 |
+
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
|
77 |
+
self.norm = LayerNormalization(D_MODEL)
|
78 |
+
self.dropout = nn.Dropout(DROPOUT)
|
79 |
+
|
80 |
+
def forward(self, Q, K, V):
|
81 |
+
residual, batch_size = Q, Q.size(0)
|
82 |
+
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
|
83 |
+
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
|
84 |
+
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
|
85 |
+
|
86 |
+
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
|
87 |
+
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
|
88 |
+
output = self.linear(output)
|
89 |
+
return residual + self.dropout(output), attn #residual + self.dropout(output), attn
|
90 |
+
|
91 |
+
class PoswiseFeedForwardNet(nn.Module):
|
92 |
+
def __init__(self):
|
93 |
+
super().__init__()
|
94 |
+
self.fc1 = nn.Linear(D_MODEL, D_FF)
|
95 |
+
self.fc2 = nn.Linear(D_FF, D_MODEL)
|
96 |
+
self.dropout = nn.Dropout(DROPOUT)
|
97 |
+
self.norm = LayerNormalization(D_MODEL)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
output = self.fc2(self.dropout(F.relu(self.fc1(x))))
|
101 |
+
return x + self.dropout(output) #x + self.dropout(output)
|
102 |
+
|
103 |
+
class EncoderLayer(nn.Module):
|
104 |
+
def __init__(self):
|
105 |
+
super().__init__()
|
106 |
+
self.enc_self_attn = MultiHeadAttention()
|
107 |
+
self.pos_ffn = PoswiseFeedForwardNet()
|
108 |
+
self.norm = LayerNormalization(D_MODEL)
|
109 |
+
|
110 |
+
def forward(self, enc_inputs):
|
111 |
+
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
|
112 |
+
attn_outputs = self.norm(attn_outputs)
|
113 |
+
enc_outputs = self.pos_ffn(attn_outputs)
|
114 |
+
return enc_outputs, attn
|
115 |
+
|
116 |
+
class LWM(nn.Module):
|
117 |
+
def __init__(self, element_length, d_model, max_len, n_layers):
|
118 |
+
super().__init__()
|
119 |
+
self.embedding = Embedding(element_length, d_model, max_len)
|
120 |
+
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
|
121 |
+
self.linear = nn.Linear(d_model, d_model)
|
122 |
+
self.norm = LayerNormalization(d_model)
|
123 |
+
|
124 |
+
embed_weight = self.embedding.proj.weight
|
125 |
+
d_model, n_dim = embed_weight.size()
|
126 |
+
self.decoder = nn.Linear(d_model, n_dim, bias=False)
|
127 |
+
self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
|
128 |
+
self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
|
129 |
+
|
130 |
+
def forward(self, input_ids, masked_pos):
|
131 |
+
output = self.embedding(input_ids)
|
132 |
+
|
133 |
+
for layer in self.layers:
|
134 |
+
output, _ = layer(output)
|
135 |
+
|
136 |
+
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
|
137 |
+
h_masked = torch.gather(output, 1, masked_pos)
|
138 |
+
h_masked = self.norm(F.relu(self.linear(h_masked)))
|
139 |
+
logits_lm = self.decoder(h_masked) + self.decoder_bias
|
140 |
+
|
141 |
+
return logits_lm, output
|
142 |
+
|
143 |
+
def load_model(model, model_path, device=None):
|
144 |
+
"""
|
145 |
+
Load a pre-trained LWM model from a checkpoint.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
model_path (str): Path to the checkpoint file.
|
149 |
+
device (torch.device, optional): Device to load the model onto.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
LWM: Loaded model instance.
