|
import re
|
|
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from lavis.models import load_model_and_preprocess
|
|
from lavis.processors import load_processor
|
|
from lavis.common.registry import registry
|
|
from torch.nn import functional as F
|
|
from lavis.models.base_model import all_gather_with_grad, concat_all_gather
|
|
import numpy as np
|
|
import pandas as pd
|
|
import time
|
|
from fuzzywuzzy import process
|
|
from multiprocessing import Pool, Queue, Process
|
|
import difflib
|
|
import Levenshtein
|
|
import os
|
|
|
|
|
|
|
|
def fuzzy_match(texts):
|
|
text_dict = {}
|
|
for context in texts:
|
|
if context not in choices:
|
|
|
|
text_dict[context] = difflib.get_close_matches(context, choices, n=1, cutoff=0.)[0]
|
|
return text_dict
|
|
|
|
|
|
def txt_map(x, txt_dict):
|
|
if type(x) == str:
|
|
x = eval(x)
|
|
x_ = []
|
|
for i in x:
|
|
if i in txt_dict:
|
|
x_.append(txt_dict[i])
|
|
else:
|
|
x_.append(i)
|
|
return x_
|
|
|
|
|
|
def levenshtein_sim(text, label):
|
|
all_s = []
|
|
for x in label:
|
|
s = 0
|
|
for y in text:
|
|
temp = Levenshtein.ratio(x, y)
|
|
if temp > s:
|
|
s = temp
|
|
all_s.append(s)
|
|
all_s = [round(i, 3) for i in all_s]
|
|
return all_s
|
|
|
|
def func(text, label):
|
|
all_s = []
|
|
for x in label:
|
|
s = 0
|
|
for y in text:
|
|
temp = Levenshtein.ratio(x, y)
|
|
if temp > s:
|
|
s = temp
|
|
all_s.append(s)
|
|
all_s = [round(i, 3) for i in all_s]
|
|
return all_s
|
|
|
|
|
|
def stage2_output(df_test):
|
|
config = {'arch': 'blip2_protein_opt', 'load_finetuned': False,
|
|
'pretrained': '/cluster/home/wenkai/LAVIS/lavis/output/BLIP2/Pretrain_stage2/20230924220/checkpoint_5.pth',
|
|
'finetuned': '', 'num_query_token': 32, 'opt_model': 'facebook/opt-2.7b', 'prompt': '',
|
|
'model_type': 'pretrain_protein_opt2.7b', 'load_pretrained': True, 'freeze_vit': True,
|
|
'max_protein_len': 600,
|
|
'max_txt_len': 25}
|
|
|
|
model_cls = registry.get_model_class(config['arch'])
|
|
model = model_cls.from_config(config)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
images = df_test['protein'].tolist()
|
|
n = len(images)
|
|
bsz = 12
|
|
iter = n // bsz + 1
|
|
|
|
for i in range(iter):
|
|
image = images[i*bsz: min(n, (i+1)*bsz)]
|
|
image = [('protein{}'.format(i), x) for i, x in enumerate(image)]
|
|
|
|
with model.maybe_autocast():
|
|
_, _, batch_tokens = model.visual_encoder(image)
|
|
image_embeds = model.ln_vision(batch_tokens.to(device), repr_layers=[model.vis_layers], return_contacts=True)["representations"][model.vis_layers].contiguous()
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
|
|
|
query_tokens = model.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
query_output = model.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_opt = model.opt_proj(query_output.last_hidden_state)
|
|
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(device)
|
|
|
|
model.opt_tokenizer.padding_side = "right"
|
|
|
|
text = ['' for i in range(len(image))]
|
|
opt_tokens = model.opt_tokenizer(
|
|
text,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=model.max_txt_len,
|
|
).to(device)
|
|
inputs_embeds = model.opt_model.model.decoder.embed_tokens(opt_tokens.input_ids)
|
|
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
|
|
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
|
|
num_txt = 10
|
|
return_num_txt = 5
|
|
with model.maybe_autocast():
|
|
outputs = model.opt_model.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, min_length=3,
|
|
max_length=30,
|
|
repetition_penalty=5., num_beams=num_txt, eos_token_id=50118,
|
|
length_penalty=1., num_return_sequences=return_num_txt, temperature=1.)
