FAPM / app /caption.py
wenkai's picture
Upload 12 files
0fc1ca7 verified
raw
history blame
2.87 kB
"""
# Copyright (c) 2022, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import streamlit as st
from app import device, load_demo_image
from app.utils import load_model_cache
from lavis.processors import load_processor
from PIL import Image
def app():
# ===== layout =====
model_type = st.sidebar.selectbox("Model:", ["BLIP_base", "BLIP_large"])
sampling_method = st.sidebar.selectbox(
"Sampling method:", ["Beam search", "Nucleus sampling"]
)
st.markdown(
"<h1 style='text-align: center;'>Image Description Generation</h1>",
unsafe_allow_html=True,
)
instructions = """Try the provided image or upload your own:"""
file = st.file_uploader(instructions)
use_beam = sampling_method == "Beam search"
col1, col2 = st.columns(2)
if file:
raw_img = Image.open(file).convert("RGB")
else:
raw_img = load_demo_image()
col1.header("Image")
w, h = raw_img.size
scaling_factor = 720 / w
resized_image = raw_img.resize((int(w * scaling_factor), int(h * scaling_factor)))
col1.image(resized_image, use_column_width=True)
col2.header("Description")
cap_button = st.button("Generate")
# ==== event ====
vis_processor = load_processor("blip_image_eval").build(image_size=384)
if cap_button:
if model_type.startswith("BLIP"):
blip_type = model_type.split("_")[1].lower()
model = load_model_cache(
"blip_caption",
model_type=f"{blip_type}_coco",
is_eval=True,
device=device,
)
img = vis_processor(raw_img).unsqueeze(0).to(device)
captions = generate_caption(
model=model, image=img, use_nucleus_sampling=not use_beam
)
col2.write("\n\n".join(captions), use_column_width=True)
def generate_caption(
model, image, use_nucleus_sampling=False, num_beams=3, max_length=40, min_length=5
):
samples = {"image": image}
captions = []
if use_nucleus_sampling:
for _ in range(5):
caption = model.generate(
samples,
use_nucleus_sampling=True,
max_length=max_length,
min_length=min_length,
top_p=0.9,
)
captions.append(caption[0])
else:
caption = model.generate(
samples,
use_nucleus_sampling=False,
num_beams=num_beams,
max_length=max_length,
min_length=min_length,
)
captions.append(caption[0])
return captions