|
|
|
import torch
|
|
from torch import nn
|
|
from torch.autograd import Function
|
|
from torch.nn.modules.utils import _pair
|
|
|
|
from ..utils import ext_loader
|
|
|
|
ext_module = ext_loader.load_ext(
|
|
'_ext', ['dynamic_voxelize_forward', 'hard_voxelize_forward'])
|
|
|
|
|
|
class _Voxelization(Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx,
|
|
points,
|
|
voxel_size,
|
|
coors_range,
|
|
max_points=35,
|
|
max_voxels=20000):
|
|
"""Convert kitti points(N, >=3) to voxels.
|
|
|
|
Args:
|
|
points (torch.Tensor): [N, ndim]. Points[:, :3] contain xyz points
|
|
and points[:, 3:] contain other information like reflectivity.
|
|
voxel_size (tuple or float): The size of voxel with the shape of
|
|
[3].
|
|
coors_range (tuple or float): The coordinate range of voxel with
|
|
the shape of [6].
|
|
max_points (int, optional): maximum points contained in a voxel. if
|
|
max_points=-1, it means using dynamic_voxelize. Default: 35.
|
|
max_voxels (int, optional): maximum voxels this function create.
|
|
for second, 20000 is a good choice. Users should shuffle points
|
|
before call this function because max_voxels may drop points.
|
|
Default: 20000.
|
|
|
|
Returns:
|
|
voxels_out (torch.Tensor): Output voxels with the shape of [M,
|
|
max_points, ndim]. Only contain points and returned when
|
|
max_points != -1.
|
|
coors_out (torch.Tensor): Output coordinates with the shape of
|
|
[M, 3].
|
|
num_points_per_voxel_out (torch.Tensor): Num points per voxel with
|
|
the shape of [M]. Only returned when max_points != -1.
|
|
"""
|
|
if max_points == -1 or max_voxels == -1:
|
|
coors = points.new_zeros(size=(points.size(0), 3), dtype=torch.int)
|
|
ext_module.dynamic_voxelize_forward(points, coors, voxel_size,
|
|
coors_range, 3)
|
|
return coors
|
|
else:
|
|
voxels = points.new_zeros(
|
|
size=(max_voxels, max_points, points.size(1)))
|
|
coors = points.new_zeros(size=(max_voxels, 3), dtype=torch.int)
|
|
num_points_per_voxel = points.new_zeros(
|
|
size=(max_voxels, ), dtype=torch.int)
|
|
voxel_num = ext_module.hard_voxelize_forward(
|
|
points, voxels, coors, num_points_per_voxel, voxel_size,
|
|
coors_range, max_points, max_voxels, 3)
|
|
|
|
voxels_out = voxels[:voxel_num]
|
|
coors_out = coors[:voxel_num]
|
|
num_points_per_voxel_out = num_points_per_voxel[:voxel_num]
|
|
return voxels_out, coors_out, num_points_per_voxel_out
|
|
|
|
|
|
voxelization = _Voxelization.apply
|
|
|
|
|
|
class Voxelization(nn.Module):
|
|
"""Convert kitti points(N, >=3) to voxels.
|
|
|
|
Please refer to `PVCNN <https://arxiv.org/abs/1907.03739>`_ for more
|
|
details.
|
|
|
|
Args:
|
|
voxel_size (tuple or float): The size of voxel with the shape of [3].
|
|
point_cloud_range (tuple or float): The coordinate range of voxel with
|
|
the shape of [6].
|
|
max_num_points (int): maximum points contained in a voxel. if
|
|
max_points=-1, it means using dynamic_voxelize.
|
|
max_voxels (int, optional): maximum voxels this function create.
|
|
for second, 20000 is a good choice. Users should shuffle points
|
|
before call this function because max_voxels may drop points.
|
|
Default: 20000.
|
|
"""
|
|
|
|
def __init__(self,
|
|
voxel_size,
|
|
point_cloud_range,
|
|
max_num_points,
|
|
max_voxels=20000):
|
|
super().__init__()
|
|
|
|
self.voxel_size = voxel_size
|
|
self.point_cloud_range = point_cloud_range
|
|
self.max_num_points = max_num_points
|
|
if isinstance(max_voxels, tuple):
|
|
self.max_voxels = max_voxels
|
|
else:
|
|
self.max_voxels = _pair(max_voxels)
|
|
|
|
point_cloud_range = torch.tensor(
|
|
point_cloud_range, dtype=torch.float32)
|
|
voxel_size = torch.tensor(voxel_size, dtype=torch.float32)
|
|
grid_size = (point_cloud_range[3:] -
|
|
point_cloud_range[:3]) / voxel_size
|
|
grid_size = torch.round(grid_size).long()
|
|
input_feat_shape = grid_size[:2]
|
|
self.grid_size = grid_size
|
|
|
|
|
|
self.pcd_shape = [*input_feat_shape, 1][::-1]
|
|
|
|
def forward(self, input):
|
|
if self.training:
|
|
max_voxels = self.max_voxels[0]
|
|
else:
|
|
max_voxels = self.max_voxels[1]
|
|
|
|
return voxelization(input, self.voxel_size, self.point_cloud_range,
|
|
self.max_num_points, max_voxels)
|
|
|
|
def __repr__(self):
|
|
s = self.__class__.__name__ + '('
|
|
s += 'voxel_size=' + str(self.voxel_size)
|
|
s += ', point_cloud_range=' + str(self.point_cloud_range)
|
|
s += ', max_num_points=' + str(self.max_num_points)
|
|
s += ', max_voxels=' + str(self.max_voxels)
|
|
s += ')'
|
|
return s
|
|
|