|
"""
|
|
# Copyright (c) 2022, salesforce.com, inc.
|
|
# All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import streamlit as st
|
|
from app import device, load_demo_image
|
|
from app.utils import load_model_cache
|
|
from lavis.processors import load_processor
|
|
from PIL import Image
|
|
|
|
|
|
def app():
|
|
|
|
model_type = st.sidebar.selectbox("Model:", ["BLIP_base", "BLIP_large"])
|
|
|
|
sampling_method = st.sidebar.selectbox(
|
|
"Sampling method:", ["Beam search", "Nucleus sampling"]
|
|
)
|
|
|
|
st.markdown(
|
|
"<h1 style='text-align: center;'>Image Description Generation</h1>",
|
|
unsafe_allow_html=True,
|
|
)
|
|
|
|
instructions = """Try the provided image or upload your own:"""
|
|
file = st.file_uploader(instructions)
|
|
|
|
use_beam = sampling_method == "Beam search"
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
if file:
|
|
raw_img = Image.open(file).convert("RGB")
|
|
else:
|
|
raw_img = load_demo_image()
|
|
|
|
col1.header("Image")
|
|
|
|
w, h = raw_img.size
|
|
scaling_factor = 720 / w
|
|
resized_image = raw_img.resize((int(w * scaling_factor), int(h * scaling_factor)))
|
|
|
|
col1.image(resized_image, use_column_width=True)
|
|
col2.header("Description")
|
|
|
|
cap_button = st.button("Generate")
|
|
|
|
|
|
vis_processor = load_processor("blip_image_eval").build(image_size=384)
|
|
|
|
if cap_button:
|
|
if model_type.startswith("BLIP"):
|
|
blip_type = model_type.split("_")[1].lower()
|
|
model = load_model_cache(
|
|
"blip_caption",
|
|
model_type=f"{blip_type}_coco",
|
|
is_eval=True,
|
|
device=device,
|
|
)
|
|
|
|
img = vis_processor(raw_img).unsqueeze(0).to(device)
|
|
captions = generate_caption(
|
|
model=model, image=img, use_nucleus_sampling=not use_beam
|
|
)
|
|
|
|
col2.write("\n\n".join(captions), use_column_width=True)
|
|
|
|
|
|
def generate_caption(
|
|
model, image, use_nucleus_sampling=False, num_beams=3, max_length=40, min_length=5
|
|
):
|
|
samples = {"image": image}
|
|
|
|
captions = []
|
|
if use_nucleus_sampling:
|
|
for _ in range(5):
|
|
caption = model.generate(
|
|
samples,
|
|
use_nucleus_sampling=True,
|
|
max_length=max_length,
|
|
min_length=min_length,
|
|
top_p=0.9,
|
|
)
|
|
captions.append(caption[0])
|
|
else:
|
|
caption = model.generate(
|
|
samples,
|
|
use_nucleus_sampling=False,
|
|
num_beams=num_beams,
|
|
max_length=max_length,
|
|
min_length=min_length,
|
|
)
|
|
captions.append(caption[0])
|
|
|
|
return captions
|
|
|