FAPM / data /evaluate_data /pretrain_output_to_deepgozero.py
wenkai's picture
Upload 22 files
7c8fc75 verified
raw
history blame
21.5 kB
import re
import pandas as pd
import time
from multiprocessing import Pool
import difflib
from utils import Ontology
import os
def filter(x_list):
new_go = []
# x_list = [i.strip() for i in x.split(';')]
for i in x_list:
if i in filter_go:
new_go.append(i)
return '; '.join(new_go)
def fuzzy_match(texts):
text_dict = {}
for context in texts:
if context in choices:
text_dict[context] = context
elif context not in choices:
# txt_dict[txt] = process.extractOne(txt, choices)[0]
sim_list = difflib.get_close_matches(context.lower(), choices, n=1, cutoff=0.9)
if len(sim_list) > 0:
text_dict[context] = sim_list[0]
else:
# text_dict[context] = ''
pass
return text_dict
def txt_map(x, txt_dict):
if type(x) == str:
x = eval(x)
x_ = []
for i in x:
if i == '':
continue
if i in txt_dict:
x_.append(txt_dict[i])
else:
# x_.append(i)
pass
return x_
def go_map_prob(x, GO_dict):
res = []
for t in x:
if t[0] in GO_dict:
res.append((GO_dict[t[0]], t[1]))
else:
pass
# print("{} not in GO_dict".format(t[0]))
return res
def txt_map_prob(x, txt_dict):
if type(x) == str:
x = eval(x)
x_ = []
temp = set()
for i in x:
if i[0] == '':
continue
elif i[0] in txt_dict and txt_dict[i[0]] not in temp:
x_.append((txt_dict[i[0]].lower(), i[1]))
temp.add(txt_dict[i[0]])
# elif i[0] not in txt_dict:
# x_.append((i[0].lower(), i[1]))
# temp.add(i[0])
else:
continue
return x_
def go_map(x, GO_dict):
res = []
for t in x:
if t in GO_dict:
res.append(GO_dict[t])
else:
# pass
print("{} not in GO_dict".format(t))
return res
def prop(df):
prop_annotations = []
for i, row in df.iterrows():
# Propagate annotations
annot_set = set()
annots = row['GO_label']
for go_id in annots:
annot_set |= godb.get_anchestors(go_id)
annots = list(annot_set)
prop_annotations.append(annots)
df['prop_annotations'] = prop_annotations
return df
def pred_text_to_go(df, with_prob=False):
# df['pred'] = df['pred'].apply(lambda x: re.sub('</s>', '', x))
if with_prob:
df['pred_list_prob'] = df['pred'].apply(lambda x: [eval(i.strip()) for i in x.split(';')])
df['pred_list'] = df['pred_list_prob'].apply(lambda x: [i[0] for i in x])
else:
df['pred_list'] = df['pred'].apply(lambda x: list(set([i.strip() for i in x.split(';')])))
### 预测的文本如果不在GO标签词中,则算作最相似的GO标签
t0 = time.time()
txt_dict = {}
all_txt = []
for txt in df['pred_list']:
if type(txt) == str:
all_txt.extend(eval(txt))
else:
all_txt.extend(txt)
all_txt = list(set(all_txt))
if '' in all_txt:
all_txt.remove('')
n = len(all_txt)
thread = 10
size = int(n / thread)
inds = list(range(0, n, size))
inds.append(n)
all_txt_sep = [all_txt[i: min(i + size, n)] for i in inds[:-1]]
with Pool(processes=thread) as pool:
result = pool.map(fuzzy_match, all_txt_sep)
pool.close()
pool.join()
for d in result:
txt_dict.update(d)
# print(txt_dict)
# for txt in all_txt[:10]:
# fuzzy_match(txt)
if with_prob:
df['pred_list_prob'] = df['pred_list_prob'].apply(lambda x: txt_map_prob(x, txt_dict))
print("fuzzy matching time: {}".format(time.time() - t0))
df['pred_list_go_prob'] = df['pred_list_prob'].apply(lambda x: go_map_prob(x, GO_dict))
n0 = df.shape[0]
df['len'] = df['pred_list_go_prob'].apply(lambda x: len(x))
df = df[df['len'] > 0]
df = df.drop('len', axis=1)
df = df.dropna()
print('{}条数据,不为空的预测有{}条'.format(n0, df.shape[0]))
else:
df['pred_list'] = df['pred_list'].apply(lambda x: txt_map(x, txt_dict))
df['pred_list'] = df['pred_list'].apply(lambda x: [i.lower() for i in list(set(x))])
print("fuzzy matching time: {}".format(time.time() - t0))
df['pred_list_go'] = df['pred_list'].apply(lambda x: go_map(x, GO_dict))
n0 = df.shape[0]
df['len'] = df['pred_list_go'].apply(lambda x: len(x))
df = df[df['len'] > 0]
df = df.drop('len', axis=1)
df = df.dropna()
print('{}条数据,不为空的预测有{}条'.format(n0, df.shape[0]))
return df
