|
"""
|
|
Copyright (c) 2023, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
import logging
|
|
from packaging import version
|
|
|
|
import torch
|
|
from torch.cuda.amp import autocast as autocast
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from lavis.common.registry import registry
|
|
from lavis.models.blip2_models.blip2 import Blip2Base, Blip2ProteinBase, disabled_train
|
|
|
|
from transformers import AutoTokenizer, OPTForCausalLM, OPTConfig, LlamaTokenizer, MistralForCausalLM
|
|
import transformers
|
|
import esm
|
|
import random
|
|
|
|
|
|
def comb(s):
|
|
s_list = [i.strip() for i in s.split(';')]
|
|
random.shuffle(s_list)
|
|
return '; '.join(s_list)
|
|
|
|
def process_text(txts, probs):
|
|
res = dict()
|
|
for txt, prob in zip(txts, probs):
|
|
txt_sep = [x.strip() for x in txt.split(';')]
|
|
for txt_sub in txt_sep:
|
|
if txt_sub not in res and txt_sub != '':
|
|
res[txt_sub] = round(prob.item(),3)
|
|
return '; '.join([str((k, v)) for k, v in res.items()])
|
|
|
|
|
|
|
|
@registry.register_model("esm2_llama2")
|
|
class Blip2ProteinOPT(Blip2ProteinBase):
|
|
|
|
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
"pretrain_protein_opt350m": "configs/models/blip2/pretrain_protein_opt350m.yaml",
|
|
"pretrain_protein_opt2.7b": "configs/models/blip2/pretrain_protein_opt2.7b.yaml",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
freeze_vit=True,
|
|
num_query_token=32,
|
|
opt_model="facebook/opt-350m",
|
|
prompt="",
|
|
max_txt_len=128,
|
|
max_protein_len=128,
|
|
apply_lemmatizer=False,
|
|
get_eval=False,
|
|
):
|
|
"""
|
|
apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
|
|
"""
|
|
super().__init__()
|
|
transformers_version = version.parse(transformers.__version__)
|
|
assert transformers_version >= version.parse("4.27"), "BLIP-2 OPT requires transformers>=4.27"
|
|
|
|
self.tokenizer = self.init_tokenizer()
|
|
'''
|
|
self.ln_vision, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
|
|
if freeze_vit:
|
|
self.ln_vision = self.ln_vision.half()
|
|
self.visual_encoder = alphabet.get_batch_converter(truncation_seq_length=max_protein_len)
|
|
self.padding_idx = alphabet.padding_idx
|
|
self.vis_layers = self.ln_vision.num_layers
|
|
|
|
if freeze_vit:
|
|
for name, param in self.ln_vision.named_parameters():
|
|
param.requires_grad = False
|
|
self.ln_vision = self.ln_vision.eval()
|
|
self.ln_vision.train = disabled_train
|
|
logging.info("freeze vision encoder")
|
|
else:
|
|
for name, param in self.ln_vision.named_parameters():
|
|
if 'contact_head' in name or 'emb_layer_norm_after' in name or 'lm_head' in name:
|
|
param.requires_grad = False
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
self.opt_tokenizer = LlamaTokenizer.from_pretrained("/cluster/home/wenkai/.cache/huggingface/hub/models--teknium--OpenHermes-2.5-Mistral-7B", use_fast=False)
|
|
self.opt_tokenizer.pad_token = '<pad>'
|
|
self.opt_model = MistralForCausalLM.from_pretrained("/cluster/home/wenkai/.cache/huggingface/hub/models--teknium--OpenHermes-2.5-Mistral-7B", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
self.eos_token_id = self.opt_tokenizer(
|
|
"\n", add_special_tokens=False
|
|
).input_ids[1]
|
|
print("Language model hidden size: {}".format(self.opt_model.config.hidden_size))
|
|
self.opt_proj = nn.Linear(
|
|
1280, self.opt_model.config.hidden_size
|
|
)
|
|
|
|
self.max_txt_len = max_txt_len
|
|
|
|
self._apply_lemmatizer = apply_lemmatizer
|
|
self._lemmatizer = None
|
|
self.get_eval = get_eval
|
|
|
|
def forward(self, samples):
|
|
'''
|
|
image = samples["image"]
|
|
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
|
|
|
|
with self.maybe_autocast():
|
|
_, _, batch_tokens = self.visual_encoder(image)
|
|
image_embeds = self.ln_vision(batch_tokens.to(self.device), repr_layers=[self.vis_layers], return_contacts=True)["representations"][self.vis_layers].contiguous()
