|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as cp
|
|
from annotator.uniformer.mmcv.cnn import build_conv_layer, build_norm_layer
|
|
|
|
from ..builder import BACKBONES
|
|
from ..utils import ResLayer
|
|
from .resnet import Bottleneck as _Bottleneck
|
|
from .resnet import ResNetV1d
|
|
|
|
|
|
class RSoftmax(nn.Module):
|
|
"""Radix Softmax module in ``SplitAttentionConv2d``.
|
|
|
|
Args:
|
|
radix (int): Radix of input.
|
|
groups (int): Groups of input.
|
|
"""
|
|
|
|
def __init__(self, radix, groups):
|
|
super().__init__()
|
|
self.radix = radix
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
batch = x.size(0)
|
|
if self.radix > 1:
|
|
x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2)
|
|
x = F.softmax(x, dim=1)
|
|
x = x.reshape(batch, -1)
|
|
else:
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
|
|
class SplitAttentionConv2d(nn.Module):
|
|
"""Split-Attention Conv2d in ResNeSt.
|
|
|
|
Args:
|
|
in_channels (int): Same as nn.Conv2d.
|
|
out_channels (int): Same as nn.Conv2d.
|
|
kernel_size (int | tuple[int]): Same as nn.Conv2d.
|
|
stride (int | tuple[int]): Same as nn.Conv2d.
|
|
padding (int | tuple[int]): Same as nn.Conv2d.
|
|
dilation (int | tuple[int]): Same as nn.Conv2d.
|
|
groups (int): Same as nn.Conv2d.
|
|
radix (int): Radix of SpltAtConv2d. Default: 2
|
|
reduction_factor (int): Reduction factor of inter_channels. Default: 4.
|
|
conv_cfg (dict): Config dict for convolution layer. Default: None,
|
|
which means using conv2d.
|
|
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
|
dcn (dict): Config dict for DCN. Default: None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
radix=2,
|
|
reduction_factor=4,
|
|
conv_cfg=None,
|
|
norm_cfg=dict(type='BN'),
|
|
dcn=None):
|
|
super(SplitAttentionConv2d, self).__init__()
|
|
inter_channels = max(in_channels * radix // reduction_factor, 32)
|
|
self.radix = radix
|
|
self.groups = groups
|
|
self.channels = channels
|
|
self.with_dcn = dcn is not None
|
|
self.dcn = dcn
|
|
fallback_on_stride = False
|
|
if self.with_dcn:
|
|
fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
|
|
if self.with_dcn and not fallback_on_stride:
|
|
assert conv_cfg is None, 'conv_cfg must be None for DCN'
|
|
conv_cfg = dcn
|
|
self.conv = build_conv_layer(
|
|
conv_cfg,
|
|
in_channels,
|
|
channels * radix,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups * radix,
|
|
bias=False)
|
|
self.norm0_name, norm0 = build_norm_layer(
|
|
norm_cfg, channels * radix, postfix=0)
|
|
self.add_module(self.norm0_name, norm0)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.fc1 = build_conv_layer(
|
|
None, channels, inter_channels, 1, groups=self.groups)
|
|
self.norm1_name, norm1 = build_norm_layer(
|
|
norm_cfg, inter_channels, postfix=1)
|
|
self.add_module(self.norm1_name, norm1)
|
|
self.fc2 = build_conv_layer(
|
|
None, inter_channels, channels * radix, 1, groups=self.groups)
|
|
self.rsoftmax = RSoftmax(radix, groups)
|
|
|
|
@property
|
|
def norm0(self):
|
|
"""nn.Module: the normalization layer named "norm0" """
|
|
return getattr(self, self.norm0_name)
|
|
|
|
@property
|
|
def norm1(self):
|
|
"""nn.Module: the normalization layer named "norm1" """
|
|
return getattr(self, self.norm1_name)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.norm0(x)
|
|
x = self.relu(x)
|
|
|
|
batch, rchannel = x.shape[:2]
|
|
batch = x.size(0)
|
|
if self.radix > 1:
|
|
splits = x.view(batch, self.radix, -1, *x.shape[2:])
|
|
gap = splits.sum(dim=1)
|
|
else:
|
|
gap = x
|
|
gap = F.adaptive_avg_pool2d(gap, 1)
|
|
gap = self.fc1(gap)
|
|
|
|
gap = self.norm1(gap)
|
|
gap = self.relu(gap)
|
|
|
|
atten = self.fc2(gap)
|
|
atten = self.rsoftmax(atten).view(batch, -1, 1, 1)
|
|
|
|
if self.radix > 1:
|
|
attens = atten.view(batch, self.radix, -1, *atten.shape[2:])
|
|
out = torch.sum(attens * splits, dim=1)
|
|
else:
|
|
out = atten * x
|
|
return out.contiguous()
|
|
|
|
|
|
class Bottleneck(_Bottleneck):
|
|
"""Bottleneck block for ResNeSt.
|
|
|
|
Args:
|
|
inplane (int): Input planes of this block.
|
|
planes (int): Middle planes of this block.
|
|
groups (int): Groups of conv2.
|
|
width_per_group (int): Width per group of conv2. 64x4d indicates
|
|
``groups=64, width_per_group=4`` and 32x8d indicates
|
|
``groups=32, width_per_group=8``.
