|
"""Modified from https://github.com/rwightman/pytorch-image-
|
|
models/blob/master/timm/models/vision_transformer.py."""
|
|
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as cp
|
|
from annotator.uniformer.mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer,
|
|
constant_init, kaiming_init, normal_init)
|
|
from annotator.uniformer.mmcv.runner import _load_checkpoint
|
|
from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm
|
|
|
|
from annotator.uniformer.mmseg.utils import get_root_logger
|
|
from ..builder import BACKBONES
|
|
from ..utils import DropPath, trunc_normal_
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
"""MLP layer for Encoder block.
|
|
|
|
Args:
|
|
in_features(int): Input dimension for the first fully
|
|
connected layer.
|
|
hidden_features(int): Output dimension for the first fully
|
|
connected layer.
|
|
out_features(int): Output dementsion for the second fully
|
|
connected layer.
|
|
act_cfg(dict): Config dict for activation layer.
|
|
Default: dict(type='GELU').
|
|
drop(float): Drop rate for the dropout layer. Dropout rate has
|
|
to be between 0 and 1. Default: 0.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_cfg=dict(type='GELU'),
|
|
drop=0.):
|
|
super(Mlp, self).__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = Linear(in_features, hidden_features)
|
|
self.act = build_activation_layer(act_cfg)
|
|
self.fc2 = Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""Attention layer for Encoder block.
|
|
|
|
Args:
|
|
dim (int): Dimension for the input vector.
|
|
num_heads (int): Number of parallel attention heads.
|
|
qkv_bias (bool): Enable bias for qkv if True. Default: False.
|
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
|
attn_drop (float): Drop rate for attention output weights.
|
|
Default: 0.
|
|
proj_drop (float): Drop rate for output weights. Default: 0.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.,
|
|
proj_drop=0.):
|
|
super(Attention, self).__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x):
|
|
b, n, c = x.shape
|
|
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads,
|
|
c // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
"""Implements encoder block with residual connection.
|
|
|
|
Args:
|
|
dim (int): The feature dimension.
|
|
num_heads (int): Number of parallel attention heads.
|
|
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
|
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop (float): Drop rate for mlp output weights. Default: 0.
|
|
attn_drop (float): Drop rate for attention output weights.
|
|
Default: 0.
|
|
proj_drop (float): Drop rate for attn layer output weights.
|
|
Default: 0.
|
|
drop_path (float): Drop rate for paths of model.
|
|
Default: 0.
|
|
act_cfg (dict): Config dict for activation layer.
|
|
Default: dict(type='GELU').
|
|
norm_cfg (dict): Config dict for normalization layer.
|
|
Default: dict(type='LN', requires_grad=True).
|
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
|
memory while slowing down the training speed. Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.,
|
|
attn_drop=0.,
|
|
proj_drop=0.,
|
|
drop_path=0.,
|
|
act_cfg=dict(type='GELU'),
|
|
norm_cfg=dict(type='LN', eps=1e-6),
|
|
with_cp=False):
|
|
super(Block, self).__init__()
|
|
self.with_cp = with_cp
|
|
_, self.norm1 = build_norm_layer(norm_cfg, dim)
|
|
self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop,
|
|
proj_drop)
|
|
self.drop_path = DropPath(
|
|
drop_path) if drop_path > 0. else nn.Identity()
|
|
_, self.norm2 = build_norm_layer(norm_cfg, dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_cfg=act_cfg,
|
|
drop=drop)
|
|
|
|
def forward(self, x):
|
|
|
|
def _inner_forward(x):
|
|
out = x + self.drop_path(self.attn(self.norm1(x)))
|
|
out = out + self.drop_path(self.mlp(self.norm2(out)))
|
|
return out
|
|
|
|
if self.with_cp and x.requires_grad:
|
|
out = cp.checkpoint(_inner_forward, x)
|
|
else:
|
|
out = _inner_forward(x)
|
|
|
|
return out
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
"""Image to Patch Embedding.
|
|
|
|
Args:
|
|
img_size (int | tuple): Input image size.
|
|
default: 224.
|
|
patch_size (int): Width and height for a patch.
|
|
default: 16.
|
|
in_channels (int): Input channels for images. Default: 3.
|
|
embed_dim (int): The embedding dimension. Default: 768.
|
|
"""
|
|
|
|
def __init__(self,
|
|
img_size=224,
|
|
patch_size=16,
|
|
in_channels=3,
|
|
embed_dim=768):
|
|
super(PatchEmbed, self).__init__()
|
|
if isinstance(img_size, int):
|
|
self.img_size = (img_size, img_size)
|
|
elif isinstance(img_size, tuple):
|
|
self.img_size = img_size
|
|
else:
|
|
raise TypeError('img_size must be type of int or tuple')
|
|
h, w = self.img_size
|
|
self.patch_size = (patch_size, patch_size)
|
|
self.num_patches = (h // patch_size) * (w // patch_size)
|
|
self.proj = Conv2d(
|
|
in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
|
|
def forward(self, x):
|
|
return self.proj(x).flatten(2).transpose(1, 2)
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
class VisionTransformer(nn.Module):
|
|
"""Vision transformer backbone.