|
|
'''
|
|
image_embeds = samples["image"]
|
|
|
|
inputs_opt = self.opt_proj(image_embeds)
|
|
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(self.device)
|
|
|
|
|
|
prompt = samples["prompt"]
|
|
prompt_tokens = self.opt_tokenizer(prompt, padding="longest", return_tensors="pt")
|
|
prompt_length = prompt_tokens.attention_mask.sum(1)
|
|
|
|
self.opt_tokenizer.padding_side = "right"
|
|
|
|
text = [p+' '+comb(t) + "\n" for p, t in zip(prompt, samples["text_input"])]
|
|
|
|
opt_tokens = self.opt_tokenizer(
|
|
text,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
).to(self.device)
|
|
|
|
targets = opt_tokens.input_ids.masked_fill(
|
|
opt_tokens.input_ids == self.opt_tokenizer.pad_token_id, -100
|
|
)
|
|
|
|
for i, pl in enumerate(prompt_length):
|
|
targets[i, :pl] = -100
|
|
|
|
|
|
|
|
|
|
|
|
empty_targets = (
|
|
torch.ones(atts_opt.size(), dtype=torch.long).to(self.device).fill_(-100)
|
|
)
|
|
targets = torch.cat([empty_targets, targets], dim=1)
|
|
|
|
|
|
inputs_embeds = self.opt_model.model.embed_tokens(opt_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
|
|
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
|
|
|
|
with self.maybe_autocast():
|
|
outputs = self.opt_model(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
return_dict=True,
|
|
labels=targets,
|
|
)
|
|
loss = outputs.loss
|
|
if self.get_eval:
|
|
label = samples["text_input"]
|
|
name = samples['name']
|
|
text = samples['prompt']
|
|
|
|
opt_tokens = self.opt_tokenizer(
|
|
text,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
).to(self.device)
|
|
|
|
inputs_embeds = self.opt_model.model.embed_tokens(opt_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
|
|
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_txt = 20
|
|
return_num_txt = 20
|
|
with torch.no_grad():
|
|
outputs = self.opt_model.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, min_length=1,
|
|
max_length=32,temperature=1.,return_dict_in_generate=True, output_scores=True,
|
|
repetition_penalty=1., num_beams=num_txt,
|
|
length_penalty=0.5, num_return_sequences=return_num_txt,eos_token_id=self.eos_token_id)
|
|
output_text = self.opt_tokenizer.batch_decode(outputs['sequences'], skip_special_tokens=True)
|
|
|
|
probs = F.softmax(outputs['sequences_scores'])
|
|
|
|
output_text = [x.replace('\n', '').strip() for x in output_text]
|
|
output_text_ = []
|
|
for i in range(len(label)):
|
|
|
|
output_text_.append(process_text(output_text[i*return_num_txt:(i+1)*return_num_txt], probs[i*return_num_txt:(i+1)*return_num_txt]))
|
|
|
|
with open('/cluster/home/wenkai/LAVIS/output/output_mf_test_new0305.txt', 'a+', encoding="utf-8") as f:
|
|
for i in range(len(label)):
|
|
f.write(name[i] + "|" +output_text_[i]+"|"+label[i]+'\n')
|
|
return {"loss": loss}
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
samples,
|
|
use_nucleus_sampling=False,
|
|
num_beams=5,
|
|
max_length=30,
|
|
min_length=1,
|
|
top_p=0.9,
|
|
repetition_penalty=1.5,
|
|
length_penalty=1.0,
|
|
num_captions=1,
|
|
temperature=1,
|
|
):
|
|
"""
|
|
Args:
|
|
samples (dict): A dictionary containing the following keys:
|
|
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
|
|
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
|
|
num_beams (int): Number of beams for beam search. 1 means no beam search.
|
|
max_length (int): The maximum length of the sequence to be generated.
|
|
min_length (int): The minimum length of the sequence to be generated.
|
|
top_p (float): The cumulative probability for nucleus sampling.
|
|
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
|
|
num_captions (int): Number of captions to be generated for each image.
|
|
Returns:
|
|
captions (list): A list of strings of length batch_size * num_captions.
