|
"""
|
|
Copyright (c) 2022, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import datetime
|
|
import json
|
|
import logging
|
|
import os
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import webdataset as wds
|
|
from lavis.common.dist_utils import (
|
|
download_cached_file,
|
|
get_rank,
|
|
get_world_size,
|
|
is_main_process,
|
|
main_process,
|
|
)
|
|
from lavis.common.registry import registry
|
|
from lavis.common.utils import is_url
|
|
from lavis.datasets.data_utils import concat_datasets, reorg_datasets_by_split
|
|
from lavis.datasets.datasets.dataloader_utils import (
|
|
IterLoader,
|
|
MultiIterLoader,
|
|
PrefetchLoader,
|
|
)
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
from torch.utils.data.dataset import ChainDataset
|
|
|
|
|
|
@registry.register_runner("runner_base")
|
|
class RunnerBase:
|
|
"""
|
|
A runner class to train and evaluate a model given a task and datasets.
|
|
|
|
The runner uses pytorch distributed data parallel by default. Future release
|
|
will support other distributed frameworks.
|
|
"""
|
|
|
|
def __init__(self, cfg, task, model, datasets, job_id):
|
|
self.config = cfg
|
|
self.job_id = job_id
|
|
|
|
self.task = task
|
|
self.datasets = datasets
|
|
|
|
self._model = model
|
|
|
|
self._wrapped_model = None
|
|
self._device = None
|
|
self._optimizer = None
|
|
self._scaler = None
|
|
self._dataloaders = None
|
|
self._lr_sched = None
|
|
|
|
self.start_epoch = 0
|
|
|
|
|
|
self.setup_output_dir()
|
|
|
|
@property
|
|
def device(self):
|
|
if self._device is None:
|
|
self._device = torch.device(self.config.run_cfg.device)
|
|
|
|
return self._device
|
|
|
|
@property
|
|
def use_distributed(self):
|
|
return self.config.run_cfg.distributed
|
|
|
|
@property
|
|
def model(self):
|
|
"""
|
|
A property to get the DDP-wrapped model on the device.
|
|
"""
|
|
|
|
if self._model.device != self.device:
|
|
self._model = self._model.to(self.device)
|
|
|
|
|
|
if self.use_distributed:
|
|
if self._wrapped_model is None:
|
|
self._wrapped_model = DDP(
|
|
self._model, device_ids=[self.config.run_cfg.gpu]
|
|
)
|
|
else:
|
|
self._wrapped_model = self._model
|
|
|
|
return self._wrapped_model
|
|
|
|
@property
|
|
def optimizer(self):
|
|
|
|
if self._optimizer is None:
|
|
lr_scale = self.config.run_cfg.get("lr_layer_decay", 1)
|
|
weight_decay = self.config.run_cfg.get("weight_decay", 0.05)
|
|
optim_params = self._model.get_optimizer_params(weight_decay,lr_scale)
|
|
|
|
num_parameters = 0
|
|
for p_group in optim_params:
|
|
for p in p_group["params"]:
|
|
num_parameters += p.data.nelement()
|
|
logging.info("number of trainable parameters: {}".format(num_parameters))
|
|
|
|
beta2 = self.config.run_cfg.get("beta2", 0.999)
|
|
|
|
self._optimizer = torch.optim.AdamW(
|
|
optim_params,
|
|
lr=float(self.config.run_cfg.init_lr),
|
|
betas=(0.9, beta2),
|
|
)
|
|
return self._optimizer
|
|
|
|
@property
|
|
def scaler(self):
|
|
amp = self.config.run_cfg.get("amp", False)
|
|
|
|
if amp:
|
|
if self._scaler is None:
|
|
self._scaler = torch.cuda.amp.GradScaler()
|
|
|
|
return self._scaler
|
|
|
|
@property
|
|
def lr_scheduler(self):
|
|
"""
|
|
A property to get and create learning rate scheduler by split just in need.