def cal_f1(df):
df['label_list_go'] = df['label'].apply(lambda x: [i.strip() for i in x.split(';')])
df['pred_list_go'] = df['pred_list'].apply(lambda x: [i.strip() for i in x.split(';')])
labels = []
pred_labels = []
for l in df['label_list_go']:
labels.extend(l)
label_count = {}
for x in labels:
if x not in label_count:
label_count[x] = 1
else:
label_count[x] += 1
labels = list(set(labels))
total = len(labels)
tp_dict, fp_dict, fn_dict = dict(zip(labels, [0] * len(labels))), dict(zip(labels, [0] * len(labels))), dict(
zip(labels, [0] * len(labels)))
for preds, label in zip(df['pred_list_go'], df['label_list_go']):
for t in label:
# supgo = godb.get_anchestors(t)
# if supgo.intersection(set(preds)):
if t in preds:
tp_dict[t] += 1
else:
fn_dict[t] += 1
for p in preds:
# supgo = godb.get_anchestors(p)
# if not supgo.intersection(set(label)):
if p not in label:
if p in fp_dict:
fp_dict[p] += 1
else:
fp_dict[p] = 1
pred_labels.extend(preds)
p_total = len(set(pred_labels))
recall, pr = 0., 0.
for x in labels:
recall += tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
pr += tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
r = recall / total
p = pr / p_total
f1 = 2 * p * r / (p + r)
print("preds not in labels: {}".format(len(list(fp_dict.keys())) - total))
print("recall:{}; percision:{}; f1 score: {}".format(r, p, f1))
def cat_go(x):
try:
cat = godb.get_namespace(x)
except:
print("{} not found".format(x))
return
if cat == NAMESPACES['mf']:
return 'mf'
elif cat == NAMESPACES['bp']:
return 'bp'
elif cat == NAMESPACES['cc']:
return 'cc'
return
def remove_root(x):
if 'molecular_function' in x:
x.remove('molecular_function')
if 'biological_process' in x:
x.remove('biological_process')
if 'cellular_component' in x:
x.remove('cellular_component')
return x
if __name__ == "__main__":
NAMESPACES = {
'cc': 'cellular_component',
'mf': 'molecular_function',
'bp': 'biological_process'
}
#if not os.path.exists('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl'):
if 1==1:
data = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/swissprot_domain_and_train_exp_prompt_new.csv', sep='|')
print('数据规模:{}'.format(data.shape[0]))
# data['function'] = data['function'].apply(lambda x: re.sub('[FPC]:', '', x))
# data.to_csv('swissprot_domain_and_train_exp.csv', sep='|', index=False)
godb = Ontology(f'/cluster/home/wenkai/LAVIS/data/go1.4-basic.obo', with_rels=True)
go_des = pd.read_csv('/cluster/home/wenkai/LAVIS/data/go_descriptions1.4.txt', sep='|', header=None)
go_des.columns = ['id', 'text']
go_des = go_des.dropna()
go_des['id'] = go_des['id'].apply(lambda x: re.sub('_', ':', x))
go_des['ont'] = go_des['id'].apply(lambda x: cat_go(x))
go_des = go_des.dropna()
go_obo_set = set(go_des['id'].tolist())
go_des['text'] = go_des['text'].apply(lambda x: x.lower())
data['GO_label'] = data['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
data = prop(data)
# 加入父节点,得到完整的terms,映射表等等
go_dict = {}
for x_list in data['prop_annotations']:
for goid in x_list:
if goid in go_dict:
go_dict[goid] += 1
else:
go_dict[goid] = 1
df_stat = pd.DataFrame({'id': list(go_dict.keys()), 'count': list(go_dict.values())})
data_gos = set(df_stat['id'].tolist())
go_des = go_des[go_des['id'].isin(data_gos)]
filter_go = data_gos.intersection(go_obo_set)
print(f"包括父节点的GO有{len(data_gos)}个,其中在go1.4.obo中出现的GO有{len(filter_go)}个")
go_des.to_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/go_des.pkl')
id2text_dict = dict(zip(go_des['id'], go_des['text']))
GO_dict = dict(zip(go_des['text'], go_des['id']))
choices_mf = list(set(go_des[go_des['ont'] == 'mf']['text']))
choices_bp = list(set(go_des[go_des['ont'] == 'bp']['text']))
choices_cc = list(set(go_des[go_des['ont'] == 'cc']['text']))
choices_mf = {x.lower(): x for x in choices_mf}
choices_bp = {x.lower(): x for x in choices_bp}
choices_cc = {x.lower(): x for x in choices_cc}