|
|
radix (int): Radix of SpltAtConv2d. Default: 2
|
|
reduction_factor (int): Reduction factor of inter_channels in
|
|
SplitAttentionConv2d. Default: 4.
|
|
avg_down_stride (bool): Whether to use average pool for stride in
|
|
Bottleneck. Default: True.
|
|
kwargs (dict): Key word arguments for base class.
|
|
"""
|
|
expansion = 4
|
|
|
|
def __init__(self,
|
|
inplanes,
|
|
planes,
|
|
groups=1,
|
|
base_width=4,
|
|
base_channels=64,
|
|
radix=2,
|
|
reduction_factor=4,
|
|
avg_down_stride=True,
|
|
**kwargs):
|
|
"""Bottleneck block for ResNeSt."""
|
|
super(Bottleneck, self).__init__(inplanes, planes, **kwargs)
|
|
|
|
if groups == 1:
|
|
width = self.planes
|
|
else:
|
|
width = math.floor(self.planes *
|
|
(base_width / base_channels)) * groups
|
|
|
|
self.avg_down_stride = avg_down_stride and self.conv2_stride > 1
|
|
|
|
self.norm1_name, norm1 = build_norm_layer(
|
|
self.norm_cfg, width, postfix=1)
|
|
self.norm3_name, norm3 = build_norm_layer(
|
|
self.norm_cfg, self.planes * self.expansion, postfix=3)
|
|
|
|
self.conv1 = build_conv_layer(
|
|
self.conv_cfg,
|
|
self.inplanes,
|
|
width,
|
|
kernel_size=1,
|
|
stride=self.conv1_stride,
|
|
bias=False)
|
|
self.add_module(self.norm1_name, norm1)
|
|
self.with_modulated_dcn = False
|
|
self.conv2 = SplitAttentionConv2d(
|
|
width,
|
|
width,
|
|
kernel_size=3,
|
|
stride=1 if self.avg_down_stride else self.conv2_stride,
|
|
padding=self.dilation,
|
|
dilation=self.dilation,
|
|
groups=groups,
|
|
radix=radix,
|
|
reduction_factor=reduction_factor,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
dcn=self.dcn)
|
|
delattr(self, self.norm2_name)
|
|
|
|
if self.avg_down_stride:
|
|
self.avd_layer = nn.AvgPool2d(3, self.conv2_stride, padding=1)
|
|
|
|
self.conv3 = build_conv_layer(
|
|
self.conv_cfg,
|
|
width,
|
|
self.planes * self.expansion,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.add_module(self.norm3_name, norm3)
|
|
|
|
def forward(self, x):
|
|
|
|
def _inner_forward(x):
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.norm1(out)
|
|
out = self.relu(out)
|
|
|
|
if self.with_plugins:
|
|
out = self.forward_plugin(out, self.after_conv1_plugin_names)
|
|
|
|
out = self.conv2(out)
|
|
|
|
if self.avg_down_stride:
|
|
out = self.avd_layer(out)
|
|
|
|
if self.with_plugins:
|
|
out = self.forward_plugin(out, self.after_conv2_plugin_names)
|
|
|
|
out = self.conv3(out)
|
|
out = self.norm3(out)
|
|
|
|
if self.with_plugins:
|
|
out = self.forward_plugin(out, self.after_conv3_plugin_names)
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out += identity
|
|
|
|
return out
|
|
|
|
if self.with_cp and x.requires_grad:
|
|
out = cp.checkpoint(_inner_forward, x)
|
|
else:
|
|
out = _inner_forward(x)
|
|
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
class ResNeSt(ResNetV1d):
|
|
"""ResNeSt backbone.
|
|
|
|
Args:
|
|
groups (int): Number of groups of Bottleneck. Default: 1
|
|
base_width (int): Base width of Bottleneck. Default: 4
|
|
radix (int): Radix of SpltAtConv2d. Default: 2
|
|
reduction_factor (int): Reduction factor of inter_channels in
|
|
SplitAttentionConv2d. Default: 4.
|
|
avg_down_stride (bool): Whether to use average pool for stride in
|
|
Bottleneck. Default: True.
|
|
kwargs (dict): Keyword arguments for ResNet.
|
|
"""
|
|
|
|
arch_settings = {
|
|
50: (Bottleneck, (3, 4, 6, 3)),
|
|
101: (Bottleneck, (3, 4, 23, 3)),
|
|
152: (Bottleneck, (3, 8, 36, 3)),
|
|
200: (Bottleneck, (3, 24, 36, 3))
|
|
}
|
|
|
|
def __init__(self,
|
|
groups=1,
|
|
base_width=4,
|
|
radix=2,
|
|
reduction_factor=4,
|
|
avg_down_stride=True,
|
|
**kwargs):
|
|
self.groups = groups
|
|
self.base_width = base_width
|
|
self.radix = radix
|
|
self.reduction_factor = reduction_factor
|
|
self.avg_down_stride = avg_down_stride
|
|
super(ResNeSt, self).__init__(**kwargs)
|
|
|
|
def make_res_layer(self, **kwargs):
|
|
"""Pack all blocks in a stage into a ``ResLayer``."""
|
|
return ResLayer(
|
|
groups=self.groups,
|
|
base_width=self.base_width,
|
|
base_channels=self.base_channels,
|
|
radix=self.radix,
|
|
reduction_factor=self.reduction_factor,
|
|
avg_down_stride=self.avg_down_stride,
|
|
**kwargs)
|
|
|