|
|
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for
|
|
Image Recognition at Scale` - https://arxiv.org/abs/2010.11929
|
|
|
|
Args:
|
|
img_size (tuple): input image size. Default: (224, 224).
|
|
patch_size (int, tuple): patch size. Default: 16.
|
|
in_channels (int): number of input channels. Default: 3.
|
|
embed_dim (int): embedding dimension. Default: 768.
|
|
depth (int): depth of transformer. Default: 12.
|
|
num_heads (int): number of attention heads. Default: 12.
|
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
|
|
Default: 4.
|
|
out_indices (list | tuple | int): Output from which stages.
|
|
Default: -1.
|
|
qkv_bias (bool): enable bias for qkv if True. Default: True.
|
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set.
|
|
drop_rate (float): dropout rate. Default: 0.
|
|
attn_drop_rate (float): attention dropout rate. Default: 0.
|
|
drop_path_rate (float): Rate of DropPath. Default: 0.
|
|
norm_cfg (dict): Config dict for normalization layer.
|
|
Default: dict(type='LN', eps=1e-6, requires_grad=True).
|
|
act_cfg (dict): Config dict for activation layer.
|
|
Default: dict(type='GELU').
|
|
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
|
freeze running stats (mean and var). Note: Effect on Batch Norm
|
|
and its variants only. Default: False.
|
|
final_norm (bool): Whether to add a additional layer to normalize
|
|
final feature map. Default: False.
|
|
interpolate_mode (str): Select the interpolate mode for position
|
|
embeding vector resize. Default: bicubic.
|
|
with_cls_token (bool): If concatenating class token into image tokens
|
|
as transformer input. Default: True.
|
|
with_cp (bool): Use checkpoint or not. Using checkpoint
|
|
will save some memory while slowing down the training speed.
|
|
Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
img_size=(224, 224),
|
|
patch_size=16,
|
|
in_channels=3,
|
|
embed_dim=768,
|
|
depth=12,
|
|
num_heads=12,
|
|
mlp_ratio=4,
|
|
out_indices=11,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True),
|
|
act_cfg=dict(type='GELU'),
|
|
norm_eval=False,
|
|
final_norm=False,
|
|
with_cls_token=True,
|
|
interpolate_mode='bicubic',
|
|
with_cp=False):
|
|
super(VisionTransformer, self).__init__()
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.features = self.embed_dim = embed_dim
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_channels=in_channels,
|
|
embed_dim=embed_dim)
|
|
|
|
self.with_cls_token = with_cls_token
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
|
self.pos_embed = nn.Parameter(
|
|
torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
if isinstance(out_indices, int):
|
|
self.out_indices = [out_indices]
|
|
elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
|
|
self.out_indices = out_indices
|
|
else:
|
|
raise TypeError('out_indices must be type of int, list or tuple')
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
|
]
|
|
self.blocks = nn.ModuleList([
|
|
Block(
|
|
dim=embed_dim,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=dpr[i],
|
|
attn_drop=attn_drop_rate,
|
|
act_cfg=act_cfg,
|
|
norm_cfg=norm_cfg,
|
|
with_cp=with_cp) for i in range(depth)
|
|
])
|
|
|
|
self.interpolate_mode = interpolate_mode
|
|
self.final_norm = final_norm
|
|
if final_norm:
|
|
_, self.norm = build_norm_layer(norm_cfg, embed_dim)
|
|
|
|
self.norm_eval = norm_eval
|
|
self.with_cp = with_cp
|
|
|
|
def init_weights(self, pretrained=None):
|
|
if isinstance(pretrained, str):
|
|
logger = get_root_logger()
|
|
checkpoint = _load_checkpoint(pretrained, logger=logger)
|
|
if 'state_dict' in checkpoint:
|
|
state_dict = checkpoint['state_dict']
|
|
else:
|
|
state_dict = checkpoint
|
|
|
|
if 'pos_embed' in state_dict.keys():
|
|
if self.pos_embed.shape != state_dict['pos_embed'].shape:
|
|
logger.info(msg=f'Resize the pos_embed shape from \
|
|
{state_dict["pos_embed"].shape} to {self.pos_embed.shape}')
|
|
h, w = self.img_size
|
|
pos_size = int(
|
|
math.sqrt(state_dict['pos_embed'].shape[1] - 1))
|
|
state_dict['pos_embed'] = self.resize_pos_embed(
|
|
state_dict['pos_embed'], (h, w), (pos_size, pos_size),
|
|
self.patch_size, self.interpolate_mode)
|
|
|
|
self.load_state_dict(state_dict, False)
|
|
|
|
elif pretrained is None:
|
|
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
for n, m in self.named_modules():
|
|
if isinstance(m, Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if m.bias is not None:
|
|
if 'mlp' in n:
|
|
normal_init(m.bias, std=1e-6)
|
|
else:
|
|
constant_init(m.bias, 0)
|
|
elif isinstance(m, Conv2d):
|
|
kaiming_init(m.weight, mode='fan_in')
|
|
if m.bias is not None:
|
|
constant_init(m.bias, 0)
|
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
|
|
constant_init(m.bias, 0)
|
|
constant_init(m.weight, 1.0)
|
|
else:
|
|
raise TypeError('pretrained must be a str or None')
|
|
|
|
def _pos_embeding(self, img, patched_img, pos_embed):
|
|
"""Positiong embeding method.
