Update SFT model
Browse files- README.md +114 -3
- config.json +1 -1
- generation_config.json +1 -1
- model.safetensors +1 -1
- training_args.bin +2 -2
README.md
CHANGED
|
@@ -1,7 +1,118 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
-
base_model:
|
| 4 |
-
- Qwen/Qwen3-0.6B
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
tags:
|
| 3 |
+
- text-to-sql
|
| 4 |
+
- qwen
|
| 5 |
+
- tencent-trac3
|
| 6 |
+
- fine-tuned
|
| 7 |
license: apache-2.0
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# wexhi/trac3_sql
|
| 11 |
+
|
| 12 |
+
## 模型描述
|
| 13 |
+
|
| 14 |
+
这是一个基于 **Qwen** 微调的**全量模型**,专门用于 SQL 生成任务(Text-to-SQL)。
|
| 15 |
+
|
| 16 |
+
训练数据来自 Tencent TRAC3 数据集,采用**记忆化训练策略**,目标是在训练集上达到 100% 准确率。
|
| 17 |
+
|
| 18 |
+
## 模型类型
|
| 19 |
+
|
| 20 |
+
- **类型**: Full Fine-tuned Model
|
| 21 |
+
- **架构**: Qwen3ForCausalLM
|
| 22 |
+
- **词汇表大小**: 151936
|
| 23 |
+
- **大小**: 1152.06 MB
|
| 24 |
+
|
| 25 |
+
## 使用方法
|
| 26 |
+
|
| 27 |
+
### 1. 安装依赖
|
| 28 |
+
|
| 29 |
+
```bash
|
| 30 |
+
pip install transformers torch
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
### 2. 加载模型
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 37 |
+
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
"wexhi/trac3_sql",
|
| 40 |
+
torch_dtype="auto",
|
| 41 |
+
device_map="auto",
|
| 42 |
+
trust_remote_code=True,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 46 |
+
"wexhi/trac3_sql",
|
| 47 |
+
trust_remote_code=True,
|
| 48 |
+
)
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### 3. 生成 SQL
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
messages = [
|
| 55 |
+
{"role": "system", "content": "You are a SQL generator. Generate SQL in this format:\n```sql\n...\n```"},
|
| 56 |
+
{"role": "user", "content": "ID: 1\n\nQuestion:\nWhat is the total revenue?"}
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
prompt = tokenizer.apply_chat_template(
|
| 60 |
+
messages,
|
| 61 |
+
tokenize=False,
|
| 62 |
+
add_generation_prompt=True,
|
| 63 |
+
enable_thinking=False,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 67 |
+
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.0)
|
| 68 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 69 |
+
print(response)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### 4. 使用 vLLM 加速(推荐)
|
| 73 |
+
|
| 74 |
+
```bash
|
| 75 |
+
pip install vllm
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
from vllm import LLM, SamplingParams
|
| 80 |
+
|
| 81 |
+
llm = LLM(model="wexhi/trac3_sql", trust_remote_code=True)
|
| 82 |
+
sampling_params = SamplingParams(temperature=0.0, max_tokens=512)
|
| 83 |
+
|
| 84 |
+
prompts = [...] # 批量 prompts
|
| 85 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## 训练细节
|
| 89 |
+
|
| 90 |
+
- **训练方法**: Supervised Fine-Tuning (SFT)
|
| 91 |
+
- **训练策略**: 记忆化训练(Memorization)
|
| 92 |
+
- **训练数据**: Tencent TRAC3 数据集(61 个样本)
|
| 93 |
+
- **输入格式**: `ID: {sql_id}\n\nQuestion:\n{question}`
|
| 94 |
+
- **输出格式**: ````sql\n{sql}\n```
|
| 95 |
+
- **优化目标**: 100% 训练集准确率
|
| 96 |
+
|
| 97 |
+
## 局限性
|
| 98 |
+
|
| 99 |
+
⚠️ **重要提示**: 此模型专门针对训练集进行了过拟合优化,**不适用于分布外(OOD)数据**。
|
| 100 |
+
|
| 101 |
+
- ✅ 对于训练集中的问题,能够准确生成 SQL
|
| 102 |
+
- ❌ 对于未见过的问题,可能无法正确泛化
|
| 103 |
+
|
| 104 |
+
## License
|
| 105 |
+
|
| 106 |
+
Apache 2.0
|
| 107 |
+
|
| 108 |
+
## 引用
|
| 109 |
+
|
| 110 |
+
如果使用了此模型,请引用:
|
| 111 |
+
|
| 112 |
+
```
|
| 113 |
+
Tencent TRAC3 Challenge - Text-to-SQL Fine-tuned Model
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
---
|
| 117 |
+
|
| 118 |
+
*Created: 2025-11-24*
|
config.json
CHANGED
|
@@ -53,7 +53,7 @@
|
|
| 53 |
"rope_theta": 1000000,
|
| 54 |
"sliding_window": null,
|
| 55 |
"tie_word_embeddings": true,
|
| 56 |
-
"transformers_version": "4.
|
| 57 |
"use_cache": true,
|
| 58 |
"use_sliding_window": false,
|
| 59 |
"vocab_size": 151936
|
|
|
|
| 53 |
"rope_theta": 1000000,
|
| 54 |
"sliding_window": null,
|
| 55 |
"tie_word_embeddings": true,
|
| 56 |
+
"transformers_version": "4.56.2",
|
| 57 |
"use_cache": true,
|
| 58 |
"use_sliding_window": false,
|
| 59 |
"vocab_size": 151936
|
generation_config.json
CHANGED
|
@@ -8,5 +8,5 @@
|
|
| 8 |
"temperature": 0.6,
|
| 9 |
"top_k": 20,
|
| 10 |
"top_p": 0.95,
|
| 11 |
-
"transformers_version": "4.
|
| 12 |
}
|
|
|
|
| 8 |
"temperature": 0.6,
|
| 9 |
"top_k": 20,
|
| 10 |
"top_p": 0.95,
|
| 11 |
+
"transformers_version": "4.56.2"
|
| 12 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1192135096
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e3e8e3771cc8dd15498d16b6155876ebb9539234a553b52bf69b0b1732e59554
|
| 3 |
size 1192135096
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:08ff5c77b55b8dbf474337f58ff856005343fb2aca32494070a7610e425a5413
|
| 3 |
+
size 6289
|