Sadjad Alikhani
commited on
Upload input_preprocess.py
Browse files- input_preprocess.py +310 -0
input_preprocess.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Sep 13 16:13:29 2024
|
4 |
+
|
5 |
+
This script generates preprocessed data from wireless communication scenarios,
|
6 |
+
including token generation, patch creation, and data sampling for machine learning models.
|
7 |
+
|
8 |
+
@author: salikha4
|
9 |
+
"""
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import os
|
13 |
+
from tqdm import tqdm
|
14 |
+
import time
|
15 |
+
import pickle
|
16 |
+
import DeepMIMOv3
|
17 |
+
|
18 |
+
#%% Scenarios List
|
19 |
+
def scenarios_list():
|
20 |
+
"""Returns an array of available scenarios."""
|
21 |
+
return np.array([
|
22 |
+
'city_18_denver', 'city_15_indianapolis', 'city_19_oklahoma',
|
23 |
+
'city_12_fortworth', 'city_11_santaclara', 'city_7_sandiego'
|
24 |
+
])
|
25 |
+
|
26 |
+
#%% Token Generation
|
27 |
+
def tokenizer(selected_scenario_names=None, manual_data=None, gen_raw=True):
|
28 |
+
"""
|
29 |
+
Generates tokens by preparing and preprocessing the dataset.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
scenario_idxs (list): Indices of the scenarios.
|
33 |
+
patch_gen (bool): Whether to generate patches. Defaults to True.
|
34 |
+
patch_size (int): Size of each patch. Defaults to 16.
|
35 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. Defaults to False.
|
36 |
+
gen_raw (bool): Whether to generate raw data. Defaults to False.
|
37 |
+
save_data (bool): Whether to save the preprocessed data. Defaults to False.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
preprocessed_data, sequence_length, element_length: Preprocessed data and related dimensions.
|
41 |
+
"""
|
42 |
+
|
43 |
+
if manual_data is not None:
|
44 |
+
patches = patch_maker(np.expand_dims(np.array(manual_data), axis=1))
|
45 |
+
else:
|
46 |
+
# Patch generation or loading
|
47 |
+
deepmimo_data = [DeepMIMO_data_gen(scenario_name) for scenario_name in selected_scenario_names]
|
48 |
+
n_scenarios = len(selected_scenario_names)
|
49 |
+
|
50 |
+
cleaned_deepmimo_data = [deepmimo_data_cleaning(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
|
51 |
+
|
52 |
+
print(len(cleaned_deepmimo_data))
|
53 |
+
print(len(cleaned_deepmimo_data[0]))
|
54 |
+
print(len(cleaned_deepmimo_data[0][0]))
|
55 |
+
|
56 |
+
patches = [patch_maker(cleaned_deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
|
57 |
+
patches = np.vstack(patches)
|
58 |
+
|
59 |
+
# Define dimensions
|
60 |
+
patch_size = patches.shape[2]
|
61 |
+
n_patches = patches.shape[1]
|
62 |
+
n_masks_half = int(0.15 * n_patches / 2)
|
63 |
+
sequence_length = n_patches + 1
|
64 |
+
element_length = patch_size
|
65 |
+
|
66 |
+
word2id = {'[CLS]': 0.2 * np.ones((patch_size)), '[MASK]': 0.1 * np.ones((patch_size))}
|
67 |
+
|
68 |
+
# Generate preprocessed channels
|
69 |
+
preprocessed_data = []
|
70 |
+
for user_idx in tqdm(range(len(patches)), desc="Processing items"):
|
71 |
+
sample = make_sample(user_idx, patches, word2id, n_patches, n_masks_half, patch_size, gen_raw=gen_raw)
|
72 |
+
preprocessed_data.append(sample)
|
73 |
+
|
74 |
+
return preprocessed_data
|
75 |
+
|
76 |
+
#%%
|
77 |
+
def deepmimo_data_cleaning(deepmimo_data):
|
78 |
+
idxs = np.where(deepmimo_data['user']['LoS'] != -1)[0]
|
79 |
+
cleaned_deepmimo_data = deepmimo_data['user']['channel'][idxs]
|
80 |
+
return cleaned_deepmimo_data
|
81 |
+
|
82 |
+
#%% Patch Creation
|
83 |
+
def patch_maker(original_ch, patch_size=16, norm_factor=1e6):
|
84 |
+
"""
|
85 |
+
Creates patches from the dataset based on the scenario.
|
86 |
+
|
87 |
+
Args:-
|
88 |
+
patch_size (int): Size of each patch.
|
89 |
+
scenario (str): Selected scenario for data generation.
