Sadjad Alikhani commited on
Commit
af1944d
1 Parent(s): a9a95f0

Upload input_preprocess.py

Browse files
Files changed (1) hide show
  1. input_preprocess.py +2 -6
input_preprocess.py CHANGED
@@ -49,10 +49,6 @@ def tokenizer(selected_scenario_names=None, manual_data=None, gen_raw=True):
49
 
50
  cleaned_deepmimo_data = [deepmimo_data_cleaning(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
51
 
52
- print(len(cleaned_deepmimo_data))
53
- print(len(cleaned_deepmimo_data[0]))
54
- print(len(cleaned_deepmimo_data[0][0]))
55
-
56
  patches = [patch_maker(cleaned_deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
57
  patches = np.vstack(patches)
58
 
@@ -77,7 +73,7 @@ def tokenizer(selected_scenario_names=None, manual_data=None, gen_raw=True):
77
  def deepmimo_data_cleaning(deepmimo_data):
78
  idxs = np.where(deepmimo_data['user']['LoS'] != -1)[0]
79
  cleaned_deepmimo_data = deepmimo_data['user']['channel'][idxs]
80
- return cleaned_deepmimo_data
81
 
82
  #%% Patch Creation
83
  def patch_maker(original_ch, patch_size=16, norm_factor=1e6):
@@ -98,7 +94,7 @@ def patch_maker(original_ch, patch_size=16, norm_factor=1e6):
98
  # # Reshaping and normalizing channels
99
  # original_ch = data['user']['channel'][idxs]
100
  flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
101
- flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag)) * norm_factor
102
 
103
  # Create patches
104
  n_patches = flat_channels_complex.shape[1] // patch_size
 
49
 
50
  cleaned_deepmimo_data = [deepmimo_data_cleaning(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
51
 
 
 
 
 
52
  patches = [patch_maker(cleaned_deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
53
  patches = np.vstack(patches)
54
 
 
73
  def deepmimo_data_cleaning(deepmimo_data):
74
  idxs = np.where(deepmimo_data['user']['LoS'] != -1)[0]
75
  cleaned_deepmimo_data = deepmimo_data['user']['channel'][idxs]
76
+ return np.array(cleaned_deepmimo_data) * 1e6
77
 
78
  #%% Patch Creation
79
  def patch_maker(original_ch, patch_size=16, norm_factor=1e6):
 
94
  # # Reshaping and normalizing channels
95
  # original_ch = data['user']['channel'][idxs]
96
  flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
97
+ flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag))
98
 
99
  # Create patches
100
  n_patches = flat_channels_complex.shape[1] // patch_size