|
|
"""
|
|
if self._lr_sched is None:
|
|
lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched)
|
|
|
|
|
|
max_epoch = self.max_epoch
|
|
|
|
min_lr = self.min_lr
|
|
|
|
init_lr = self.init_lr
|
|
|
|
|
|
decay_rate = self.config.run_cfg.get("lr_decay_rate", None)
|
|
warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1)
|
|
warmup_steps = self.config.run_cfg.get("warmup_steps", 0)
|
|
|
|
self._lr_sched = lr_sched_cls(
|
|
optimizer=self.optimizer,
|
|
max_epoch=max_epoch,
|
|
min_lr=min_lr,
|
|
init_lr=init_lr,
|
|
decay_rate=decay_rate,
|
|
warmup_start_lr=warmup_start_lr,
|
|
warmup_steps=warmup_steps,
|
|
)
|
|
|
|
return self._lr_sched
|
|
|
|
@property
|
|
def dataloaders(self) -> dict:
|
|
"""
|
|
A property to get and create dataloaders by split just in need.
|
|
|
|
If no train_dataset_ratio is provided, concatenate map-style datasets and
|
|
chain wds.DataPipe datasets separately. Training set becomes a tuple
|
|
(ConcatDataset, ChainDataset), both are optional but at least one of them is
|
|
required. The resultant ConcatDataset and ChainDataset will be sampled evenly.
|
|
|
|
If train_dataset_ratio is provided, create a MultiIterLoader to sample
|
|
each dataset by ratios during training.
|
|
|
|
Currently do not support multiple datasets for validation and test.
|
|
|
|
Returns:
|
|
dict: {split_name: (tuples of) dataloader}
|
|
"""
|
|
if self._dataloaders is None:
|
|
|
|
dataset_ratios = self.config.run_cfg.get("train_dataset_ratios", None)
|
|
|
|
|
|
|
|
|
|
|
|
logging.info(
|
|
"dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)."
|
|
)
|
|
|
|
datasets = reorg_datasets_by_split(self.datasets)
|
|
self.datasets = concat_datasets(datasets)
|
|
|
|
|
|
for split_name in self.datasets:
|
|
if isinstance(self.datasets[split_name], tuple) or isinstance(
|
|
self.datasets[split_name], list
|
|
):
|
|
|
|
num_records = sum(
|
|
[
|
|
len(d)
|
|
if not type(d) in [wds.DataPipeline, ChainDataset]
|
|
else 0
|
|
for d in self.datasets[split_name]
|
|
]
|
|
)
|
|
|
|
else:
|
|
if hasattr(self.datasets[split_name], "__len__"):
|
|
|
|
num_records = len(self.datasets[split_name])
|
|
else:
|
|
|
|
num_records = -1
|
|
logging.info(
|
|
"Only a single wds.DataPipeline dataset, no __len__ attribute."
|
|
)
|
|
|
|
if num_records >= 0:
|
|
logging.info(
|
|
"Loaded {} records for {} split from the dataset.".format(
|
|
num_records, split_name
|
|
)
|
|
)
|
|
|
|
|
|
split_names = sorted(self.datasets.keys())
|
|
|
|
datasets = [self.datasets[split] for split in split_names]
|
|
is_trains = [split in self.train_splits for split in split_names]
|
|
|
|
batch_sizes = [
|
|
self.config.run_cfg.batch_size_train
|
|
if split == "train"
|
|
else self.config.run_cfg.batch_size_eval
|
|
for split in split_names
|
|
]
|
|
|
|
collate_fns = []
|
|
for dataset in datasets:
|
|
if isinstance(dataset, tuple) or isinstance(dataset, list):
|
|
collate_fns.append([getattr(d, "collater", None) for d in dataset])
|
|
else:
|
|
collate_fns.append(getattr(dataset, "collater", None))
|
|
|
|
dataloaders = self.create_loaders(
|
|
datasets=datasets,
|
|
num_workers=self.config.run_cfg.num_workers,
|
|
batch_sizes=batch_sizes,
|
|
is_trains=is_trains,
|
|
collate_fns=collate_fns,
|
|
dataset_ratios=dataset_ratios,
|
|
)
|
|
|
|
self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)}
|
|
|
|
return self._dataloaders
|
|
|
|
@property
|
|
def cuda_enabled(self):
|
|
return self.device.type == "cuda"
|
|
|
|
@property
|
|
def max_epoch(self):
|
|
return int(self.config.run_cfg.max_epoch)
|
|
|
|
@property
|
|
def log_freq(self):
|
|
log_freq = self.config.run_cfg.get("log_freq", 50)
|
|
return int(log_freq)
|
|
|
|
@property
|
|
def init_lr(self):
|
|
return float(self.config.run_cfg.init_lr)
|
|
|
|
@property
|
|
def min_lr(self):
|
|
return float(self.config.run_cfg.min_lr)
|
|
|
|
@property
|
|
def accum_grad_iters(self):
|
|
return int(self.config.run_cfg.get("accum_grad_iters", 1))
|
|
|
|
@property
|
|
def valid_splits(self):
|
|
valid_splits = self.config.run_cfg.get("valid_splits", [])
|
|
|
|
if len(valid_splits) == 0:
|
|
logging.info("No validation splits found.")