|
|
output_text = model.opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
output_text = [text.strip() for text in output_text]
|
|
output_text_ = []
|
|
for i in range(len(image)):
|
|
output_text_.append(';'.join(output_text[i * return_num_txt:(i + 1) * return_num_txt]))
|
|
with open('/cluster/home/wenkai/LAVIS/output/output{}.txt'.format(fix), 'a+') as f:
|
|
for i in range(len(image)):
|
|
f.write(image[i][1] + "|" + output_text_[i] + '\n')
|
|
|
|
|
|
cat = 'mf'
|
|
fix = '_mf'
|
|
if cat == 'bp':
|
|
fix = '_bp'
|
|
if cat == 'cc':
|
|
fix = '_cc'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/test{}.csv'.format(fix), sep='|')[:10000]
|
|
test['function'] = test['function'].apply(lambda x: x.lower())
|
|
|
|
|
|
if os.path.exists('/cluster/home/wenkai/LAVIS/output/output{}.txt'.format(fix)):
|
|
os.remove('/cluster/home/wenkai/LAVIS/output/output{}.txt'.format(fix))
|
|
print("stage 2 predict starting")
|
|
stage2_output(test)
|
|
print("stage 2 predict completed")
|
|
|
|
|
|
|
|
df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/output{}.txt'.format(fix), sep='|', header=None, on_bad_lines='warn')
|
|
df_pred.columns = ['protein', 'function']
|
|
df_pred = df_pred.drop_duplicates()
|
|
df_pred['function'] = df_pred['function'].apply(lambda x: str(x).split(';'))
|
|
df_pred['function'] = df_pred['function'].apply(lambda x: [i.strip() for i in list(set(x))])
|
|
|
|
test.columns
|
|
test_g = test.groupby(['protein']).agg({'function': lambda x: list(x)}).reset_index()
|
|
test_g.columns = ['protein', 'label']
|
|
|
|
data = pd.merge(df_pred, test_g, on='protein', how='left')
|
|
data = data[data['label'].notnull()]
|
|
|
|
sim = []
|
|
for text, label in zip(data['function'].tolist(), data['label'].tolist()):
|
|
sim.append(func(text, label))
|
|
|
|
data['sim'] = sim
|
|
data['avg_score'] = data['sim'].apply(lambda x: round(np.mean(x), 3))
|
|
print("average similarity score: {}".format(round(data['avg_score'].mean(), 3)))
|
|
|
|
|
|
|
|
test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/test{}.csv'.format(fix), sep='|', usecols=['function', 'GO_label'])
|
|
test['function'] = test['function'].apply(lambda x: x.lower())
|
|
test = test.drop_duplicates()
|
|
test_dict = dict(zip(test['function'], test['GO_label']))
|
|
val = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/val{}.csv'.format(fix), sep='|', usecols=['function', 'GO_label'])
|
|
val['function'] = val['function'].apply(lambda x: x.lower())
|
|
val = val.drop_duplicates()
|
|
val_dict = dict(zip(val['function'], val['GO_label']))
|
|
train = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/train{}.csv'.format(fix), sep='|', usecols=['function', 'GO_label'])
|
|
train['function'] = train['function'].apply(lambda x: x.lower())
|
|
train = train.drop_duplicates()
|
|
train_dict = dict(zip(train['function'], train['GO_label']))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GO_dict = {}
|
|
GO_dict.update(train_dict)
|
|
GO_dict.update(val_dict)
|
|
GO_dict.update(test_dict)
|
|
choices = list(GO_dict.keys())
|
|
|
|
|
|
|
|
|
|
data = data.sort_values(by='protein')
|
|
data = data.drop_duplicates('protein')
|
|
|
|
|
|
|
|
t0 = time.time()
|
|
txt_dict = {}
|
|
|
|
all_txt = []
|
|
for txt in data['function']:
|
|
if type(txt) == str:
|
|
all_txt.extend(eval(txt))
|
|
else:
|
|
all_txt.extend(txt)
|
|
all_txt = list(set(all_txt))
|
|
|
|
n = len(all_txt)
|
|
thread = 20
|
|
size = int(n/thread)
|
|
inds = list(range(0, n, size))
|
|
inds.append(n)
|
|
all_txt_sep = [all_txt[i: min(i+size, n)] for i in inds[:-1]]
|
|
|
|
with Pool(processes=thread) as pool:
|
|
result = pool.map(fuzzy_match, all_txt_sep)
|
|
pool.close()
|
|
pool.join()
|
|
for d in result:
|
|
txt_dict.update(d)
|
|
|
|
|
|
|
|
|
|
data['function'] = data['function'].apply(lambda x: txt_map(x, txt_dict))
|
|
data['function'] = data['function'].apply(lambda x: list(set(x)))
|
|
print("fuzzy matching time: {}".format(time.time() - t0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_config = {'arch': 'blip2_protein', 'load_finetuned': False,