|
|
|
|
Resize the pos_embed, if the input image size doesn't match
|
|
the training size.
|
|
Args:
|
|
img (torch.Tensor): The inference image tensor, the shape
|
|
must be [B, C, H, W].
|
|
patched_img (torch.Tensor): The patched image, it should be
|
|
shape of [B, L1, C].
|
|
pos_embed (torch.Tensor): The pos_embed weighs, it should be
|
|
shape of [B, L2, c].
|
|
Return:
|
|
torch.Tensor: The pos encoded image feature.
|
|
"""
|
|
assert patched_img.ndim == 3 and pos_embed.ndim == 3, \
|
|
'the shapes of patched_img and pos_embed must be [B, L, C]'
|
|
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1]
|
|
if x_len != pos_len:
|
|
if pos_len == (self.img_size[0] // self.patch_size) * (
|
|
self.img_size[1] // self.patch_size) + 1:
|
|
pos_h = self.img_size[0] // self.patch_size
|
|
pos_w = self.img_size[1] // self.patch_size
|
|
else:
|
|
raise ValueError(
|
|
'Unexpected shape of pos_embed, got {}.'.format(
|
|
pos_embed.shape))
|
|
pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:],
|
|
(pos_h, pos_w), self.patch_size,
|
|
self.interpolate_mode)
|
|
return self.pos_drop(patched_img + pos_embed)
|
|
|
|
@staticmethod
|
|
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode):
|
|
"""Resize pos_embed weights.
|
|
|
|
Resize pos_embed using bicubic interpolate method.
|
|
Args:
|
|
pos_embed (torch.Tensor): pos_embed weights.
|
|
input_shpae (tuple): Tuple for (input_h, intput_w).
|
|
pos_shape (tuple): Tuple for (pos_h, pos_w).
|
|
patch_size (int): Patch size.
|
|
Return:
|
|
torch.Tensor: The resized pos_embed of shape [B, L_new, C]
|
|
"""
|
|
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
|
|
input_h, input_w = input_shpae
|
|
pos_h, pos_w = pos_shape
|
|
cls_token_weight = pos_embed[:, 0]
|
|
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
|
|
pos_embed_weight = pos_embed_weight.reshape(
|
|
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
|
|
pos_embed_weight = F.interpolate(
|
|
pos_embed_weight,
|
|
size=[input_h // patch_size, input_w // patch_size],
|
|
align_corners=False,
|
|
mode=mode)
|
|
cls_token_weight = cls_token_weight.unsqueeze(1)
|
|
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
|
|
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
|
|
return pos_embed
|
|
|
|
def forward(self, inputs):
|
|
B = inputs.shape[0]
|
|
|
|
x = self.patch_embed(inputs)
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
x = self._pos_embeding(inputs, x, self.pos_embed)
|
|
|
|
if not self.with_cls_token:
|
|
|
|
x = x[:, 1:]
|
|
|
|
outs = []
|
|
for i, blk in enumerate(self.blocks):
|
|
x = blk(x)
|
|
if i == len(self.blocks) - 1:
|
|
if self.final_norm:
|
|
x = self.norm(x)
|
|
if i in self.out_indices:
|
|
if self.with_cls_token:
|
|
|
|
out = x[:, 1:]
|
|
else:
|
|
out = x
|
|
B, _, C = out.shape
|
|
out = out.reshape(B, inputs.shape[2] // self.patch_size,
|
|
inputs.shape[3] // self.patch_size,
|
|
C).permute(0, 3, 1, 2)
|
|
outs.append(out)
|
|
|
|
return tuple(outs)
|
|
|
|
def train(self, mode=True):
|
|
super(VisionTransformer, self).train(mode)
|
|
if mode and self.norm_eval:
|
|
for m in self.modules():
|
|
if isinstance(m, nn.LayerNorm):
|
|
m.eval()
|
|
|