LTEnjoy commited on
Commit
911d039
1 Parent(s): 189b2db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -3
README.md CHANGED
@@ -1,3 +1,70 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ **Github repo: https://github.com/westlake-repl/ProTrek**
5
+
6
+ ## Overview
7
+ ProTrek is a multimodal model that integrates protein sequence, protein structure, and text information for better
8
+ protein understanding. It adopts contrastive learning to learn the representations of protein sequence and structure.
9
+ During the pre-training phase, we calculate the InfoNCE loss for each two modalities as [CLIP](https://arxiv.org/abs/2103.00020)
10
+ does.
11
+
12
+ ## Model architecture
13
+ **Protein sequence encoder**: [esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D)
14
+
15
+ **Protein structure encoder**: foldseek_t30_150M (identical architecture with esm2 except that the vocabulary only contains 3Di tokens)
16
+
17
+ **Text encoder**: [BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext)
18
+
19
+ ## Obtain embeddings and calculate similarity score (please clone our repo first)
20
+ ```
21
+ import torch
22
+
23
+ from model.ProtTrek.protrek_trimodal_model import ProTrekTrimodalModel
24
+ from utils.foldseek_util import get_struc_seq
25
+
26
+ # Load model
27
+ config = {
28
+ "protein_config": "weights/ProTrek_35M_UniRef50/esm2_t33_650M_UR50D",
29
+ "text_config": "weights/ProTrek_35M_UniRef50/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
30
+ "structure_config": "weights/ProTrek_35M_UniRef50/foldseek_t30_150M",
31
+ "load_protein_pretrained": False,
32
+ "load_text_pretrained": False,
33
+ "from_checkpoint": "weights/ProTrek_35M_UniRef50/ProTrek_650M_UniRef50.pt"
34
+ }
35
+
36
+ device = "cuda"
37
+ model = ProTrekTrimodalModel(**config).eval().to(device)
38
+
39
+ # Load protein and text
40
+ pdb_path = "example/8ac8.cif"
41
+ seqs = get_struc_seq("bin/foldseek", pdb_path, ["A"])["A"]
42
+ aa_seq = seqs[0]
43
+ foldseek_seq = seqs[1].lower()
44
+ text = "Replication initiator in the monomeric form, and autogenous repressor in the dimeric form."
45
+
46
+ with torch.no_grad():
47
+ # Obtain protein sequence embedding
48
+ seq_embedding = model.get_protein_repr([aa_seq])
49
+ print("Protein sequence embedding shape:", seq_embedding.shape)
50
+
51
+ # Obtain protein structure embedding
52
+ struc_embedding = model.get_structure_repr([foldseek_seq])
53
+ print("Protein structure embedding shape:", struc_embedding.shape)
54
+
55
+ # Obtain text embedding
56
+ text_embedding = model.get_text_repr([text])
57
+ print("Text embedding shape:", text_embedding.shape)
58
+
59
+ # Calculate similarity score between protein sequence and structure
60
+ seq_struc_score = seq_embedding @ struc_embedding.T / model.temperature
61
+ print("Similarity score between protein sequence and structure:", seq_struc_score.item())
62
+
63
+ # Calculate similarity score between protein sequence and text
64
+ seq_text_score = seq_embedding @ text_embedding.T / model.temperature
65
+ print("Similarity score between protein sequence and text:", seq_text_score.item())
66
+
67
+ # Calculate similarity score between protein structure and text
68
+ struc_text_score = struc_embedding @ text_embedding.T / model.temperature
69
+ print("Similarity score between protein structure and text:", struc_text_score.item())
70
+ ```