|
|
"""
|
|
image = samples["image"]
|
|
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
|
|
|
|
with self.maybe_autocast():
|
|
_, _, batch_tokens = self.visual_encoder(image)
|
|
image_embeds = self.ln_vision(batch_tokens.to(self.device), repr_layers=[self.vis_layers], return_contacts=True)["representations"][self.vis_layers].contiguous()
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
self.device
|
|
)
|
|
|
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_opt = self.opt_proj(query_output.last_hidden_state)
|
|
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(
|
|
self.device
|
|
)
|
|
|
|
if "prompt" in samples.keys():
|
|
prompt = samples["prompt"]
|
|
else:
|
|
prompt = self.prompt
|
|
|
|
prompt = [prompt] * len(image)
|
|
|
|
opt_tokens = self.opt_tokenizer(
|
|
prompt,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
).to(self.device)
|
|
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
|
|
|
|
|
|
inputs_embeds = self.opt_model.get_input_embeddings()(opt_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
|
|
|
|
outputs = self.opt_model.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
do_sample=use_nucleus_sampling,
|
|
top_p=top_p,
|
|
temperature=temperature,
|
|
num_beams=num_beams,
|
|
max_length=max_length,
|
|
min_length=min_length,
|
|
eos_token_id=self.eos_token_id,
|
|
repetition_penalty=repetition_penalty,
|
|
length_penalty=length_penalty,
|
|
num_return_sequences=num_captions,
|
|
)
|
|
output_text = self.opt_tokenizer.batch_decode(
|
|
outputs, skip_special_tokens=True
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_text = [text.strip() for text in output_text]
|
|
return output_text
|
|
|
|
def predict_answers(
|
|
self,
|
|
samples,
|
|
num_beams=5,
|
|
inference_method="generate",
|
|
max_len=10,
|
|
min_len=1,
|
|
num_ans_candidates=128,
|
|
answer_list=None,
|
|
prompt="",
|
|
length_penalty=0,
|
|
**kwargs
|
|
):
|
|
image = samples["image"]
|
|
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
|
|
with self.maybe_autocast():
|
|
_, _, batch_tokens = self.visual_encoder(image)
|
|
image_embeds = self.ln_vision(batch_tokens.to(self.device), repr_layers=[self.vis_layers], return_contacts=True)["representations"][self.vis_layers].contiguous()
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
self.device
|
|
)
|
|
|
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_opt = self.opt_proj(query_output.last_hidden_state)
|
|
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(
|
|
self.device
|
|
)
|
|
|
|
if isinstance(samples["text_input"], str):
|
|
samples["text_input"] = [samples["text_input"]]
|
|
if prompt:
|
|
text_input = [prompt.format(question) for question in samples["text_input"]]
|
|
else:
|
|
text_input = samples["text_input"]
|
|
|
|
self.opt_tokenizer.padding_side = "left"
|
|
opt_tokens = self.opt_tokenizer(
|
|
text_input,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
).to(self.device)
|
|
|
|
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
|
|
|
|
|
|
inputs_embeds = self.opt_model.get_input_embeddings()(opt_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
|
|
|
|
outputs = self.opt_model.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
do_sample=False,
|
|
num_beams=num_beams,
|
|
max_new_tokens=max_len,
|
|
min_length=min_len,
|
|
eos_token_id=self.eos_token_id,
|
|
length_penalty=length_penalty,
|
|
)
|
|
output_text = self.opt_tokenizer.batch_decode(
|
|
outputs, skip_special_tokens=True
|
|
)
|
|
output_text = [text.strip() for text in output_text]
|
|
if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
|
|
output_text = self._lemmatize(output_text)
|
|
|
|
return output_text
|
|
|
|
def _lemmatize(self, answers):
|
|
def apply(answer):
|
|
doc = self.lemmatizer(answer)
|
|
|
|
words = []
|
|
for token in doc:
|
|
if token.pos_ in ["NOUN", "VERB"]:
|
|
words.append(token.lemma_)
|
|
else:
|
|
words.append(token.text)
|
|
answer = " ".join(words)
|
|
|
|
return answer
|
|
|
|
return [apply(answer) for answer in answers]
|
|
|
|
@property
|
|
def lemmatizer(self):
|
|
if self._lemmatizer is None:
|
|
try:
|
|
import spacy
|
|
|
|
self._lemmatizer = spacy.load("en_core_web_sm")
|
|
except ImportError:
|
|
logging.error(
|
|
"""
|
|
Please install spacy and en_core_web_sm model to apply lemmatization.
|
|
python -m spacy download en_core_web_sm
|
|
OR
|
|
import spacy.cli
|
|
spacy.cli.download("en_core_web_sm")
|
|
"""
|
|
)
|
|
exit(1)
|
|
|
|
return self._lemmatizer
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg):
|
|
num_query_token = cfg.get("num_query_token")
|
|
opt_model = cfg.get("opt_model")
|
|
|
|
freeze_vit = cfg.get("freeze_vit", True)
|
|
get_eval = cfg.get("get_eval", False)
|
|
|
|
prompt = cfg.get("prompt", "")
|
|
max_txt_len = cfg.get("max_txt_len", 128)
|
|
max_protein_len = cfg.get("max_protein_len", 128)
|
|
|
|
apply_lemmatizer = cfg.get("apply_lemmatizer", False)
|
|
|
|
model = cls(
|
|
freeze_vit=freeze_vit,
|
|
num_query_token=num_query_token,
|
|
opt_model=opt_model,
|
|
prompt=prompt,
|
|
max_txt_len=max_txt_len,
|
|
max_protein_len=max_protein_len,
|
|
apply_lemmatizer=apply_lemmatizer,
|
|
get_eval=get_eval,
|
|
)
|
|
model.load_checkpoint_from_config(cfg)
|
|
|
|
return model
|
|
|