|
|
|
|
return valid_splits
|
|
|
|
@property
|
|
def test_splits(self):
|
|
test_splits = self.config.run_cfg.get("test_splits", [])
|
|
|
|
return test_splits
|
|
|
|
@property
|
|
def train_splits(self):
|
|
train_splits = self.config.run_cfg.get("train_splits", [])
|
|
|
|
if len(train_splits) == 0:
|
|
logging.info("Empty train splits.")
|
|
|
|
return train_splits
|
|
|
|
@property
|
|
def evaluate_only(self):
|
|
"""
|
|
Set to True to skip training.
|
|
"""
|
|
return self.config.run_cfg.evaluate
|
|
|
|
@property
|
|
def use_dist_eval_sampler(self):
|
|
return self.config.run_cfg.get("use_dist_eval_sampler", True)
|
|
|
|
@property
|
|
def resume_ckpt_path(self):
|
|
return self.config.run_cfg.get("resume_ckpt_path", None)
|
|
|
|
@property
|
|
def train_loader(self):
|
|
train_dataloader = self.dataloaders["train"]
|
|
|
|
return train_dataloader
|
|
|
|
def setup_output_dir(self):
|
|
lib_root = Path(registry.get_path("library_root"))
|
|
|
|
output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id
|
|
result_dir = output_dir / "result"
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
result_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
registry.register_path("result_dir", str(result_dir))
|
|
registry.register_path("output_dir", str(output_dir))
|
|
|
|
self.result_dir = result_dir
|
|
self.output_dir = output_dir
|
|
|
|
def train(self):
|
|
start_time = time.time()
|
|
best_agg_metric = 0
|
|
best_epoch = 0
|
|
|
|
self.log_config()
|
|
|
|
|
|
if not self.evaluate_only and self.resume_ckpt_path is not None:
|
|
self._load_checkpoint(self.resume_ckpt_path)
|
|
|
|
for cur_epoch in range(self.start_epoch, self.max_epoch):
|
|
|
|
if not self.evaluate_only:
|
|
logging.info("Start training")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_stats = self.train_epoch(cur_epoch)
|
|
self.log_stats(split_name="train", stats=train_stats)
|
|
|
|
|
|
if len(self.valid_splits) > 0:
|
|
for split_name in self.valid_splits:
|
|
logging.info("Evaluating on {}.".format(split_name))
|
|
|
|
val_log = self.eval_epoch(
|
|
split_name=split_name, cur_epoch=cur_epoch
|
|
)
|
|
if val_log is not None:
|
|
if is_main_process():
|
|
assert (
|
|
"agg_metrics" in val_log
|
|
), "No agg_metrics found in validation log."