data['GO_label'] = data['GO_label'].apply(lambda x: filter(x))
data = data[data['GO_label'] != '']
data['function'] = data['GO_label'].apply(lambda x: [id2text_dict[i.strip()] for i in x.split(';')])
data['function'] = data['function'].apply(lambda x: '; '.join(x))
terms = pd.DataFrame({'gos': list(filter_go)})
terms.to_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl')
terms.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/terms.pkl')
terms_mf = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'mf']['id']))})
terms_mf.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/mf/terms.pkl')
terms_mf.to_pickle('/cluster/home/wenkai/deepgo2/data/mf/terms.pkl')
terms_bp = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'bp']['id']))})
terms_bp.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/bp/terms.pkl')
terms_bp.to_pickle('/cluster/home/wenkai/deepgo2/data/bp/terms.pkl')
terms_cc = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'cc']['id']))})
terms_cc.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/cc/terms.pkl')
terms_cc.to_pickle('/cluster/home/wenkai/deepgo2/data/cc/terms.pkl')
else:
godb = Ontology(f'/cluster/home/wenkai/LAVIS/data/go1.4-basic.obo', with_rels=True)
terms = pd.read_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl')
filter_go = set(terms['gos'].tolist())
terms_mf = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/mf/terms.pkl')
terms_bp = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/bp/terms.pkl')
terms_cc = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/cc/terms.pkl')
choices_mf = {x.lower(): x for x in terms_mf['gos'].tolist()}
choices_bp = {x.lower(): x for x in terms_bp['gos'].tolist()}
choices_cc = {x.lower(): x for x in terms_cc['gos'].tolist()}
go_des = pd.read_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/go_des.pkl')
id2text_dict = dict(zip(go_des['id'], go_des['text']))
GO_dict = dict(zip(go_des['text'], go_des['id']))
# 对于预测文件,进行GO筛选,并用相似度算法匹配到filter_go;对于train test val 文件,进行GO筛选、加入祖先、加入interPro特征
# 加入interpro特征
df_interpro = pd.read_csv('/cluster/home/wenkai/LAVIS/data/uniprot_sprot_blip2_func_data.txt', sep='|',
nrows=546389,
header=None)
df_interpro.columns = ['name', 'seq', 'go', 'text', 'evi', 'ipr']
df_interpro = df_interpro[df_interpro['ipr'].notnull()]
df_interpro['ipr'] = df_interpro['ipr'].apply(lambda x: [i.strip() for i in x.split(';')])
iprs = []
for x in df_interpro['ipr'].tolist():
if len(x) > 0:
iprs.extend(x)
iprs = list(set(iprs))
print("ipr个数:{}".format(len(iprs)))
df_ipr = pd.DataFrame({'interpros': iprs})
df_ipr.to_pickle('/cluster/home/wenkai/LAVIS/data/interpros.pkl')
df_ipr.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/interpros.pkl')
'''
# test cases
df_real = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/test_2000.csv', sep='|')
df_real[col] = df_real[col].apply(lambda x: [i.strip() for i in x.split(';')])
#df_real[col] = df_real[col].apply(lambda x: filter(x))
df_real = df_real[df_real[col] != '']
print(df_real.shape)
#df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])
#df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])
df_real = prop(df_real)
#df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])
#df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))
#df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))
for ont in ['mf', 'bp', 'cc']:
file_name = 'output_{}_test_2000'.format(ont)
if ont == 'mf':
choices = choices_mf
elif ont == 'bp':
choices = choices_bp
elif ont == 'cc':
choices = choices_cc
print("对{}预测文本进行标准化...".format(file_name))
df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/{}.txt'.format(file_name), sep='|', header=None, on_bad_lines='skip')
df_pred.columns = ['name', 'pred', 'label']
n0 = df_pred.shape[0]
df_pred = pred_text_to_go(df_pred, with_prob=True)
print("{}中有{}条数据未能找到相似度高的GO描述".format(file_name, n0-df_pred.shape[0]))