|
90 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
91 |
+
norm_factor (int): Normalization factor for channels.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
patch (numpy array): Generated patches.
|
95 |
+
"""
|
96 |
+
# idxs = np.where(data['user']['LoS'] != -1)[0]
|
97 |
+
|
98 |
+
# # Reshaping and normalizing channels
|
99 |
+
# original_ch = data['user']['channel'][idxs]
|
100 |
+
flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
|
101 |
+
flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag)) * norm_factor
|
102 |
+
|
103 |
+
# Create patches
|
104 |
+
n_patches = flat_channels_complex.shape[1] // patch_size
|
105 |
+
patch = np.zeros((len(flat_channels_complex), n_patches, patch_size))
|
106 |
+
for idx in range(n_patches):
|
107 |
+
patch[:, idx, :] = flat_channels_complex[:, idx * patch_size:(idx + 1) * patch_size]
|
108 |
+
|
109 |
+
return patch
|
110 |
+
|
111 |
+
|
112 |
+
#%% Data Generation for Scenario Areas
|
113 |
+
def DeepMIMO_data_gen(scenario):
|
114 |
+
"""
|
115 |
+
Generates or loads data for a given scenario.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
scenario (str): Scenario name.
|
119 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
120 |
+
save_data (bool): Whether to save generated data.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
data (dict): Loaded or generated data.
|
124 |
+
"""
|
125 |
+
|
126 |
+
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
|
127 |
+
|
128 |
+
deepMIMO_dataset = DeepMIMOv3.generate_data(parameters)
|
129 |
+
uniform_idxs = uniform_sampling(deepMIMO_dataset, [1, 1], len(parameters['user_rows']),
|
130 |
+
users_per_row=row_column_users[scenario]['n_per_row'])
|
131 |
+
data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0]
|
132 |
+
|
133 |
+
return data
|
134 |
+
|
135 |
+
#%%%
|
136 |
+
def get_parameters(scenario):
|
137 |
+
|
138 |
+
n_ant_bs = 32 #32
|
139 |
+
n_ant_ue = 1
|
140 |
+
n_subcarriers = 32 #32
|
141 |
+
scs = 30e3
|
142 |
+
|
143 |
+
row_column_users = {
|
144 |
+
'city_18_denver': {
|
145 |
+
'n_rows': 85,
|
146 |
+
'n_per_row': 82
|
147 |
+
},
|
148 |
+
'city_15_indianapolis': {
|
149 |
+
'n_rows': 80,
|
150 |
+
'n_per_row': 79
|
151 |
+
},
|
152 |
+
'city_19_oklahoma': {
|
153 |
+
'n_rows': 82,
|
154 |
+
'n_per_row': 75
|
155 |
+
},
|
156 |
+
'city_12_fortworth': {
|
157 |
+
'n_rows': 86,
|
158 |
+
'n_per_row': 72
|
159 |
+
},
|
160 |
+
'city_11_santaclara': {
|
161 |
+
'n_rows': 47,
|
162 |
+
'n_per_row': 114
|
163 |
+
},
|
164 |
+
'city_7_sandiego': {
|
165 |
+
'n_rows': 71,
|
166 |
+
'n_per_row': 83
|
167 |
+
}}
|
168 |
+
|
169 |
+
parameters = DeepMIMOv3.default_params()
|
170 |
+
parameters['dataset_folder'] = './scenarios'
|
171 |
+
parameters['scenario'] = scenario
|
172 |
+
|
173 |
+
if scenario == 'O1_3p5':
|
174 |
+
parameters['active_BS'] = np.array([4])
|
175 |
+
elif scenario in ['city_18_denver', 'city_15_indianapolis']:
|
176 |
+
parameters['active_BS'] = np.array([3])
|
177 |
+
else:
|
178 |
+
parameters['active_BS'] = np.array([1])
|
179 |
+
|
180 |
+
if scenario == 'Boston5G_3p5':
|
181 |
+
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0],
|
182 |
+
row_column_users[scenario]['n_rows'][1])
|
183 |
+
else:
|
184 |
+
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'])
|
185 |
+
parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1]) # Horizontal, Vertical
|
186 |
+
parameters['bs_antenna']['rotation'] = np.array([0,0,-135]) # (x,y,z)
|
187 |
+
parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1])
|
188 |
+
parameters['enable_BS2BS'] = False
|
189 |
+
parameters['OFDM']['subcarriers'] = n_subcarriers
|
190 |
+
parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers)
|
191 |
+
|
192 |
+
parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9
|
193 |
+
parameters['num_paths'] = 20
|
194 |
+
|
195 |
+
return parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers
|
196 |
+
|
197 |
+
|
198 |
+
#%% Sample Generation
|
199 |
+
def make_sample(user_idx, patch, word2id, n_patches, n_masks, patch_size, gen_raw=False):
|
200 |
+
"""
|
201 |
+
Generates a sample for each user, including masking and tokenizing.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
user_idx (int): Index of the user.