|
|
|
|
agg_metrics = val_log["agg_metrics"]
|
|
if agg_metrics > best_agg_metric and split_name == "val":
|
|
best_epoch, best_agg_metric = cur_epoch, agg_metrics
|
|
|
|
self._save_checkpoint(cur_epoch, is_best=True)
|
|
|
|
val_log.update({"best_epoch": best_epoch})
|
|
self.log_stats(val_log, split_name)
|
|
|
|
else:
|
|
|
|
if not self.evaluate_only:
|
|
self._save_checkpoint(cur_epoch, is_best=False)
|
|
|
|
if self.evaluate_only:
|
|
break
|
|
|
|
dist.barrier()
|
|
|
|
|
|
test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch
|
|
self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only)
|
|
|
|
total_time = time.time() - start_time
|
|
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
|
logging.info("Training time {}".format(total_time_str))
|
|
|
|
def evaluate(self, cur_epoch="best", skip_reload=False):
|
|
test_logs = dict()
|
|
|
|
if len(self.test_splits) > 0:
|
|
for split_name in self.test_splits:
|
|
test_logs[split_name] = self.eval_epoch(
|
|
split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload
|
|
)
|
|
|
|
return test_logs
|
|
|
|
def train_epoch(self, epoch):
|
|
|
|
self.model.train()
|
|
|
|
return self.task.train_epoch(
|
|
epoch=epoch,
|
|
model=self.model,
|
|
data_loader=self.train_loader,
|
|
optimizer=self.optimizer,
|
|
scaler=self.scaler,
|
|
lr_scheduler=self.lr_scheduler,
|
|
cuda_enabled=self.cuda_enabled,
|
|
log_freq=self.log_freq,
|
|
accum_grad_iters=self.accum_grad_iters,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def eval_epoch(self, split_name, cur_epoch, skip_reload=False):
|
|
"""
|
|
Evaluate the model on a given split.
|
|
|
|
Args:
|
|
split_name (str): name of the split to evaluate on.
|
|
cur_epoch (int): current epoch.
|
|
skip_reload_best (bool): whether to skip reloading the best checkpoint.
|
|
During training, we will reload the best checkpoint for validation.
|
|
During testing, we will use provided weights and skip reloading the best checkpoint .
|
|
"""
|
|
data_loader = self.dataloaders.get(split_name, None)
|
|
assert data_loader, "data_loader for split {} is None.".format(split_name)
|
|
|
|
|
|
|
|
model = self.unwrap_dist_model(self.model)
|
|
if not skip_reload and cur_epoch == "best":
|
|
model = self._reload_best_model(model)
|
|
model.eval()
|
|
|
|
self.task.before_evaluation(
|
|
model=model,
|
|
dataset=self.datasets[split_name],
|
|
)
|
|
results = self.task.evaluation(model, data_loader)
|
|
|
|
if results is not None:
|
|
return self.task.after_evaluation(
|
|
val_result=results,
|
|
split_name=split_name,
|
|
epoch=cur_epoch,
|
|
)
|
|
|
|
def unwrap_dist_model(self, model):
|
|
if self.use_distributed:
|
|
return model.module
|
|
else:
|
|
return model
|
|
|
|
def create_loaders(
|
|
self,
|
|
datasets,
|
|
num_workers,
|
|
batch_sizes,
|
|
is_trains,
|
|
collate_fns,
|
|
dataset_ratios=None,
|
|
):
|
|
"""
|
|
Create dataloaders for training and validation.
|
|
"""
|
|
|
|
def _create_loader(dataset, num_workers, bsz, is_train, collate_fn):
|
|
|
|
if isinstance(dataset, ChainDataset) or isinstance(
|
|
dataset, wds.DataPipeline
|
|
):
|
|
|
|
|
|
loader = iter(
|
|
DataLoader(
|
|
dataset,
|
|
shuffle=True,
|
|
batch_size=bsz,
|
|
num_workers=num_workers,
|
|
pin_memory=True,
|
|
)
|
|
)
|
|
else:
|
|
|
|
|
|
if self.use_distributed:
|
|
sampler = DistributedSampler(
|
|
dataset,
|
|
shuffle=is_train,
|
|
num_replicas=get_world_size(),
|
|
rank=get_rank(),
|
|
)
|
|
if not self.use_dist_eval_sampler:
|
|
|
|
sampler = sampler if is_train else None
|
|
else:
|
|
sampler = None
|
|
|
|
loader = DataLoader(
|
|
dataset,
|
|
batch_size=bsz,
|
|
num_workers=num_workers,
|
|
pin_memory=True,
|
|
sampler=sampler,
|
|
shuffle=sampler is None and is_train,
|
|
collate_fn=collate_fn,
|
|
drop_last=True if is_train else False,
|
|
)
|
|
loader = PrefetchLoader(loader)
|
|
|
|
if is_train:
|
|
loader = IterLoader(loader, use_distributed=self.use_distributed)
|
|
|
|
return loader
|
|
|
|
loaders = []
|
|
|
|
for dataset, bsz, is_train, collate_fn in zip(
|
|
datasets, batch_sizes, is_trains, collate_fns
|
|
):
|
|
if isinstance(dataset, list) or isinstance(dataset, tuple):
|
|
loader = MultiIterLoader(
|
|
loaders=[
|
|
_create_loader(d, num_workers, bsz, is_train, collate_fn[i])
|
|
for i, d in enumerate(dataset)
|
|
],
|
|
ratios=dataset_ratios,
|
|
)
|
|
else:
|
|
loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn)
|
|
|
|
loaders.append(loader)
|
|
|
|
return loaders
|
|
|
|
@main_process
|
|
def _save_checkpoint(self, cur_epoch, is_best=False):
|
|
"""
|
|
Save the checkpoint at the current epoch.