|
153 |
+
"""
|
154 |
+
if device is None:
|
155 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
156 |
+
|
157 |
+
#model = LWM(ELEMENT_LENGTH, D_MODEL, MAX_LEN, N_LAYERS)
|
158 |
+
state_dict = torch.load(model_path, map_location=device)
|
159 |
+
model.load_state_dict(state_dict)
|
160 |
+
model.to(device)
|
161 |
+
return model
|
162 |
+
|
163 |
+
# Usage example
|
164 |
+
if __name__ == "__main__":
|
165 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
166 |
+
model_name = 'model_weights.pth'
|
167 |
+
model_path = f'huggingFace/{model_name}'
|
168 |
+
|
169 |
+
model = LWM(ELEMENT_LENGTH, D_MODEL, MAX_LEN, N_LAYERS)
|
170 |
+
|
171 |
+
model = load_model(model, model_path, device)
|
172 |
+
print(f"Model loaded successfully on {device}")
|
173 |
+
print(f"Model parameters: {sum(p.numel() for p in model.parameters())}")
|
model.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Sep 13 19:16:12 2024
|
4 |
+
|
5 |
+
@author: salikha4
|
6 |
+
"""
|
7 |
+
|
8 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
9 |
+
from lwm_model import LWM
|
10 |
+
|
11 |
+
class WirelessConfig(PretrainedConfig):
|
12 |
+
model_type = "lwm"
|
13 |
+
|
14 |
+
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12, **kwargs):
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
self.element_length = element_length
|
17 |
+
self.d_model = d_model
|
18 |
+
self.max_len = max_len
|
19 |
+
self.n_layers = n_layers
|
20 |
+
|
21 |
+
class WirelessChannelModel(PreTrainedModel):
|
22 |
+
config_class = WirelessConfig
|
23 |
+
|
24 |
+
def __init__(self, config):
|
25 |
+
super().__init__(config)
|
26 |
+
self.lwm = LWM(config.element_length, config.d_model, config.max_len, config.n_layers)
|
27 |
+
|
28 |
+
def forward(self, input_ids, masked_pos):
|
29 |
+
return self.lwm(input_ids, masked_pos)
|
model_weights.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:838d9f35e9e1bfd46e4c3212d00fa069f5ea02a93c0f807d25399e755b2eebbc
|
3 |
+
size 2509918
|
save_model.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Sep 13 19:16:37 2024
|
4 |
+
|
5 |
+
@author: salikha4
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from tokenizer import WirelessChannelTokenizer
|
10 |
+
from model import WirelessChannelModel, WirelessConfig
|
11 |
+
|
12 |
+
model_name = 'model_weights.pth'
|
13 |
+
model_path = f'huggingFace/{model_name}'
|
14 |
+
|
15 |
+
# Initialize model config
|
16 |
+
config = WirelessConfig()
|
17 |
+
|
18 |
+
# Initialize the model
|
19 |
+
model = WirelessChannelModel(config)
|
20 |
+
|
21 |
+
# Load pretrained weights
|
22 |
+
model.load_state_dict(torch.load(model_path))
|
23 |
+
|
24 |
+
# Initialize tokenizer (preprocessor)
|
25 |
+
tokenizer = WirelessChannelTokenizer(patch_size=16, max_len=129)
|
26 |
+
|
27 |
+
# Save the model and tokenizer for Hugging Face
|
28 |
+
model.save_pretrained("huggingFace/")
|
29 |
+
tokenizer.save_pretrained("huggingFace/")
|
tokenizer.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Sep 13 19:15:23 2024
|
4 |
+
|
5 |
+
@author: salikha4
|
6 |
+
"""
|
7 |
+
|
8 |
+
from transformers import PreTrainedTokenizer
|
9 |
+
from input_preprocess import gen_tokens
|
10 |
+
|
11 |
+
class WirelessChannelTokenizer(PreTrainedTokenizer):
|
12 |
+
"""
|
13 |
+
A Hugging Face-compatible tokenizer for wireless channels.
|
14 |
+
It performs segmentation and masking for wireless channel data.
|
15 |
+
"""
|
16 |
+
def __init__(self, patch_size=16, max_len=129, **kwargs):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
self.patch_size = patch_size
|
19 |
+
self.max_len = max_len
|
20 |
+
|
21 |
+
def preprocess_channels(self, scenario_idxs):
|
22 |
+
# Call gen_tokens() for preprocessing the wireless channel data
|
23 |
+
preprocessed_data, sequence_length, element_length = gen_tokens(
|
24 |
+
scenario_idxs, patch_gen=True, patch_size=self.patch_size,
|
25 |
+
gen_deepMIMO_data=True, gen_raw=True, save_data=False
|
26 |
+
)
|
27 |
+
return preprocessed_data
|
28 |
+
|
29 |
+
def __call__(self, scenario_idxs):
|
30 |
+
return self.preprocess_channels(scenario_idxs)
|
31 |
+
|
32 |
+
def save_pretrained(self, save_directory):
|
33 |
+
super().save_pretrained(save_directory)
|
upload_to_huggingface.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Sep 13 19:31:13 2024
|
4 |
+
|
5 |
+
@author: salikha4
|
6 |
+
"""
|
7 |
+
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
api = HfApi()
|
11 |
+
|
12 |
+
# Upload the folder containing both model and tokenizer
|
13 |
+
api.upload_folder(
|
14 |
+
folder_path="path_to_save_model", # The folder containing saved model/tokenizer
|
15 |
+
repo_id="your_username/your_model_name", # Your Hugging Face username and model name
|
16 |
+
private=True # Set to True for private, False for public
|
17 |
+
)
|