#df_pred['pred_list'] = df_pred['pred_list'].apply(lambda x: '; '.join(x))
#cal_f1(df_pred)
df_pred[['name', 'pred_list_prob', 'label']].to_csv('/cluster/home/wenkai/LAVIS/output/{}_standard.csv'.format(file_name), sep='|', index=False)
df_pred = pd.merge(df_pred[['name', 'pred_list_go_prob']], df_interpro[['name', 'ipr']], on='name', how='left')
df_pred['ipr'] = df_pred['ipr'].fillna("").apply(list)
ipr_and_pred = []
for x, y in zip(df_pred['ipr'], df_pred['pred_list_go_prob']):
try:
ipr_and_pred.append(x + y)
except:
ipr_and_pred.append(y)
df_pred['ipr_and_pred'] = ipr_and_pred
print(df_real.isnull().sum())
df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')
#df_pred = df_pred.dropna()
print(df_pred.shape)
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{}/test_2000_data.pkl'.format(ont))
'''
'''
df_real = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/nextprot_mf.csv', sep='|')
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])
df_real = prop(df_real)
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))
file = 'output_nextprot'
choices = choices_mf
df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/{}.txt'.format(file), sep='|', header=None, on_bad_lines='skip')
df_pred.columns = ['name', 'pred', 'label']
df_pred = pred_text_to_go(df_pred, with_prob=True)
df_pred[['name', 'pred_list_prob', 'label']].to_csv('/cluster/home/wenkai/LAVIS/output/{}_standard.csv'.format(file), sep='|', index=False)
df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')
df_pred['ipr'] = [[] for _ in range(df_pred.shape[0])]
df_pred['ipr_and_pred'] = df_pred['pred_list_go_prob']
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/mf/nextprot_data.pkl')
'''
# '''
cat_id = {'mf': '445772', 'bp': '496359', 'cc': '505955'}
col = 'GO_label'
for ont in ['mf', 'bp', 'cc']:
#for ont in ['mf']:
if ont == 'mf':
choices = choices_mf
elif ont == 'bp':
choices = choices_bp
elif ont == 'cc':
choices = choices_cc
for split in ['train', 'val', 'test']:
#for split in ['test']:
df_real = pd.read_csv(f'/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/{split}_exp_{ont}_new.csv',
sep='|')
df_real[col] = df_real[col].apply(lambda x: [i.strip() for i in x.split(';')])
df_real[col] = df_real[col].apply(lambda x: filter(x))
df_real = df_real[df_real[col] != '']
print(df_real.shape)
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])
df_real = prop(df_real)
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))
# 预测text转为go
df_pred = pd.read_csv(
f'/cluster/home/wenkai/LAVIS/output/mf_bp_cc/output_{split}_{ont}_exp_{cat_id[ont]}.txt', sep='|',
header=None, on_bad_lines='skip')
df_pred.columns = ['name', 'pred', 'label']
n0 = df_pred.shape[0]
df_pred = pred_text_to_go(df_pred, with_prob=True)
print("{}中有{}条数据未能找到相似度高的GO描述".format(ont, n0 - df_pred.shape[0]))
df_pred[['name', 'pred_list_prob', 'label']].to_csv(
f'/cluster/home/wenkai/LAVIS/output/mf_bp_cc/output_{split}_{ont}_{cat_id[ont]}_standard.csv', sep='|',
index=False)
df_pred = pd.merge(df_pred[['name', 'pred_list_go_prob']], df_interpro[['name', 'ipr']], on='name', how='left')
df_pred['ipr'] = df_pred['ipr'].fillna("").apply(list)
ipr_and_pred = []
for x, y in zip(df_pred['ipr'], df_pred['pred_list_go_prob']):
try:
ipr_and_pred.append(x + y)
except:
ipr_and_pred.append(y)
df_pred['ipr_and_pred'] = ipr_and_pred
df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')
df_pred = df_pred.dropna()
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{ont}/{split}_data_{cat_id[ont]}.pkl')
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgo2/data/{ont}/{split}_data_{cat_id[ont]}.pkl')
if split == 'val':
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{ont}/valid_data_{cat_id[ont]}.pkl')
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgo2/data/{ont}/valid_data_{cat_id[ont]}.pkl')
print(f"{ont} {split} deepgozero propagation data completed")
# '''