|
|
"""
|
|
model_no_ddp = self.unwrap_dist_model(self.model)
|
|
param_grad_dic = {
|
|
k: v.requires_grad for (k, v) in model_no_ddp.named_parameters()
|
|
}
|
|
state_dict = model_no_ddp.state_dict()
|
|
for k in list(state_dict.keys()):
|
|
if k in param_grad_dic.keys() and not param_grad_dic[k]:
|
|
|
|
del state_dict[k]
|
|
|
|
save_obj = {
|
|
"model": state_dict,
|
|
"optimizer": self.optimizer.state_dict(),
|
|
"config": self.config.to_dict(),
|
|
"scaler": self.scaler.state_dict() if self.scaler else None,
|
|
"epoch": cur_epoch,
|
|
}
|
|
save_to = os.path.join(
|
|
self.output_dir,
|
|
"checkpoint_{}.pth".format("best" if is_best else cur_epoch),
|
|
)
|
|
logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to))
|
|
torch.save(save_obj, save_to)
|
|
|
|
def _reload_best_model(self, model):
|
|
"""
|
|
Load the best checkpoint for evaluation.
|
|
"""
|
|
checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth")
|
|
|
|
logging.info("Loading checkpoint from {}.".format(checkpoint_path))
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
try:
|
|
model.load_state_dict(checkpoint["model"])
|
|
except RuntimeError as e:
|
|
logging.warning(
|
|
"""
|
|
Key mismatch when loading checkpoint. This is expected if only part of the model is saved.
|
|
Trying to load the model with strict=False.
|
|
"""
|
|
)
|
|
model.load_state_dict(checkpoint["model"], strict=False)
|
|
return model
|
|
|
|
def _load_checkpoint(self, url_or_filename):
|
|
"""
|
|
Resume from a checkpoint.
|
|
"""
|
|
if is_url(url_or_filename):
|
|
cached_file = download_cached_file(
|
|
url_or_filename, check_hash=False, progress=True
|
|
)
|
|
checkpoint = torch.load(cached_file, map_location=self.device)
|
|
elif os.path.isfile(url_or_filename):
|
|
checkpoint = torch.load(url_or_filename, map_location=self.device)
|
|
else:
|
|
raise RuntimeError("checkpoint url or path is invalid")
|
|
|
|
state_dict = checkpoint["model"]
|
|
self.unwrap_dist_model(self.model).load_state_dict(state_dict)
|
|
|
|
self.optimizer.load_state_dict(checkpoint["optimizer"])
|
|
if self.scaler and "scaler" in checkpoint:
|
|
self.scaler.load_state_dict(checkpoint["scaler"])
|
|
|
|
self.start_epoch = checkpoint["epoch"] + 1
|
|
logging.info("Resume checkpoint from {}".format(url_or_filename))
|
|
|
|
@main_process
|
|
def log_stats(self, stats, split_name):
|
|
if isinstance(stats, dict):
|
|
log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}}
|
|
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
|
f.write(json.dumps(log_stats) + "\n")
|
|
elif isinstance(stats, list):
|
|
pass
|
|
|
|
@main_process
|
|
def log_config(self):
|
|
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
|
f.write(json.dumps(self.config.to_dict(), indent=4) + "\n")
|
|
|