|
|
'pretrained': '/cluster/home/wenkai/LAVIS/lavis/output/BLIP2/Pretrain_stage1/20230922185/checkpoint_15.pth',
|
|
'finetuned': '', 'num_query_token': 32, 'prompt': '',
|
|
'model_type': 'pretrain', 'load_pretrained': True, 'freeze_vit': False,
|
|
'max_protein_len': 512, 'max_txt_len': 25}
|
|
|
|
model_cls = registry.get_model_class(model_config['arch'])
|
|
model = model_cls.from_config(model_config)
|
|
model = model.to(device)
|
|
model.eval()
|
|
|
|
|
|
t0 = time.time()
|
|
proteins = list(data['protein'])
|
|
txts = list(data['function'])
|
|
scores = []
|
|
for seq, txt in zip(proteins, txts):
|
|
image = [('protein1', seq)]
|
|
_, _, batch_tokens = model.visual_encoder(image)
|
|
image_embeds = model.ln_vision(batch_tokens.to(device), repr_layers=[30], return_contacts=True)["representations"][
|
|
30].contiguous()
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
|
|
|
query_tokens = model.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
|
|
query_output = model.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
use_cache=True,
|
|
return_dict=True,
|
|
)
|
|
|
|
image_feats = F.normalize(model.vision_proj(query_output.last_hidden_state), dim=-1)
|
|
|
|
image_feats_all = concat_all_gather(image_feats)
|
|
|
|
if type(txt) == str:
|
|
txt = eval(txt)
|
|
length = len(txt)
|
|
with torch.no_grad():
|
|
text_tokens = model.tokenizer(
|
|
txt,
|
|
padding="max_length",
|
|
truncation=True,
|
|
max_length=model.max_txt_len,
|
|
return_tensors="pt",
|
|
).to(device)
|
|
text_output = model.Qformer.bert(
|
|
text_tokens.input_ids,
|
|
attention_mask=text_tokens.attention_mask,
|
|
return_dict=True,
|
|
)
|
|
|
|
text_feat = F.normalize(
|
|
model.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
|
|
)
|
|
|
|
text_feat_all = concat_all_gather(text_feat)
|
|
sim_q2t = torch.matmul(image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1)).squeeze()
|
|
sim_i2t, _ = sim_q2t.max(-1)
|
|
|
|
if length > 1:
|
|
scores.append(list(sim_i2t.detach().cpu().numpy()))
|
|
else:
|
|
scores.append([sim_i2t.item()])
|
|
print("model evaluate time: {}".format(time.time() - t0))
|
|
data['score'] = scores
|
|
|
|
|
|
topk = 2
|
|
threshould = 0.1
|
|
labels = []
|
|
pred_labels = []
|
|
for l in data['label']:
|
|
if type(l) == str:
|
|
l = eval(l)
|
|
labels.extend(l)
|
|
|
|
labels = list(set(labels))
|
|
total = len(labels)
|
|
for topk in range(1,7):
|
|
for threshould in range(1, 25, 1):
|
|
threshould /= 100
|
|
filter_txts = []
|
|
recalls = []
|
|
precisions = []
|
|
f1 = []
|
|
tp_dict, fp_dict, fn_dict = dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels)))
|
|
for txts, scores, label in zip(data['function'], data['score'], data['label']):
|
|
if type(label) == str:
|
|
label = eval(label)
|
|
txts_ = np.array(txts)
|
|
scores = np.array(scores)
|
|
txts = txts_[scores > threshould]
|
|
if len(txts) < 1:
|
|
txts = txts_[np.argmax(scores)]
|
|
scores = scores[scores > threshould]
|
|
|
|
l = len(scores)
|
|
ll = len(label)
|
|
if l <= topk:
|
|
filter_txts.append(list(txts))
|
|
else:
|
|
ind = np.argpartition(scores, -topk)[-topk:]
|
|
txts = txts[ind]
|
|
filter_txts.append(list(txts))
|
|
l = topk
|
|
for t in label:
|
|
if t in txts:
|
|
tp_dict[t] += 1
|
|
else:
|
|
fn_dict[t] += 1
|
|
for p in txts:
|
|
if p not in label:
|
|
if p in fp_dict:
|
|
fp_dict[p] += 1
|
|
else:
|
|
fp_dict[p] = 1
|
|
pred_labels.extend(txts)
|
|
p_total = len(set(pred_labels))
|
|
re, pr = 0., 0.
|
|
for x in labels:
|
|
re += tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
|
|
pr += tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x]+1e-8))
|
|
r = re / total
|
|
p = pr / total
|
|
f1 = 2 * p * r / (p + r)
|
|
print("Topk: {}, threshould: {}, macro_recall: {}, macro_precision: {}, micro_f1: {}".format(topk, threshould, r, p, f1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data.to_csv('/cluster/home/wenkai/LAVIS/output/predict_sim{}.csv'.format(fix), sep='|', index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|