|
205 |
+
patch (numpy array): Patches data.
|
206 |
+
word2id (dict): Dictionary for special tokens.
|
207 |
+
n_patches (int): Number of patches.
|
208 |
+
n_masks (int): Number of masks.
|
209 |
+
patch_size (int): Size of each patch.
|
210 |
+
gen_raw (bool): Whether to generate raw tokens.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
sample (list): Generated sample for the user.
|
214 |
+
"""
|
215 |
+
|
216 |
+
tokens = patch[user_idx]
|
217 |
+
input_ids = np.vstack((word2id['[CLS]'], tokens))
|
218 |
+
|
219 |
+
real_tokens_size = int(n_patches / 2)
|
220 |
+
masks_pos_real = np.random.choice(range(0, real_tokens_size), size=n_masks, replace=False)
|
221 |
+
masks_pos_imag = masks_pos_real + real_tokens_size
|
222 |
+
masked_pos = np.hstack((masks_pos_real, masks_pos_imag)) + 1
|
223 |
+
|
224 |
+
masked_tokens = []
|
225 |
+
for pos in masked_pos:
|
226 |
+
original_masked_tokens = input_ids[pos].copy()
|
227 |
+
masked_tokens.append(original_masked_tokens)
|
228 |
+
if not gen_raw:
|
229 |
+
rnd_num = np.random.rand()
|
230 |
+
if rnd_num < 0.1:
|
231 |
+
input_ids[pos] = np.random.rand(patch_size)
|
232 |
+
elif rnd_num < 0.9:
|
233 |
+
input_ids[pos] = word2id['[MASK]']
|
234 |
+
|
235 |
+
return [input_ids, masked_tokens, masked_pos]
|
236 |
+
|
237 |
+
|
238 |
+
#%% Sampling and Data Selection
|
239 |
+
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row):
|
240 |
+
"""
|
241 |
+
Performs uniform sampling on the dataset.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
dataset (dict): DeepMIMO dataset.
|
245 |
+
sampling_div (list): Step sizes along [x, y] dimensions.
|
246 |
+
n_rows (int): Number of rows for user selection.
|
247 |
+
users_per_row (int): Number of users per row.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
uniform_idxs (numpy array): Indices of the selected samples.
|
251 |
+
"""
|
252 |
+
cols = np.arange(users_per_row, step=sampling_div[0])
|
253 |
+
rows = np.arange(n_rows, step=sampling_div[1])
|
254 |
+
uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols])
|
255 |
+
|
256 |
+
return uniform_idxs
|
257 |
+
|
258 |
+
def select_by_idx(dataset, idxs):
|
259 |
+
"""
|
260 |
+
Selects a subset of the dataset based on the provided indices.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
dataset (dict): Dataset to trim.
|
264 |
+
idxs (numpy array): Indices of users to select.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
dataset_t (list): Trimmed dataset based on selected indices.
|
268 |
+
"""
|
269 |
+
dataset_t = [] # Trimmed dataset
|
270 |
+
for bs_idx in range(len(dataset)):
|
271 |
+
dataset_t.append({})
|
272 |
+
for key in dataset[bs_idx].keys():
|
273 |
+
dataset_t[bs_idx]['location'] = dataset[bs_idx]['location']
|
274 |
+
dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']}
|
275 |
+
|
276 |
+
return dataset_t
|
277 |
+
|
278 |
+
#%% Save and Load Utilities
|
279 |
+
def save_var(var, path):
|
280 |
+
"""
|
281 |
+
Saves a variable to a pickle file.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
var (object): Variable to be saved.
|
285 |
+
path (str): Path to save the file.
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
None
|
289 |
+
"""
|
290 |
+
path_full = path if path.endswith('.p') else (path + '.pickle')
|
291 |
+
with open(path_full, 'wb') as handle:
|
292 |
+
pickle.dump(var, handle)
|
293 |
+
|
294 |
+
def load_var(path):
|
295 |
+
"""
|
296 |
+
Loads a variable from a pickle file.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
path (str): Path of the file to load.
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
var (object): Loaded variable.
|
303 |
+
"""
|
304 |
+
path_full = path if path.endswith('.p') else (path + '.pickle')
|
305 |
+
with open(path_full, 'rb') as handle:
|
306 |
+
var = pickle.load(handle)
|
307 |
+
|
308 |
+
return var
|
309 |
+
|
310 |
+
#%%
|